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Abstract

Individuals with Alcohol Use Disorder (AUD) typically have comorbid chronic health condi-

tions, including anxiety and depression disorders, increased sleep disruption, and poor nutri-

tion status, along with gut microbial dysbiosis. To better understand the effects of gut

dysbiosis previously shown in individuals with AUD, gut microbiome and metabolome were

investigated between three cohorts. Two groups of individuals with AUD included treatment-

seeking newly abstinent for at least six weeks (AB: N = 10) and non-treatment-seeking cur-

rently drinking (CD: N = 9) individuals. The third group was age, gender, and BMI-matched

healthy controls (HC: N = 12). Deep phenotyping during two weeks of outpatient National

Institutes of Health Clinical Center visits was performed, including clinical, psychological,

medical, metabolic, dietary, and experimental assessments. Alpha and beta diversity and

differential microbial taxa and metabolite abundance of the gut microbiome were examined

across the three groups. Metabolites derived from the lipid super-pathway were identified to

be more abundant in the AB group compared to CD and HC groups. The AB individuals

appeared to be most clinically different from CD and HC individuals with respect to their gut

microbiome and metabolome. These findings highlight the potential long-term effects of

chronic alcohol use in individuals with AUD, even during short-term abstinence.
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Introduction

AUD is defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

(DSM-5), as “a problematic pattern of alcohol use leading to clinically significant impairment

or distress” [1], and both binge and heavy drinking are associated with AUD. The National

Institute on Alcohol Abuse and Alcoholism (NIAAA) defines binge drinking as the consump-

tion of� 4 or 5 drinks respectively for women or men in about 2 hours, which brings the

blood alcohol concentration to meet or� 0.08% [2]. Furthermore, the NIAAA defines heavy

drinking as the consumption of� 8 or 15 drinks/week for women or men, respectively [3].

Gut microbiome and metabolome alterations have been linked to the pathophysiology of

several mental health conditions, such as psychotic, depressive, and anxiety disorders [4], and,

most recently, to socio-emotional impairment and alcohol craving in the context of binge

drinking and AUD [5]. Chronic heavy drinking can affect all systems of the body, including

the gut microbiome [6]; in fact, heavy alcohol intake has been shown to influence gut dysbio-

sis, gut mucosal damage, and increased gut permeability [7–10]. The latter paves the way to

endotoxemia, which is the result of the translocation from the intestinal lumen to the blood

circulation of microbial products, mainly lipopolysaccharide, peptidoglycans, lipoteichoic

acid, and flagellin [11]. When these toxins reach the liver via the portal vein, they can induce

inflammation and contribute to hepatocyte death and subsequent fibrotic response [12, 13].

Gut microbiome is affected not only by chronic heavy drinking, but also by many common

diseases and prescription medications [14].

Several studies have focused on determining gut dysbiosis and metabolic dysfunction in ani-

mal models of alcohol intake and individuals with AUD. Studies in rodent models of alcohol

intake found decreased gut microbial alpha- and beta-diversity (diversity within and between

microbial communities, respectively), as well as differential relative abundance of phyla, such as

Firmicutes and Bacteroidetes [15, 16] (the Firmicutes/Bacteroidetes ratio is typically elevated in

alcohol drinking animals) [17]. Preliminary work from our group on the gut microbiome of

growth hormone secretagogue receptor (GHSR) knockout vs wild-type rats after alcohol binge-

like exposure showed a decrease in overall gut microbial diversity and changes in the proportion

of Bacteroidales order following alcohol binge-drinking [18]. A minority of rodent studies ana-

lyzed the gut metabolome, revealing alcohol-related changes in metabolites belonging to glycer-

ophospholipids, carboxylic acids, and fatty acyls [17, 19–21], classified as amino acids, bile

acids, fatty acids, peptides, and phenols in the subclass level [21–23].

Other non-human primate studies investigated the relationship between alcohol use and

the gut microbiome and metabolome [22, 23]. Two studies in Rhesus macaques showed an

increased in inflammatory bacterial taxa, such as Firmicutes [22], and metabolomic changes

primarily associated with differences in glycolysis [23]. A recent study from our group in olive

baboons [24], modeling both binge and heavy drinking patterns [25, 26], found changes in the

gut microbiome and metabolome, primarily loss of gut microbial alpha- and beta-diversity

and enhanced energy metabolism. These changes occurred after long-term (~12 years), but

not relatively short-term (~3 years) excessive drinking and were only partially affected by

acute abstinence from alcohol.

Preliminary human studies point to an association between gut dysbiosis and chronic

heavy drinking in individuals with AUD, typically investigated in inpatient settings [7–9].

There is evidence that alcohol misuse increases the abundance of Firmicutes and reduces Bac-

teroidetes [15, 27]. Fluctuations in gut luminal content of amino acids, bile acids, lipids, neuro-

transmitters, and markers of oxidative stress, likely reflecting alterations in the gut bacteria,

have also been observed [28–30]. Individuals with greater gut dysbiosis show intestinal hyper-

permeability and inflammatory response [7, 8, 10] and are also more likely to have liver
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damage [27]. Yet, gut dysbiosis is observed only in a subset of individuals with chronic heavy

drinking [7, 8] and abstinence does not always lead to reversal of dysbiosis [7–10]. A study in

individuals with AUD during detoxification found an association between gut dysbiosis, intes-

tinal hyperpermeability, and high depression, anxiety, and alcohol craving [8], with the latter

three being important predictors of relapse [31]. A study in recently abstinent inpatients with

AUD found that very heavy drinkers (�10 drinks/day) presented greater changes in the gut

microbiome following abstinence vs less heavy drinkers (<10 drinks/day), yet these changes

were not correlated with shifts in depression or anxiety [32].

In summary, existing human literature points to a complex relationship between AUD and

gut microbial composition and function. A number of gaps exist, including the failure to

account for lifestyle and environmental factors known to affect gut bacteria contributing to

intra- and inter-individual heterogeneity; in addition to retrospective measures of alcohol con-

sumption which are subject to recall bias and strictly controlled inpatient settings, failure to

properly account for these factors may deter researchers from making conclusive findings on

whether gut dysbiosis and metabolic alterations are due to alcohol abstinence vs factors intrin-

sic to inpatient care (e.g., diet, controlled environment) or other factors [14, 33]. The aim of

this case-control clinical study was to analyze and compare the gut microbiome and metabo-

lome among three groups of individuals with AUD in an outpatient setting: individuals with

AUD that were both abstinent (AB) for�6 weeks, and non-treatment-seeking who continued

drinking (CD), and healthy controls (HC) not drinking or drinking in moderation. Consistent

with our previous microbiome/metabolome study in a baboon model of binge drinking [24],

we hypothesized loss of gut microbial alpha- and beta-diversity and enhanced energy metabo-

lism in the CD group, compared to the other groups. Furthermore, deep phenotyping was per-

formed, including clinical, psychological, medical, metabolic, and dietary assessments such

that other lifestyle factors could be considered to help to explain any microbiome/metabolome

differences found between groups.

Materials and methods

Study participants

Recruitment for the current study occurred from August 28th 2017 to February 25th 2020

where it was terminated earlier than originally planned due to the COVID-19 pandemic.

Study inclusion and exclusion criteria are listed in the Supplementary Methods. All partici-

pants provided written informed consent and were compensated for their time and participa-

tion. The study was approved by the NIH Institutional Review Board Approval Institution

(Protocol Number: 17-DA-0093).

The three groups in the study are described as: (1) abstinent individuals (AB, N = 10), who

met DSM-5 criteria for AUD [1] and recently completed at least four weeks of inpatient treat-

ment at the NIH Clinical Center under the NIH/NIAAA treatment protocol 14-AA-0181, fol-

lowed by at least two weeks of abstinence in “real life” environment upon discharge; these

individuals had to continue to remain abstinent for the entire duration of the study; (2) cur-

rently drinking individuals (CD, N = 9), who met DSM-5 criteria for AUD, but were not

actively seeking treatment for AUD at the time of study participation and who satisfied

NIAAA criteria for heavy drinking [3] from at least four weeks prior to screening up to the day

of enrollment; and healthy controls (HC, N = 12), who had no current or past diagnosis of

AUD and with limiting alcohol intake to� 1 or 2 drinks/day for women or men, respectively

[34]. HCs were enrolled to match sex, race, mean age (±5 years), and mean BMI (±20%) of the

AUD groups (ABs and CDs). In this study, drinks corresponded to U.S. standard drinking
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unit, containing 14 g of alcohol [35]. For a full description of the study design, see Supplemen-

tary Methods.

Alcohol-related clinical assessment and psychological measures

Alcohol-related clinical characteristics and psychopathological features were assessed at

screening and/or at study visits using structured clinical interviews and self-report question-

naires (for a detailed description see Supplementary Methods). Diagnosis of AUD and of

other possible comorbid psychiatric disorders was made at screening according to the DSM-5

criteria [1] via the Structured Clinical Interview for DSM-5 (SCID-5) [36].

AUD severity was assessed at screening using the number of endorsed SCID-5 AUD crite-

ria, the number of heavy drinking years per the Lifetime Drinking History (LDH) [37], and

the total scores of the Alcohol Use Disorders Identification Test (AUDIT) [38] and the Alcohol

Dependence Scale (ADS) [39]. Alcohol intake was measured via the Timeline FollowBack

(TLFB) [40]: retrospectively to reflect the 90 days prior to inpatient admission for the AB

group and prior to study start for the CD and HC groups. Alcohol intake was assessed at each

study visit for the groups. Alcohol related variables utilized in this study included the average

number of drinks per day and the number of heavy drinking days. Other alcohol related mea-

sures such as craving and withdrawal were collected using the Penn Alcohol Craving Scale

(PACS) [41] and the Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised

(CIWA-Ar) [42]. Quality of sleep and presence of depressive and anxiety symptoms were eval-

uated at screening via the PSQI [43] and an abbreviated version of the Comprehensive Psycho-

pathological Rating Scale (CPRS) [44], which encompasses the Montgomery-Åsberg

Depression Rating Scale (MADRS) [45] and the Brief Scale for Anxiety (BSA) [46]. Transient

mood states were assessed during the study timeframe, specifically at the first and last study

visits, using the POMS anxiety and POMS depression and both were averaged between the

first and last visits [47].

Other clinical measures

Liver transient elastography. Transient elastography was performed using FibroScan1

(Echosens, France) at the first study visit. FibroScan1 is a non-invasive diagnostic ultra-

sound-based device used to assess liver stiffness (hardness), a measure of fibrosis, and liver

fatty changes, a measure of steatosis, which are present in a variety of liver diseases [48] (see

detailed description in Supplementary Methods). The degree of fibrosis and steatosis were

quantified using a liver stiffness measurement (LSM, in kilopascals [kPa]) and a controlled

attenuation parameter (CAP, in decibels/meter [dB/m]), respectively [49].

Medical comorbidity and medication data collection. Self-reported pre-existing medical

conditions and concomitant medications were collected as part of the participants’ medical

history and physical examination at the first study visit; they were then categorized as shown

in S1 Table and based on the classification by Jackson et al. [14].The latter used the gut micro-

biome profiles of the >2,700 members of the deeply phenotyped Twins UK cohort to carry out

gut microbiome association analyses with 38 common diseases (e.g., hypercholesterolemia,

hypertension, type 2 diabetes, respiratory allergies, anxiety, osteoarthritis) and 51 medications

(e.g., statins, proton pump inhibitors, vitamin D3, iron, calcium) that have been linked to gut

dysbiosis; their findings show significant associations with gut microbial diversity measures

and select taxa. Since pre-existing medical conditions and concomitant medications were

reported by many participants in this study, we looked them up and cross-checked them with

those listed by Jackson et al. to determine those linked with gut microbiota alterations (20%

FDR).
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Dietary intake assessment. Dietary intake was assessed using food records throughout

study participation. At each study visit, food records were collected and reviewed by trained

nutrition staff. Dietary intake reflected foods and beverages consumed prior to each study

visit, starting from day after the previous visit. Gathering of dietary information corresponded

to the in-clinic and at-home fecal sample collection. For further details, please see Supplemen-

tal Methods.

Gastrointestinal permeability testing. Gastrointestinal permeability, which is an index

of gut mucosal integrity, was assessed using four nondigestible sugars that are excreted and

measurable in the urine, with the urine sugar ratios providing a measure of permeability [50]

(see full description in Supplementary Methods). After an overnight (�12 hours) fast and

baseline urine collection, participants drank a 100 mL solution containing sucrose (10 g/dL),

lactulose (5 g/dL), mannitol (1 g/dL), and sucralose (1 g/L), and urine was collected for 5

hours. Participants were not allowed to eat or drink during these 5 hours, except for 1 L of

water provided.

Fecal sample collection and processing. A total of 209 fecal samples were obtained from

the 31 study participants which included depositions while participants were at home and also

during the study visits while at the NIH Clinical Center. Fecal sample handling, processing,

and analysis for microbiome and metabolome characterization have been described previously

[24]. For full details of fecal sample collection and processing, see Supplementary Methods.

Gut microbiome extraction and sequencing. Gut microbiome analysis consisted of fecal

DNA extraction and 16S rRNA gene sequencing, followed by data processing as described in

Supplementary Methods.

Gut metabolomic profiling. Detailed methods for gut metabolite profiling are described

in the Supplementary Methods. Following removal of metabolites with 50% or more missing

values, the values were median centered, log10 transformed, and mean scaled prior to statistical

analyses. Missing values, if any, were replaced by actual limits of detection (equal to 1/5 of the

minimum positive value of each variable) [51]. The resulting metabolomics dataset comprised

1032 metabolites, all of which had known chemical identities.

Statistics

Study population. We compared the study participants’ demographic, alcohol-related,

psychological, and other clinical characteristics, which were non-normally distributed (all p’s

< .05 at the Shapiro-Wilk test), using, for categorical variables, Chi-squared (χ2) test for com-

parisons among groups (AB vs. CD vs. HC) and between groups (AB vs. CD, AB vs. HC, CD

vs. HC). For continuous variables, we used a Kruskal-Wallis (H) test for comparisons among

groups and a Wilcoxon rank sum test for comparisons between two groups. Categorical vari-

ables were summarized using the total N sample size and the percent of the total sample, con-

tinuous variables as means and standard deviations. The JMPv16 statistical software (SAS

Headquarters, Cary, NC, USA) and Prism 9.4.1 for Mac OS X (GraphPad Software, Boston,

MA, USA) were used for data analysis and visualization.

Repeated sampling. Repeated measures for each participant’s fecal samples and dietary

intake records over the six study visits were averaged to control for intra-individual variability.

Repeated measures ANOVA was run to ensure that there were no statistically significant dif-

ferences among study visits within participants (all p-values�.05). Gut microbiome and die-

tary intake data presented are based on this averaging unless otherwise specified.

Participant characteristics. We compared the study participants’ demographic, alcohol-

related, psychological, and other clinical characteristics, which were non-normally distributed

(all p’s< .05 at the Shapiro-Wilk test), using, for categorical variables, Chi-squared (χ2) test for
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comparisons among groups and between groups (AB vs. CD, AB vs. HC, CD vs. HC). For con-

tinuous variables, a Kruskal-Wallis (H) test for comparisons among groups and a Wilcoxon

rank sum test for comparisons between two groups was used. Categorical variables were sum-

marized using the total N sample size and the percent of the total sample, continuous variables

as means and standard deviations. A p< .05 (two-tailed) was considered statistically

significant.

Microbiome data. Filtering and normalization, computation of microbial measures, and

data visualization were conducted using MicrobiomeAnalyst v. 2.0 [52–54], JMPv16, and

Prism. Data filtering parameters: minimum count = 4, 20% prevalence in samples, percentage

to remove based on IQR = 10%, sample size = 10,000. The data were then normalized, reduc-

ing the ASVs from 986 to 203. Alpha diversity metrics included observed ASVs, Chao1, Shan-

non, and Simpson. A PCoA of Bray-Curtis distances (Bray-Curtis dissimilarity) was used to

measure beta-diversity with permutational ANOVA (PERMANOVA) test for differential anal-

yses among groups.

Three tests were used to analyze the 71 genera (from the 203 ASVs): linear discriminant

analysis (LDA) effect size [55, 56], microbiome multivariable associations with linear models 2

(MaAsLin2) [57], and heat tree analysis (Wilcoxon rank sum test) [56]. Each test was used to

conduct pairwise comparisons (AB vs. HC, AB vs. CD, CD vs. HC). LEfSe is an algorithm that

first employs a Kruskal-Wallis (H) test to identify features with significant differential abun-

dance with respect to the class of interest; then, it performs a set of pairwise tests among sub-

classes, using Wilcoxon rank sum test to assess the contribution of differences between groups;

as a last step, it uses LDA to estimate the effect size of each differentially abundant feature and

to rank the relevance of the different biological aspects [55]. A size-effect threshold of 2.0 for

the logarithmic LDA score was applied for discriminative microbial features between groups.

MaAsLin2 is a statistical framework using general linear models to find associations between

microbial features and experimental metadata. A linear model is fit to each microbial feature

that includes the primary metadata, covariate, and blocking factor variables [57]. MaAslin2

was run using age and BMI adjustment in the linear model, and covariate plots of the resulting

significant genera were created. Heat tree analysis [58] displays statistics associated with taxa

(relative abundances) in a tree format. It leverages the hierarchical nature of the data to depict

taxonomic differences quantitatively and statistically (Wilcoxon rank sum test) between

microbial communities.

Genera found to be statistically significant at any of the three tests are reported. All testing

procedures selected genera at p< .05. Statistically significant genera were assessed for multiple

comparisons and none passed the adjustment, thus the genera p-values reported are

unadjusted.

Metabolomic data. A total of 1032 identified metabolites were used to investigate meta-

bolomic profiles among and between groups using both a Kruskal-Wallis [7] [H] test for and

post-hoc Wilcoxon rank sum test for pairwise comparisons. Any metabolite with missing val-

ues in� 50% of the samples was excluded from the analysis. Data were normalized by median

centering, and mean scaling and were further transformed using a logarithm base 10 transfor-

mation. The final dataset submitted for analysis after filtering was 946 metabolites. Multiple

comparisons were controlled for using a Benjamini-Hochberg (FDR) correction [59] and

those passing a corrected p< .05 (KW test) were considered significant. A multivariate unsu-

pervised principal component analysis (PCA) and supervised analyses (partial least squared

discriminant analysis [PLS-DA]) were carried out using MetaboAnalyst v. 5.0 [60]. Variable

importance in projection (VIP) measures were extracted in PLS-DA and calculated as a

weighted sum of the squared correlations between the PLS-DA components and the original

variable.
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Gut microbiome and metabolome data correlation. To integrate the microbiome and

the metabolome datasets, a correlation analysis between differential gut taxa and differential

metabolites was performed using Spearman’s correlation. Relative taxa abundances and nor-

malized Log10 transformed metabolites were used in the Spearman correlation analysis. A sig-

nificant association was reported if the association was found to have an absolute Spearman ρ
�0.50 and p< .05 (unadjusted). In addition, a Spearman’s correlation analysis was conducted

between all taxa/metabolites within each group in R (Hmisc package v. 5.1–0). Only bacterial

genera and fecal metabolites that had more than 50% non-zero values across participants were

included in the analysis. Multiple comparisons were corrected using Bonferroni’s correction

[61]. A microbiome-metabolite correlation was included in the results if Bonferroni corrected

p< .05 and an absolute Spearman’s ρ of�0.85 was found. Significant microbiome-metabolite

correlations within each group are presented using circos plots (R package circlize v. 0.4.16) in

the Supplemental Material.

Study approval. The study was approved by the NIH Institutional Review Board. All par-

ticipants provided informed consent and were compensated for their time and participation.

Results

Study population demographic and laboratory characteristics

Enrollment and data collection for this study included six outpatient study visits (over 14-days

ranging between 6–20 days in total) to the NIH Clinical Center (Fig 1).

Main demographic and laboratory characteristics of the groups are presented in Table 1.

Overall, no significant differences in sex, race, ethnicity, age, and BMI were observed among

groups. As expected, ABs and CDs had a higher proportion of smokers than HCs, who were all

non-smokers (p = .007). Average liver function tests during the study were within normal

range and did not differ among groups. Of note, we found higher values of AST (AB: 55.8

±49.9, CD:21.8±6.00, HC:22.3±7.03, p = .023) and GGT (AB:134±175, CD:30.8±12.3, HC:22.0

±12.8, p = .0032) in the AB group collected under 14-AA-0181 screening protocol, i.e., before

the inpatient treatment at the NIH Clinical Center. The inflammatory biomarker c-reactive

protein (CRP) and other parameters, including blood cell counts, coagulation factors, lipids,

thyroid hormones, and urinalysis were all within normal range and did not differ among

groups. At the FibroScan1, no participant had an exclusionary LSM score�17.6 kPa. FibroS-

can1 data showed no difference among groups in LSM and CAP.

Alcohol-related clinical and psychological characteristics

Average AUDIT scores were different among groups (p< .001) and between groups (AB vs.
HC, p< .001; CD vs. HC, p = .012) (Fig 2A). ADS scores were different among (p< .001) and

between groups (AB vs. HC, p = .001; CD vs. HC, p< .009) (Fig 2B). Per prior 90-day TLFB,

ABs and CDs reported more average drinks per day than HCs (p< .001 and p = .019, respec-

tively, Fig 2C), as well as more heavy drinking days than HCs (p< .001 and p< .007, respec-

tively, Fig 2D). Average drinks per day and heavy drinking days between ABs and CDs were

not significant (p = .074 and p = .285, respectively), however in both cases, the averages were

higher for ABs. Depression (MADRS), anxiety (BSA) and sleep quality (PSQI) were evaluated

across all individuals at screening, and all were different among groups (p’s < .001) (Fig 2E

and 2F); ABs had higher depression than CDs and HCs (p< .001 and p = .003, respectively)

and higher anxiety than CDs and HCs (p< .001 and p< .001, respectively). Interestingly, CDs

and HCs did not differ in depression and anxiety. POMS depression scores were different

among groups (p< .023) and the only significant difference was between ABs and HCs (p<
.001) (Fig 2G). POMS anxiety scores were higher but not significant among groups (Fig 2H).
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Gut microbiome across groups

The overall distribution of the phyla across the groups showed that Firmicutes was most abun-

dant with Bacteroides being second most dominant. Actinobacteria represented 6.19%, 2.56%

and 3.34% in ABs, CDs, and HCs, respectively, and Proteobacteria represented 5.74%, 10.77%,

and 8.14%, respectively (Fig 3A). At the genus level, Bacteroides was the most abundant genus

in all groups, with a relative abundance of 21.30% in ABs, 17.87% in CDs, and 23.61% in HCs.

Faecalibacterium and Agathobacter were second and third most dominant genera. (Fig 3B).

Gut microbial alpha- and beta-diversity

In total, 986 ASVs (618,267 reads) were identified across the 31 study participants (19,944

average reads/participant). Alpha diversity measures Chao1, Shannon, Simpson, and observed

ASVs indexes were calculated on the full set of 986 ASVs. Average alpha diversity measures

showed only species richness (Observed ASVs and Chao1) exhibiting significant differences

among groups (Fig 4A–4D and Table 2).

There were no significant beta diversity differences observed among groups using Principal

Coordinate of Analysis (PCoA) (Fig 4E, F-value = 0.911; R-squared = 0.061; p = .619). Alpha

Fig 1. Schematic representation of the study design. Abstinent individuals with AUD (AB) were enrolled in the study after�4 weeks of inpatient treatment

(NIH/NIAAA treatment protocol 14-AA-0181), followed by�2 weeks of “real life” (living their normal life). Non-treatment-seeking, currently drinking

individuals with AUD (CD) and matched healthy controls (HC) were also enrolled. Fecal samples from the study participants were collected and processed for

gut microbiome and metabolome analysis. Physical examination, 12-lead ECG, vital sign measurements, and laboratory tests were performed. Information on

physical and mental health (including information on medical conditions and medications) and dietary intake was gathered and analyzed. Transient liver

elastography and gastrointestinal permeability testing were carried out.

https://doi.org/10.1371/journal.pone.0302195.g001
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diversity measures (Observed, Chao1, Simpson, and Shannon) were correlated with alcohol

severity scores (AUDIT and ADS) within each group and no significant associations were

observed.

Table 1. Main characteristics of study population.

Variable Abstinent (AB, N = 10) Current Drinkers (CD, N = 9) Healthy Controls (HC, N = 12) Test Statistic P-value

Demographic
Sex, N (%) Female 2 (20.0) 2 (22.2) 4 (33.3) χ2 = 0.6 .744

Male 8 (80.0) 7 (78.8) 8 (66.7)

Race, N (%) White/Caucasian 6 (60.0) 7 (77.8) 7 (58.3) χ2 = 3.1 .546

Black/African

American

3 (3.0) 2 (22.2) 5 (41.7)

Asian 1 (1.0) 0 0

Ethnicity, N (%) Hispanic/Latino 0 0 1 (8.4) χ2 = 1.6 .441

Non-Hispanic/Latino 10 (100.0) 9 (100.0) 11 (91.6)

Age, years, mean (SD) 45.9 (11.4) 45.0 (12.6) 48.8 (12.0) H = 0.5 .766

BMI, kg/m2, mean (SD) 26.7 (5.1) 25.7 (4.0) 28.8 (4.9) H = 2.4 .299

Smoking status, N

(%)

Smoker 6 (60) 4 (44.4) 0 χ2 = 9.8 .007

Non-Smoker 4 (40) 5 (55.5) 12 (100.0)

Laboratorymean (SD)

ALT (U/L) 22.7 (13) 22.9 (11.4) 22.7 (10.7) H = 0.1 .973

AST (U/L) 24.9 (9.6) 22.3 (6.3) 22.1 (5.4) H = 0.3 .861

ALP (U/L) 83.2 (46.9) 64.6 (12.9) 70.2 (28.1) H = 0.4 .801

GG (U/L) 47.6 (72.3) 36.6 (18.1) 22 (13.4) H = 3.8 .149

Total bilirubin (mg/dL) 0.6 (0.3) 0.5 (0.2) 0.5 (0.3) H = 0.4 .824

CRP (mg/dL) 1.4 (0.8) 2.8 (1.6) 2.1 (2.8) H = 0.8 .654

Alcohol-relatedmean (SD)

Number of DSM-5 AUD criteria 9 (2) 5.5. 0 H = 26.8 < .001

AUDIT 28 (7.7) 16 (5.6) 2 (1.6) H = 24.7 < .001

ADS 22 (9.2) 10 (6.1) 0 H = 25.2 < .001

PACS 7 (5) 17.5 0.5 H = 20.4 < .001

LDH heavy drinking years 16.4 (9.4) 12.1 (13.8) 0 H = 15.2 < .001

CIWA-Ar 0.9 (1.1) 0.33 (0.7) 0 (0.0) H = 2.3 .294

90-day TLFB average drinks/daya 13.6 (8.0) 3.7 (1.2) 0.3 (0.3) H = 25.7 < .001

90-day TLFB heavy drinking daysa 72.6 (23.6) 66.0 (20.8) 13.6 (14.3) H = 20.4 < .001

In-study average drinks/dayb 0 (0) 3.6 (0.7) 1.4 (0.6) H = 9.3 .007

Psychological mean (SD)

PSQI 12 (3.5) 5 (4.0) 2.5 (4.0) H = 16.2 < .001

MADRSc 15 (7.8) 0.38 (1.1) 1.3 (1.7) H = 19.1 < .001

BSAc 11 (6.6) 0.11 (0.3) 1.2 (1.7) H = 21.1 < .001

POMS depressiond 5.3 (6.6) 3.9 (4.5) 1.2 (1.7) H = 7.5 .023

POMS anxietyd 4.3 (3.0) 3.4 (2.6) 2.4 (1.8) H = 2.5 .292

FibroScan1mean (SD)

LSMe 4.4 (1.5) 4.5 (1.2) 4.0 (0.9) H = 0.9 .624

CAPe 229.5 (79.7) 220.1 (80.4) 244.3 (69.7) H = 0.2 .916

Medical conditions and medications mean (SD)

Number of conditions 4.0 (1.8) 1.3 (1.2) 1.6 (1.3) H = 11.1 .004

(Continued)
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Table 1. (Continued)

Variable Abstinent (AB, N = 10) Current Drinkers (CD, N = 9) Healthy Controls (HC, N = 12) Test Statistic P-value

Number of medications 2.2 (1.6) 0.7 (1.4) 0.7 (1.1) H = 7.2 .028

Significant p-values (Benjamini-Hochberg corrected) in bold. Abbreviations: ADS = Alcohol Dependence Scale; AUDIT = Alcohol Use Disorders Identification Test;

BMI = body mass index; BSA = Brief Scale for Anxiety; CAP = Controlled Attenuation Parameter; CIWA-Ar = Clinical Institute Withdrawal Assessment of Alcohol

Scale, Revised; LDH = Lifetime Drinking History; LSM = Liver Stiffness Measurement; MADRS = Montgomery-Åsberg Depression Rating Scale; PACS = Penn Alcohol

Craving Scale; POMS = Profile of Mood States; PSQI = Pittsburgh Sleep Quality Index; SD = Standard Deviation; TLFB = Timeline FollowBack.
aPrior 90-day TLFB reflects 90 days prior to inpatient admission for ABs and 90 days prior to study start for CDs and HCs.
bIn-study TLFB reflects days of study participation for the groups.
cMADRS and BSA were administered at screening.
dPOMS depression and POMS anxiety scores are mean scores of the first and last study visits.
eLSM and CAP scores correspond to the median values of 10 valid measurements. Counts and percentages (%) are shown for categorical variables; means/standard

deviations (SDs) are shown for continuous variables. Chi-squared (χ2) test was used for categorical variables and Kruskal-Wallis (H) test was used for continuous

variables. Normal range of alanine transferase (ALT) is 23–69 U/L, of aspartate transferase (AST) is 19–62 U/L, of alkaline phosphatase (ALP) is 0–555 U/L, of gamma-

glutamyl transferase (GGT) is 5–40 U/L of total bilirubin is 0.1–1.2 mg/dL of c-reactive protein (CRP) is 0.3–1.0 mg/dL.

https://doi.org/10.1371/journal.pone.0302195.t001

Fig 2. AUD severity and mental health status. (A) AUDIT scores were significantly different among groups (p< .001) and between groups (AB vs. HC, p<

.001; CD vs. HC, p = .012). (B) ADS scores were significantly different among (p< .001) and between groups (AB vs. HC, p = .001; CD vs. HC, p< .009). (C)

Prior 90-day TLFB average drinks per day were significantly different among (p< .001) and between groups (AB vs. HC, p< .001; CD vs. HC, p = .019). (D)

Prior 90-day TLFB heavy drinking days were significantly different among (p< .001) and between groups (AB vs. HC, p< .001; CD vs. HC p = .007). (E)

MADRS scores were significantly different among (p< .001) and between groups (AB vs. HC, p< .001; AB vs. CD p = .003). (F) BSA scores were significantly

different among (p< .001) and between groups (AB vs. HC, p< .001; AB vs. CD, p< .001). (G) POMS depression scores were significantly different among (p

< .023) and between groups (AB vs. HC, p< .001). (H) POMS anxiety scores did not differ significantly among and between groups.

https://doi.org/10.1371/journal.pone.0302195.g002
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Group wise genus-level differential abundance

The 986 ASVs were filtered, removing low abundance and low variance features, resulting in

203 ASVs that classified to 71 genera. Differential abundance was assessed between groups, i.
e., AB vs. CD, AB vs. HC, and CD vs. HC using three testing procedures: LEfSe, MaAsLin2,

and heat tree analysis (Wilcoxon rank sum test).

Twelve taxa were found to be significantly different between groups in at least one test (no

adjustment). Taxa relative abundances and fold changes of the pairwise comparisons are

shown in Table 3.

Seven taxa (in bold in Table 3) were found to be significantly different (p< .05) in at least

one of the two group comparisons by all three tests. The overlap between the three pairwise

comparisons of the seven taxa was assessed using a Venn Diagram analysis (Fig 5A). In addi-

tion, a color map showing p-values for all tests and group comparisons is shown in Fig 5B.

Fig 3. Gut microbiome of study participants. (A) Phylum-pie chart across entire study population. Legend shows top

seven most abundant phyla. (B) Relative abundance bar chart at genus level across all participants. Legend shows the

top 20 most abundant genera.

https://doi.org/10.1371/journal.pone.0302195.g003
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Eight genera were found to be different in AB vs. CD groups by any test. Three of those gen-

era were significantly different and more abundant in AB in all tests: Streptococcus, Eisenber-
giella, and candidatus Stoquefichus (genus candidate) (Fig 5C). Five genera were found to be

different in ABs vs. HCs in all tests: Streptococcus, Fusicatenibacter, Lachnospira, Lachnospira-
ceae_UCG_001, and Roseburia. (Fig 5D). In CD vs. HC group comparison, two genera were

found significant in at least one test (Fig 5E).

Fig 4. Alpha- and beta-diversity of the gut microbiome. (A) Alpha-diversity, calculated with Observed ASVs richness, differed significantly among ABs,

CDs, and HCs (p = .026). (B) Alpha-diversity, calculated with Chao1, differed significantly among groups (p = .012). (C) Shannon diversity index did not

differ significantly among groups (p = .376). (D) Simpson diversity index did not differ significantly among groups (p = .626). (E) Principal coordinates

analysis (PCoA) plot comparing gut microbial beta-diversity (Bray-Curtis dissimilarity) among ABs, CDs and HCs, exhibited no separation among groups.

https://doi.org/10.1371/journal.pone.0302195.g004

Table 2. Alpha diversity measures.

Alpha-Diversity Indexes Abstinent (AB, N = 10) Current Drinkers (CD, N = 9) Healthy Controls (HC, N = 12) Kruskal-Wallis P-value

Observed ASVs 137 (24.32) 175 (40.81) 171 (30.95) H = 7.263 .026

Chao1 139 (25.22) 184 (44.88) 177 (31.90) H = 8.835 .012

Shannon 3.87 (0.24) 4.05 (0.38) 3.96 (0.28) H = 1.954 .376

Simpson 0.96 (0.01) 0.963 (0.02) 0.961 (0.01) H = 0.936 .626

Means and standard deviations (SDs) are shown for each alpha-diversity index. Kruskal-Wallis (H) test was used to compare the median of each index among the three

study groups, i.e., abstinent (AB) current drinkers (CD), and healthy controls (HC). p< .05 shown in bold. Abbreviations: ASV = Amplicon Sequence Variant;

SD = Standard Deviation.

https://doi.org/10.1371/journal.pone.0302195.t002
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Results from each individual testing procedure are presented in S1–S3 Figs. Briefly, eight

taxa were found to be significantly different using the Wilcoxon Sign Rank Sum test procedure

(p<0.05) (S1A Fig and S2 Table) and the Venn Diagram overlap analysis is shown in S1B Fig.

Heat trees are shown in S1C–S1E Fig (S3C-S3E Table). Results for LEfSe showed 10 genera to

be statistically significantly different among any of the three comparisons p< .05. Each LDA

effect score is plotted in S2A–S2C Fig for each group wise comparison. When considering

group comparisons made using MaAsLin2, 10 significant taxa were found, and covariate plots

were created to show the results from each test before and after covariate correction (S3 Fig).

Gut untargeted metabolomics

Untargeted metabolomic analysis identified 1032 metabolites. After excluding features with

50% or more missing values, a final set of 946 metabolites was analyzed and 33 differentially

abundant metabolites were found among groups (Fig 6A and S4 Table). The top 30% differ-

entially most abundant metabolites are shown in S4A Fig. Most of them (21/33) were lipids:

Five fatty acid metabolites, five lactosylceramides, four hexosylceramides, and four ceramides,

together with two steroids and one metabolite ascribed to sphingolipids synthesis. Different

amino acids across groups include two biochemicals involved in tryptophan metabolism, one

ascribed to lysine metabolism, one to cysteine metabolism, one to arginine metabolism, and

one to polyamine metabolism. Most metabolites were more abundant in the AB individuals.

Using PCA, AB group clustered separately from CD and HC groups (Fig 6B). With PLS-DA

(Fig 6C), while observing a relative separation among groups, we found that the AB group

showed the highest and lowest metabolite values (S4B Fig). Most metabolite differences were

due to the AB group, with 28/33 (85%) metabolites significantly different in both the AB vs.
CD and AB vs. HC comparisons. Pairwise comparisons (Fig 6D–6F and S4 Table) showed

that amino acids belonging to tryptophan metabolism, including skatol and xanthurenate,

were significantly less abundant in AB group compared to CD (p = .002 and p = 004, respec-

tively) and HC (p< .001 and p< .001) groups. Biochemicals involved in lysine, cysteine, and

Table 3. Log2 fold change of 12 genera found to be significantly different between groups.

Relative Abundance (%)

Mean (SD)

Log2 Fold Change

Taxa AB CD HC AB vs.CD AB vs. HC CD vs. HC

Akkermansia 0.936 1.084 1.297 -3.8 ⱡ# -2.19# -1.61#

Candidatus Stoquefichus 0.169 0.001 0.049 3.02*" 1.34 " 1.69"

Dorea 0.802 2.150 0.897 -1.35¥# 0.265" -1.61¥#

Eisenbergiella 0.147 0.012 0.027 1.79*" 1.27" 0.515"

Fusicatenibacter 1.194 1.971 2.499 -3.77¥# -3.92*# 0.152"

Lachnospira 0.560 0.719 1.658 -1.44# -1.95*# 0.51 ⱡ"
Lachnospiraceae_FCS020_group 0.003 0.016 0.059 -0.47# -1.27# 0.798"

Lachnospiraceae_UCG_001 0.000 0.065 0.093 -0.613# -1.32*# 0.704"

Roseburia 0.841 1.386 3.961 -1.66# -2.29*# 0.632"

Ruminococcaceae_UCG_014 0.100 0.362 1.198 -2.09# -2.48¥# 0.39"

Streptococcus 0.614 0.140 0.129 2.44*" 2.63*" -0.193#

Victivallis 0.008 0.199 0.108 -4.39# -1.66# -2.73 #

*p< .05 on all 3 tests

ⱡ p< .05 only on 2 tests
¥ p< .05 only on 1 test. " and # indicates minuend direction of change.

https://doi.org/10.1371/journal.pone.0302195.t003
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arginine metabolism were more abundant in AB group than CD and HC groups, namely fruc-

tosyllysine (ABs vs. CDs, p< .001; ABs vs. HCs, p = .001), cystine (AB vs. CD, p = .002; AB vs.
HC, p< .001), and carboxymethylarginine (ABs vs. CDs, p< .001; ABs vs. HCs p = .006). Dif-

ferently, the two cofactors oxalate and l-urobilin, along with the xenobiotic 4-acetamidobenzo-

ate, were less abundant among ABs than in CD and HC. Lastly, a xenobiotic belonging to

xanthine metabolism (1-methylxanthine) and one carbohydrate (N6-carboxymethyllysine)

were more abundant among AB individuals in both comparisons. Five metabolites exhibited

significant differences in CDs vs. HCs comparison.

Gut microbiome and metabolome associations

Differential features identified by fecal microbiome and metabolome analyses were correlated

from pairwise comparisons (AB vs. CD, AB vs. HC, and CD vs. HC). When considering only

those eight gut taxa found to be different between AB vs. CD groups from any test previously

described and the 30 metabolites from this comparison, 17 significant correlations were

Fig 5. Differentially abundant taxa among groups. (A) Venn Diagram overlap comparing significant genera by all

three tests (Wilcoxon, MaAsLin2, LEfSe) across each comparison. (B) Heat map of p-values for 12 significant genera

(y-axis) in any of three testing procedures and group wise comparisons (x-axis). (* indicates p< .05 for comparison

and test; X indicates that the genus was not assessed using LEfSe test procedure due to filtering). The color gradient

shows the exact p-value to which the color corresponds to. Bar plot of (C) AB vs. CD, (D) AB vs. HC and (E) CD vs.
HC Log2 fold change (x-axis) of genera (y-axis) found to be statistically different in comparison of interest. Shaded

boxes indicate significant genus in all three test procedures. Neither taxon was significant by all three tests for CD vs.
HC comparison. (Abbreviations: c. Stoquefichus = Candidatus_Stoquefichus; Ruminococcaceae_* =

Ruminococcaceae_UCG_014; Lachnospiraceae_# = Lachnospiraceae_FCS020_group; Lachnospiraceae_* =

Lachnospiraceae_UCG_001).

https://doi.org/10.1371/journal.pone.0302195.g005
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Fig 6. Metabolome differences among groups. (A) Hierarchical clustering of the 33 significantly different metabolites

colored by super pathway among groups (p< .05, FDR corrected, Kruskal-Wallis test). Unsupervised (B) and supervised

(C) ordination methods show separation between AB group vs. CD and HC groups (PCA), and AB, CD, and HC groups

(PLSDA) respectively. The quality of the PLS-DA model was assessed by its ability to predict variance of the data with four

components (Q2 = 0.575). Pairwise comparisons were observed by PCA in AB vs. CD (D), AB vs. HC (E), and CD vs. HC

(F) comparisons. (AB: red, CD: blue, HC: green).

https://doi.org/10.1371/journal.pone.0302195.g006
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identified. Six taxa were found to be significantly correlated with 12 metabolites (Fig 7A).

Streptococcus negatively correlated with three metabolites from the vitamin/cofactors and

amino acids while many associations were with metabolites derived from the lipid super path-

way. There were two taxa showing positive associations with lipids: Akkermansia and candida-
tus Stoquefichus.

Likewise, in the AB vs. HC comparison, six taxa were correlated to 31 metabolites. This

analysis revealed 37 significant associations (Fig 7B). The Lachnospiraceae_UCG_001 genus

showed associations with 15 metabolites and was negatively correlated with many lipid-related

metabolites and some metabolites related to amino acid and vitamin/cofactor pathways. Fusi-
catenibacter genus was associated with ten metabolites from the lipid super pathway. There

were seven microbiome/metabolite pairs that were positively associated and three of those

were with the Roseburia genus. We didn’t any significant correlation when investigating CDs

vs. HCs. In addition, we performed a multivariate analysis comparing all gut taxa to all gut

metabolites in order to understand the relationships within each group (S3 Table). All by all

Spearman correlations were computed within each group and a total of 149 significant correla-

tion pairs were found within ABs (S5A Fig), 258 were found within the CD group (S5B Fig),

and 33 within the HC group (S5C Fig).

Other ancillary collected measures

No significant differences were observed in dietary intake across groups in total calorie intake

(kcal) nor in percent calories from carbohydrate, protein, or fat (S5 Table). As anticipated, cal-

ories from alcohol were different among groups (p‘s< .001) with the CD individuals consum-

ing the most.

The number of self-reported pre-existing medical conditions and concomitant medications

was significantly different among the three groups (p = .004 and p = .028, respectively). Over-

all, ABs reported significantly more medical conditions and medications than CDs and HCs.

AB individuals reported a total of 40 medical conditions, with a 4±1.8 per subject, while CD

group reported 12 conditions (1.3±1.2 per subject) and HC group 19 conditions (1.6±1.3 per

Fig 7. Associations between differential gut microbes and metabolites. (A) Differential AB vs. CD metabolites compared

to microbes using Spearman correlation. (B) Differential AB vs. HC metabolites compared to microbes using Spearman

correlation. Blue dot indicates negative correlation, red dot indicated positive correlation.

https://doi.org/10.1371/journal.pone.0302195.g007
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subject), adding up to 71 conditions reported (Table 1 and S6A Fig). These medical condi-

tions were cross-checked with the list of diseases reported by Jackson et al., 37/71 (52.1%)

conditions reported by our sample were found to be in common with the list; 21/40 (52.5%)

conditions reported by ABs, 4/12 (33.3%) by CDs, and 12/19 (63.1%) by HCs overlapped

with those listed by Jackson et al. (S6B Fig). ABs reported taking 22 medications (2.2±1.6

per participant), while CDs reported 6 (0.7±1.4 per participant) and HCs 8 medications (0.7

±1.1 per participant), adding up to 36 medications taken by all (Table 1 and S7A Fig).

When these medications were cross-checked with the list of medications by Jackson et al.,
17/36 (47.2%) medications taken by our sample were found to be in common (11/22 (50%)

by ABs, 3/6 (50%) by CDs, and 3/8 (37.5%) by HCs) overlapped (S7B Fig). A total of 37 dis-

eases and 17 medications reported by the study participants across the AB, CD, and HC

groups matched those found by Jackson et al. to have a significant association with a gut

microbiome marker.

The gastrointestinal permeability assays showed inconsistencies in the participants’ fasting

status of 16 participants; therefore, no conclusions were made using these data. However,

sugar excretion curves over the sampling times (sucrose: S8A Fig, sucralose: S8B Fig and lac-

tulose/mannitol ratio: S8C Fig) were plotted for the 15 participants who did not have sugar

detected at the baseline samples.

Discussion

This study reports the results of a case-control clinical investigation in an outpatient setting

aimed at comparing the gut microbiome and metabolome among three groups of individuals:

individuals with AUD who were treatment-seeking but newly abstinent (ABs), non-treatment-

seeking individuals who were currently drinking (CDs), and healthy controls (HCs). All sam-

ples and measures were collected over approximately two weeks at the National Institutes of

Health Clinical Center. In addition to fecal sample collection, other measures including addic-

tion- and psychopathology-related phenotyping was carried out. The overall findings show

that the healthy controls and the current drinkers did not differ much in the gut microbiome

and metabolome features but that the abstinent individuals differed the most. Furthermore,

the clinical phenotypic characterization showed that AB individuals had greater sleep disrup-

tion, poorer mental health status, and a higher number of medical comorbidities and concomi-

tant medications. The greater differences observed in the AB group could be attributed to

some biological processes going on in early abstinence after cessation of chronic alcohol use

along with more severe AUD and comorbidities, a known characteristic of treatment-seeking

(compared to nontreatment-seeking) individuals with AUD. Finally, while this experimental

case-control study brings light to these facts, it is not possible to disentangle these two con-

founds, which could be contributing to the difference in AB individuals. Our findings are in

contrast with other studies showing that individuals with AUD who abstain from alcohol may

present with partial recovery of the gut microbiome [23, 32]. However, there are not enough

studies nor enough studies with large sample sizes to conclude on the reversibility, or irrevers-

ibility, of alcohol-induced changes to the gut microbiota. Of note, other studies did not repli-

cate these findings and found little or no changes in the gut microbiome after abstinence [7, 8,

10]. It bears mentioning that inpatient studies allow for a well-controlled, experimentally rig-

orous setting, but they are unable to control for other confounders such as changes in diet,

general lifestyle habits and changes due to acute alcohol withdrawal. Additionally, inpatient

studies allow for a well-controlled experimentally rigorous setting, but they are unable to con-

trol for other confounders such as changes in diet and general lifestyle habits and changes due

to acute alcohol withdrawal. This current study provided an exemplary opportunity to capture
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gut microbiome samples in an outpatient setting allowing the participants to continue their

normal daily lifestyle choices.

Gut microbiome differences

The gut microbial diversity of observed ASVs and Chao1 indexes was significantly lower in the

AB group compared to CD and HC groups; however, other diversity measures considering

taxa relative abundance (i.e., Simpson and Shannon indexes) were not statistically different. In

a study on the effects of moderate levels of alcohol consumption on the gut microbiome in

both rats and humans, alcohol-treated rats had significantly lower species richness compared.

Still, a human study looking at alcohol consumers did not display a similar alteration [62]. Fir-

micutes and Bacteroidetes phyla are dominant in human fecal samples, and previous animal

and human studies point to increased Firmicutes following chronic heavy alcohol use [15–17,

27]. Taxonomic differences between groups were explored using a three-test procedure, find-

ing seven taxa that passed all tests at a p< .05 for any comparison. Specifically, ABs presented

a depletion of the beneficial genera Akkermansia, Lachnospira, Roseburia, Fusicatenibacter,
and Lachnospiraceae_UCG_001 and an increase in Eisenbergiella, Streptococcus, and candida-
tus Stoquefichus. These genera belong to the Lachnospiraceae family which have been impli-

cated as part of the core of the gut microbiota, colonizing the gut lumen from birth. All

members of this family are anaerobic, fermentative, and chemoorganotrophic, and some dis-

play strong hydrolyzing activities, for example through the activity of pectin methyl-esterase,

α- and β-galactosidase, α- and β-glucosidase, and α-amylase [63]. Lachnospiraceae family

plays a crucial role in the metabolism of carbohydrates, being able to utilize diet-derived poly-

saccharides, including starch, inulin, and arabinoxylan, to produce butyrate and other short-

chain fatty acids (SCFAs). SCAFs have known, profound, beneficial effects on human health

[64, 65]. In a previous study, Eisenbergiella has been shown to decrease after chronic alcohol

drinking [66], which is discordant with what was found in this study, being more abundant in

the AB group compared to CD and HC groups. Similarly, regarding the members of the Lach-
nospiraceae family, Fusicatenibacter, shown to be depleted in ABs compared to both CDs and

HCs in this study, is an anaerobic, fermentative genus that supplies nutrients and energy to the

host. Among the ABs, genera Streptococcus and candidatus Stoquefichus genera were more rep-

resented. Members of the Streptococcus genus are generally considered harmful and are com-

mon pathogens responsible for bacterial infections in individuals with AUD, especially if

complicated by ALD [67]. Candidatus Stoquefichus, a-yet uncultured genus, has been found to

be increased in the gut microbiota of a mouse model of obesity [68].

Gut metabolomic differences

Fecal metabolic profiling of the study participants mirrored the results of the gut microbiome

analysis. Both univariate and multivariate analyses showed the ABs’ fecal metabolome to be

different from CDs and HCs. The 33 metabolites found to be significantly different among

groups were primarily from the lipid and amino acid pathways. AB individuals had a lower

abundance of tryptophan metabolites, such as skatol and xanthurenate. Tryptophan is an

essential amino acid for protein synthesis that has emerged as a key player in the gut-brain

axis. It is the only precursor for serotonin, which acts as a neurotransmitter in both the central

and the enteric nervous systems [69, 70]. Additionally, tryptophan and its metabolites have a

key role in maintaining gut-brain homeostasis; dysregulation of tryptophan metabolites plays

a central role in the pathogenesis of many neuropsychiatric disorders, including AUD [71].

Gut bacteria influence tryptophan metabolism directly and indirectly, with corresponding

changes in behavior and cognition. AB group, compared to CD and HC groups, had a higher
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abundance of metabolites of the lipid pathway, including lactosyl-N-palmitoyl-sphingosine,

glycosyl-N-palmitoyl-sphingosine, and lactosyl-N-arachidoyl-sphingosine. Ingested triacylgly-

cerides can be sequentially broken down to diacylglycerols (DAG), and then monoacylglycer-

ols (MAG) [9] by the activity of secreted pancreatic lipases. The free fatty acids (FFAs)

generated from each step, as well as the MAGs, can then be taken up by the epithelial cells of

the intestinal lumen and repackaged into chylomicrons for distribution throughout the body

(where at the tissue level they are broken down again to free fatty acids) [72]. As such, differ-

ences in DAGs, MAGs, and FFAs may indicate a difference in the action of lipases (bile secre-

tion) and/or uptake of lipids. Lipids show an increase in various liver diseases, including

alcohol-associated steatosis [73]. Given the known role of tryptophan and lipids in depression

and other mental health disorders, we suggest that the differences in the gut metabolome

observed in this study may be more reflective of the mental health comorbidities present

among the AB group.

Associations of the gut microbiome and metabolome

A correlation analysis to investigate the functional associations between differential gut taxa

and metabolites was conducted. In the pairwise comparisons we found that Streptococcus
genus, differentially more abundant among the ABs and found in higher abundance in indi-

viduals with AUD in other studies [10, 74, 75], negatively correlated with two tryptophan

metabolism biochemicals, skatol and xanthurenate (ABs vs. CDs and AB vs. HCs comparisons,

respectively). Conversely, Roseburia genus (less abundant in ABs when compared to HCs) and

known SCFAs producer [76], was positively associated with xanthurenate metabolite. It has

been showed that tryptophan metabolism pathways in the gut are differentially affected in dis-

eases but remains interconnected and that these pathways are controlled by the gut microbiota

[77]. The role played by Streptococcus and Roseburia genera still needs to be elucidated. Candi-
datus Stoquefichus (found in higher abundance among the ABs) exhibit positive correlations

with all the hexosylceramides (more abundant in AB group compared to CD and HC groups).

These metabolites are intermediates in sphingolipid metabolism that are involved in cell prolif-

eration and differentiation, cell senescence, and apoptosis. Alteration of sphingolipid pathways

contributed to alcohol-associated liver diseases [78, 79]. The differentially abundant ceramides

were negatively associated with known SCAFs producers [80] Fusicatenibacter genus (AB vs.
HC and AB vs. CD comparisons), Dorea (AB vs. CD comparison), Roseburia, Lachnospira and

Lachnospiraceae UCG 001 genera (AB vs. HC comparison). While this study does not allow to

infer potential causal roles of these functional associations, future studies should investigate

whether these gut microbiome-metabolome relationships may play a role in alcohol drinking

and AUD.

Clinical characteristics and differences across groups

There were no differences observed in demographic characteristics, blood marker liver tests,

or in the FibroScan1 evaluation in this study. Noteworthy, the liver markers AST and GGT

were higher in the AB group at screening but not during the study (after the inpatient treat-

ment period), showing how even short periods of abstinence may improve liver tests in people

with AUD. When other clinical data was investigated, the AB individuals showed more severe

traits related to AUD and psychological and mental health comorbidities than CDs and HCs.

In fact, AB individuals had greater severity of AUD and significantly higher alcohol intake

(pre-abstinence). Additionally, the AB group presented higher levels of depression and anxiety

and poorer quality of sleep. These findings may partly explain the greater disruption of the gut

microbiome and metabolome in AB individuals compared to CDs and HCs. The fact that the
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AB group (which were treatment-seekers) had clinically more severe characteristics, condi-

tions, and medical and mental health comorbidities than CDs (non-treatment seekers) is con-

sistent with previous studies examining treatment seeking and non-treatment seeking

individuals with AUD [81–84]. Other potential explanations for the different gut microbiome

and metabolome found among AB individuals may be attributed to the mental health differ-

ences observed. Previous studies have shown perturbations of the gut microbiome in multiple

psychiatric disorders [4, 85, 86] as well as sleep disturbances [87]. A recent review and meta-

analysis of 34 studies on the gut microbiome of individuals affected by various psychiatric dis-

orders revealed a significant decrease in microbial community richness compared with healthy

controls. It also showed no significant differences in diversity Shannon and Simpson indexes,

in line with our findings. A transdiagnostic pattern of gut microbiota signatures was found:

Depleted levels of Faecalibacterium and Coprococcus genera and enriched levels of Eggerthella
genus were shared between major depressive disorder and anxiety, suggesting that these disor-

ders are characterized by a reduction of anti-inflammatory, SCFA-producing bacteria, while

pro-inflammatory ones are enriched.

Consistent with the conclusions above, AB group reported being affected by significantly

more medical conditions and therefore taking significantly more medications than the other

groups. Many of these conditions and medications overlapped with those that were found in

the Jackson et al.’s study [14] to be associated with dysbiosis. These findings imply that gut

microbiome and metabolome differences observed in AB individuals compared to CDs and

HCs may therefore be due to a higher prevalence of diseases and a higher intake of medica-

tions in the AB group. This limits the ability to translate gut microbiome and metabolome

findings from animal models to individuals with AUD, unless these variables are controlled

for which was difficult to implement in this study due to the small sample size of the groups

included.

Dietary intake patterns across groups

Dietary intake showed no differences among groups during the two weeks of dietary intake

assessment, other than in total alcohol intake, as expected. Some large population-wide studies

have demonstrated that non-alcohol energy intake increases or remains unchanged with light

and moderate drinking but decreases with heavy alcohol consumption to compensate for calo-

ries from alcohol [88]. Additionally, previous research has linked higher alcohol consumption

with lower carbohydrate intake [89]. However, in this study, CD individuals consumed 14.4%

of their energy from alcohol, whereas prior literature reports that the upper third of drinking

Americans have an average of 20% of energy intake from alcohol [90]; this discrepancy could

be due to CD group not having severe AUD than other studies. In addition to this, CDs may

have underreported alcohol intake and other dietary intake variables. Furthermore, few studies

have explored diet quality in abstinent and currently drinking individuals with AUD and

more research needs to be conducted in this area to be able to better understand these

findings.

This study presents a comprehensive gut microbiome and metabolome analysis, associated

with a deep phenotyping of clinical and experimental measures of the three cohorts. The statis-

tical strength of the study was limited due to the small groups’ sample size, and the lack of a

pre-abstinence sampling timepoint preventing any longitudinal analyses. Additionally, the HC

group was slightly overweight and reported some medication and pre-existing conditions

which could have further confounded the comparisons. Additional long-term longitudinal

outpatient studies are needed for better understanding of how prolonged abstinence (and lack

of) may affect the gut microbial community.
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Conclusions

In conclusion, the present case-control study provides novel data on the gut microbiome and

metabolome, along with a deep phenotyping characterization, in people with AUD from both

newly abstinent treatment-seeking, non-treatment-seeking current drinkers, and matched

controls. These individuals were investigated in their “real world” life across multiple outpa-

tient visits, an important strength that gives more translational value to the findings described.

Of note, however, our hypothesis was not proven. That is, we hypothesized gut microbiome/

metabolome similarities between healthy controls and newly abstinent individuals with AUD,

while the CD group was going to be different than the other two groups. By contrast, it was the

AB group to separate itself, from a gut microbiome/metabolome standpoint, from the other

two groups. The deep clinical phenotyping we conducted in this study allowed us to describe

how the AB group had a more severe AUD history and more medical and psychiatric comor-

bidities. Therefore, all results considered, we speculate that the microbiome-metabolome dif-

ferences here observed reflect mental health-related transdiagnostic traits and their sequelae

(including more comorbidities and related medications) rather than an AUD-specific

phenotype.

Supporting information

S1 File.

(XLSX)

S2 File.

(DOCX)

S3 File.

(DOCX)

S1 Fig. Overlapping taxa pairwise comparison between groups and heat trees. Pairwise

comparison at the genus level between each group using Wilcoxon Test. (A) Dot plot of 9 gen-

era (y-axis) found to be significant (p< .05, unadjusted) in pairwise comparison (x-axis). (B)

Venn Diagram showing genera found to be significant that overlap between 3 pairwise tests.

(C-E) The heat tree analysis leverages the hierarchical structure of taxonomic classifications to

quantitatively (using the mean abundance) and statistically (using the non-parametric Wil-

coxon Rank Sum test with p< .05) depict taxonomic differences between microbial communi-

ties. Red boxes show the end of the leaf (genus) in the heat tree for each plot. Taxa colored in

red are more abundant in the AB (C, D) and CD (E) groups, taxa colored in blue are more

abundant in the HC (C, E) and CD (D) groups. AB: Abstinent, CD: current drinkers, HC:

healthy controls.

(TIF)

S2 Fig. Lefse pairwise analysis. LEfSe LDA bar plots at the genus level of fecal microbial sam-

ples displaying the pairwise LDA scores between the three groups; abstinent group (AB), con-

tinuous alcohol drinking group (CD), and the healthy control group (HC). The bars represent

the effect size (LDA) for a particular genus in a certain group. The length of the bar represents

a log10 transformed LDA score. The heat maps show the LDA effect size from blue (negative)

to red (positive). Shaded bars with an ‘*’ are genera that were found to be significant in the

pairwise test (p< .05). (A) represents the pairwise comparison of AB to CD; (B) represents the

pairwise comparison of AB to HC; and (C) represents the pairwise comparison of CD to HC.

AB: Abstinent, CD: current drinkers, HC: healthy controls.

(TIF)
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S3 Fig. Results of covariate adjustment for MaAsLin2. Results of covariates adjustment (y

axis) and without adjustment (x axis). P values for the comparisons between (A) AB and CD,

(B) AB and HC, and (C) CD and HC groups did not improve with covariate adjustment (BMI

and age), resulting in no significantly different taxa. AB: Abstinent, CD: current drinkers, HC:

healthy controls.

(TIF)

S4 Fig. Multivariate analysis of stool metabolome. Variable importance in prediction (VIP)

scores extracted by PLS-DA of metabolites and heatmap of the average scaled expression val-

ues of the indicated VIP metabolites in all samples. The top 30 metabolites driving differences

between group are represented (lowest VIP score = 2.261). Metabolites in AB group samples

show the lowest (in most cases) or the highest abundance compared to HC and CD groups.

AB: Abstinent, CD: current drinkers, HC: healthy controls.

(TIF)

S5 Fig. Microbiome/metabolites correlations within groups. The correlations were com-

puted within each group and a total of 149 significant correlation pairs were found within the

ABs (A), 258 were found within the CDs (B), and 33 within the HCs (C). Most of the taxa

within the AB group found to significantly correlate with metabolites, were represented in the

CDs as well. Specifically, across the three comparisons, a high number of correlations were

found in members from Lachnospiraceae and Oscillospiraceae families (Bacillota phylum):

62% in the CD group, 47% in the AB group, and 66% in the HC group. Streptococcus genus

was found to be significantly more abundant in the AB group when compared to CD and HC

groups. In the CD group Streptococcus genus was positively correlated with glyerolpho-

sphoethanolamine (r = 0.950, p< .001), glycerophosphoserine (r = 0.917, p< .001), mannose

(r = 0.917, p< .001), deoxycarnitine (r = 0.867, p = .002), and N,1, acetylspermidine

(r = 0.850, p = .004). Conversely, in the same group we found negative correlations of Strepto-

coccus with heptenedioate (C7:1-DC) (r = -0.865, p = .003), 2’-O-methylcytidine (r = -0.865, p

= .003), and hexadecanedioate, C16 (r = -0.850, p = .004). In the AB group, Streptococcus
genus correlated negatively with 7-ketocholesterol (r = -0.952, p< .001). Lachnospira genus,

significantly less abundant in the AB group, was positively correlated with 3-hydroxyoctanoate

(r = 0.931, p< .001) and with 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) (r = 0.855, p = .002) in the

AB group, while in the CD group correlated negatively with N-formylanthranilic acid (r =

-0.900, p < .001), 2,hydroxybehenate (r = -0.900, p< .001), N-acetylglycine (r = -0.883, p =

.002), urate (r = -0.867, p = .002), and pseudouridine (r = -0.850, p = .004). Lachnospira genus

was positively correlated with indolepropionate (r = 0.867, p = .002) among the CDs. Roseburia
genus, significantly less abundant in the AB group, correlated positively in the AB group with

N,N,dimethylalanine (r = 0.867, p = .001), 12-ketolithocholate (r = 0.903, p< .001), and

3-dehydrodeoxycholate (r = .939, p< .001). The same genus was negatively associated with 3-

(3-hydroxyphenyl) propionate (r = -0.883, p = .002), p-Cresol sulfate (r = -0.867, p = .002), and

succinate (r = -0.850, p = .004) in the CD group. Fusicatenibacter genus, significantly less

abundant in the AB group, negatively correlated with dibutyl sulfosuccinate (r = -0.865, p =

.001) in the AB group. In the CD group this genus correlated negatively with Deoxycytidine

monophosphate (dCMP) (r = -0.865, p = .003) and positively with methionine sulfoxide

(r = 0.883, p = .002). Of note, we didn’t find any taxon/metabolite correlation passing the r±
0.85 cutoff in any group of candidatus Stoqueficus and Eisenbergiella (more abundant taxa

among the ABs), as well as Lachnospiraceae_UCG_001 family, taxon depleted among ABs

(Table 3).

(TIF)
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S6 Fig. Reported pre-existing conditions per participant and overlapping diseases with

Jackson et al. (2018). A) Reported participant preexisting conditions use over entire patient

population. Blue dots indicate condition of AB participants, red dots indicate condition of CD

participants and green dots indicate condition of HC participants. B) Preexisting conditions

that overlap with Jackson et al. (2018) when selecting at a 20% FDR in S5 Table (Jackson et al.,

2018). (AB: Abstinent, CD: current drinkers, HC: healthy controls).

(TIF)

S7 Fig. Reported medication taken by participant and overlapping medications with Jack-

son et al. (2018). A) Reported participant medication use over entire patient population. Blue

dots indicate medication taken by AB participants, red dots indicate medication taken by CD

participants and green dot indicates medication taken by HC participants. B) Medications that

overlap with Jackson et al. (2018) when selecting at a 20% FDR in S4 Table (AB: Abstinent,

CD: current drinkers, HC: healthy controls).

(TIF)

S8 Fig. Gastrointestinal permeability curves. Detection of sucrose (A), Sucralose (B) and

Lactulose/Mannitol ratio (C) by ultra-performance liquid chromatography mass spectrometry

(UPLC-MS) analysis in suspected non-fasters participants. L/M ratio corresponded to the frac-

tional excretion (FE) of lactulose and mannitol = (urine concentration from MS x total urine

volume excreted)/sugar input). L/M ratio was calculated as FE lactulose/FE mannitol. Data are

presented as mean values +/- SD. AB: Abstinent, CD: current drinkers, HC: healthy controls.

Baseline = 40 minutes before starting the experiment, sampling times during the experiment:

1st� 90 min, 2nd� 100 min, 3rd� 180 min, 4th� 240 min, 5th� 280 min AB: Abstinent, CD:

current drinkers, HC: healthy controls.

(TIF)

S1 Table.

(XLSX)

S2 Table.

(XLSX)

S3 Table.

(XLSX)

S4 Table.

(XLSX)

S5 Table.

(XLSX)
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