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Summary

The replication-dependent histone H3.1 variant, ubiquitous in multicellular eukaryotes, has 

been proposed to play key roles during chromatin replication due to its unique expression 

pattern restricted to the S phase of the cell cycle. Here, we describe recent discoveries in 

plants regarding molecular mechanisms and cellular pathways involving H3.1 that contribute 

to the maintenance of genomic and epigenomic information. First, we highlight new advances 

concerning the contribution of the histone chaperone CAF-1 and the TSK-H3.1 DNA repair 

pathway in preventing genomic instability during replication. We then summarize the evidence 

connecting H3.1 to specific roles required for the mitotic inheritance of epigenetic states. Finally, 

we discuss the recent identification of a specific interaction between H3.1 and DNA polymerase 

epsilon and its functional implications.
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Introduction

In eukaryotes, DNA replication is accompanied by the faithful transmission of complex 

epigenetic states across the genome. The process of chromatin replication thus implicates 

two different but related goals—the maintenance of genetic and epigenetic information—

that are both required for cellular homeostasis. As these two processes are achieved in the 

same temporal and spatial window during the cell cycle, they likely rely on many common 

factors expressed uniquely at the time of chromatin replication.

Among them, the replication-dependent histone H3.1 variant is thought to play a central 

role in the inheritance of genetic information and the different epigenetic states [1]. In 

multicellular eukaryotes, H3.1 is specifically expressed during the S phase, in contrast to 

replication-independent H3.3 which remains available throughout the cell cycle [2,3]. A 
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burst of histone expression is needed during DNA synthesis to prevent nucleosome dilution 

on replicated DNA. However, why multicellular eukaryotes rely on a specific H3 variant 

during chromatin replication has remained a longstanding question in the chromatin field. 

The difficulty in answering this question lies with the high level of sequence similarity 

between H3.1 and H3.3 proteins across all organisms, with only a few amino acids 

distinguishing these two variants. Recent work using Arabidopsis thaliana as a model system 

has started to shed light on the different molecular mechanisms by which H3.1 participates 

in the mitotic inheritance of genetic and epigenetic information, which we summarize in this 

review.

Maintenance of genomic stability by the H3.1 variant

One of the challenges in uncovering specific roles for replication-dependent H3 variants 

is linked to the fact that these proteins, like other histones, are encoded by large gene 

families in most biological systems (e.g., five H3.1 genes in Arabidopsis, and 13 H3.1/H3.2 
genes in humans [2,4]). This high gene copy number makes it difficult to completely 

inactivate H3.1 and study the resulting phenotypes. While the recent establishment of gene 

editing systems now allows to easily knockout or alter histone gene functions [5–10], early 

research on H3.1 partially bypassed the problem by inactivating the histone chaperone 

CAF-1. The heterotrimeric CAF-1 complex is responsible for loading H3.1 on chromatin 

during replication [11,12], and its inactivation results in the insertion of H3.3 instead of H3.1 

in proliferative cells using a gap-filling mechanism (Figure 1a–b) [12–14]. Interestingly, 

CAF-1 mutants are lethal in many metazoan systems [15,16], but not in Arabidopsis [17], 

thus making plants a unique model system to study H3.1 via CAF-1 inactivation. Recent 

work taking advantage of viable CAF-1 null mutants in plants has uncovered a key role 

for the H3.1 chaperone in mediating genomic stability in Arabidopsis [18]. The absence 

of CAF-1 function leads to large tandem duplications (~50 to ~1500 kb) and deletion of 

rRNA gene copies (Figure 1e). Interestingly, tandem duplications in euchromatic regions 

led to higher transcript levels for the duplicated protein-coding genes, thus establishing one 

mechanism by which genomic instability can potentially affect phenotypic expression [18].

Evidence suggests that the role of CAF-1 in the maintenance of genome stability depends 

on its ability to load H3.1 on chromatin during replication [19,20]. The DNA repair 

protein TONSOKU (TSK/BRUSHY/MGOUN3, also known as TONSOKU-LIKE/TONSL 

in metazoans) plays a crucial role in resolving stalled or broken replication forks [21–24]. 

Recently, Arabidopsis TSK was shown to use its conserved tetratricopeptide repeat domain 

to specifically bind H3.1 by recognizing one residue (alanine 31) that varies in H3.3 

[19]. In plants, the TSK-H3.1 interaction is abrogated by mono-methylation at H3.1K27 

(H3.1K27me1) [19], a mark deposited by the H3.1 mono-methyltransferases ATXR5 and 

ATXR6 (ATXR5/6) [25,26], with ATXR6 playing the larger role [27]. As almost all H3.1 

proteins newly inserted on chromatin are rapidly mono-methylated by ATXR5/6 during 

replication [13], the interaction between TSK and H3.1 on chromatin is potentially confined 

to a short temporal and spatial window, at or near replication forks (Figure 1a). This 

chromatin-based mode of regulation would be hypothesized to restrict the activity of TSK 

to resolving stalled or broken replication forks, a seemingly critical regulatory step as 

depletion of H3.1K27me1 (e.g., in atxr5/6 mutants) induces genomic instability in the form 

Joly and Jacob Page 2

Curr Opin Plant Biol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of heterochromatin amplification [28], most likely due to ectopic TSK activity (Figure 1c 

and e) [19]. Interestingly, the reverse situation (i.e., the absence of TSK activity) may also 

produce genome stability defects (Figure 1d), as shown from sensitivity of tsk mutants to 

the genotoxic drug methyl methanesulfonate [19]. As reduced levels of TSK activity would 

be expected in a CAF-1 mutant due to the inability to load H3.1 variants on chromatin 

during replication, it is tempting to speculate that the large tandem duplications and rRNA 

deletions observed in the absence of CAF-1 are due to TSK-mediated resolution of impaired 

replication forks not being functional in this mutant background (Figure 1b and e). Overall, 

these studies strongly suggest a key role played by CAF-1 in recruiting the TSK-H3.1K27 

DNA repair pathway to maintain genetic information during replication in plants.

H3.1 and the mitotic inheritance of epigenetic states

Aside from a role for the H3.1 variant in protecting the genome, multiple studies have hinted 

at functions for H3.1 in the correct transmission of epigenetic states during replication. 

For example, studies of CAF-1 mutants in Arabidopsis revealed various molecular and 

developmental phenotypes (e.g., defects in shoot and root apical meristem, and partial loss 

of heterochromatin silencing and organization) [17,29–32], thus arguing for epigenetic roles 

for H3.1 that are specific to this H3 variant. Previous work in mammalian systems has 

shown that some histone post-translational modifications (PTMs) are present on soluble (i.e., 

pre-deposition) H3.3, while soluble H3.1 proteins are mostly devoid of PTMs [33]. Thus, in 

the absence of CAF-1, deposition of modified H3.3 during DNA replication could affect the 

inheritance of epigenetic states.

The H3.1 variant was shown to be involved in the inheritance of the cell-identity marker 

H3K27me3 during replication [13]. The requirement for H3.1 to maintain this histone 

mark was proposed to depend on the mono-methyltransferase activity of ATXR5/6. In this 

model, H3.1K27me1 is a prerequisite for di- and tri-methylation by PRC2, which occurs 

during DNA replication [13]. Inheritance of epigenetic states may therefore be influenced 

by differential modifications on H3 variants after their deposition on chromatin, which is 

when ATXR5/6 are thought to be active on H3.1 based on their catalytic preference for 

nucleosomal substrates [34].

Other effects of H3.1 on epigenetic inheritance may be related to its interaction with 

TSK. The initial characterization of TSK indicated clear roles in regulating development 

and the maintenance of epigenetic silencing at heterochromatic loci [35,36]. More recent 

work has demonstrated that TSK participates in heat stress priming [37], an epigenetic 

phenomenon by which previous exposure to heat stress induces a molecular memory that 

makes plants more resistant to subsequent exposure to the same abiotic stress [38]. A 

possible model to explain all these results may be that, similarly to CAF-1, TSK directly 

participates in the deposition of the H3.1 variant during replication. Contradicting this 

model is the observation that morphological phenotypes between tsk and CAF-1 mutants 

vary significantly. An alternative function for TSK may be that by specifically binding to 

H3.1 (and not H3.3), it protects the N-terminal tail of H3.1 against spurious interactions 

during chromatin replication that may affect epigenetic inheritance. Although many pieces 

of the puzzle appear to be in place, more work is still needed to precisely understand 
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the overarching mechanism by which H3.1 controls epigenetic inheritance during DNA 

replication.

Interplay between DNA polymerases and H3.1 during chromatin replication

The recent identification of TSK/TONSL as an H3.1 reader strongly suggests that other 

proteins may have a similar ability to specifically discriminate H3 variants [1]. Very 

recently, work in Arabidopsis revealed that the largest catalytic subunit (POL2A) of DNA 

polymerase epsilon (Pol ε), which catalyzes the synthesis of the leading strand, also 

binds specifically to H3.1 in the context of an H3.1-H4 dimer/tetramer, an activity that 

is conserved in POLE1, the mammalian ortholog of POL2A (Figure 2) [39]. A C-terminal 

CW-type zinc finger domain in POL2A recognizes H3.1 by interacting with amino acid 

residues A31 and S87, which both vary in H3.3 (T31 and H87). The interaction between 

POL2A and H3.1 was shown to be required for mediating heterochromatin condensation 

during meiosis in Arabidopsis [39].

In the last few years, studies using new sequencing-based techniques to probe parental 

histone segregation during chromatin replication have uncovered specific roles for DNA 

polymerases and associated complexes. For example, the subunits POLE3 and POLE4 of 

mammalian POL ε were shown to mediate H3-H4 parental histone segregation to the 

leading strand [40,41], while MCM2 (a subunit of the replicative CMG helicase) and 

POLA1 (the catalytic subunit of DNA polymerase alpha) are involved in transferring 

parental H3-H4 to the lagging strand [40,42,43]. POLA1 was even shown recently to 

participate in the mitotic recycling of parental H2A-H2B to the lagging strand [44]. These 

results demonstrate a direct role for the DNA replication machinery in the inheritance of 

epigenetic states.

The discovery that POL2A specifically interacts with H3.1 raises interesting questions 

about the role of this interaction in terms of chromatin replication. Does the interaction 

indicate a specific role for POL2A in the insertion on chromatin of newly synthesized, 

unmodified H3.1 proteins over parental histones? Mono-, di-, and tri-methylation at H3K27 

and H3K36 do not appear to have a major impact on the binding affinity of POL2A for H3.1 

[39], arguing that modified (i.e., parental) histones may be a likely substrate for POL2A. 

If parental histones are inherited via POL2A, does it mean that parental H3.1-H4 dimers/

tetramers are preferentially selected over parental H3.3-H4 during chromatin replication? 

Such a mechanism would have important implications for the mitotic inheritance of 

H3.3-enriched euchromatic states. A derived question would then be whether other DNA 

polymerase subunits or associated complexes can specifically transfer parental H3.1-H4 to 

the lagging strand during replication? If not, a unidirectional transfer of parental H3.1-H4 to 

the leading strand mediated by POL2A may be possible in some circumstances, and it could 

have functional ramifications for asymmetrical cell division [45]. Clearly, the discovery of 

the H3.1-POL2A interaction should lead to many interesting findings in the near future.

A substantial amount of work in plants has demonstrated the critical roles played by DNA 

polymerases in the mitotic inheritance of epigenetic states. Changes in active and repressive 

histone marks in hypomorphic mutants of plant DNA polymerases were shown to affect 
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developmental genes and the maintenance of heterochromatin structure and silencing, with 

these effects proposed to be either direct (e.g., disruption of the physical interaction between 

DNA polymerase epsilon and PRC2) or indirect (e.g., loss of epigenetic information due to 

replication stress) [46–52]. Evidence for these roles in mediating epigenetic inheritance was 

obtained mainly from phenotypic characterization and genomic profiling of transcriptomic 

and epigenomic states in DNA polymerase mutants. It will be important to revisit these 

findings and apply new molecular and sequencing tools to better understand the mechanisms 

by which the DNA replication machinery affects chromatin replication in plant model 

systems.

Conclusions and perspectives

The discovery that H3.1 can specifically interact with POL2A and TSK strongly suggests 

that many other proteins may preferentially bind the replication-dependent H3 variant, with 

consequences for chromatin replication and all other DNA-localized activities (e.g., DNA 

repair) that must be coordinated during S phase of the cell cycle. Further advances in 

this field will require the identification of these H3.1-binding proteins, and their functional 

characterization. Similarly, other histone variants in the H1, H2A, and H2B families (a 

single H4 variant is present in Arabidopsis [6]) may play specific roles during replication, 

which could be revealed by identifying proteins that can discriminate between closely-

related variants in these families. Biochemical screens involving binding and modification 

assays are likely to be the fastest way to identify new cellular activities that rely on 

distinguishing minor sequence differences between histone variants.

Plants have made major contributions to the study of mitotic inheritance of epigenetic 

states, principally by being great model systems for deploying genetic and epigenomic 

tools. It will be important to keep expanding on what plant systems can do to remain 

important models in this field. For example, the use and optimization of plant cell lines 

could provide similar advantages to mammalian cells in working out the molecular roles 

of proteins involved in chromatin replication, while also revealing plant-specific functional 

variation in these mechanisms (e.g., the plant-specific role played by H3.1F41 in mediating 

spatial localization of H3.1 [53]). As replication-dependent H3 variants are present in all 

multicellular eukaryotes, advances in this field of research will continue to rely on the use 

of different biological systems. This is exemplified by the recent discovery that H3.1 play a 

role in mediating replication timing in mammals [54,55].
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Figure 1. Interplay between H3.1 and genome stability in different genetic contexts.
(a-d) Chromatin replication in heterochromatin is represented, where parental nucleosomes 

are mainly composed of the H3.1 variant, except in the CAF-1 mutant. (a) In a wild-

type plant, newly synthesized H3.1-H4 tetramers are loaded by the CAF-1 complex 

during replication. TSK binds H3.1K27me0 and resolves broken or stalled replication 

forks, ensuring genomic integrity. Post-replicative maturation of chromatin involves mono-

methylation of H3.1K27 by ATXR5/6, which prevents ectopic binding of TSK. (b) In 

CAF-1 mutants, predominance of the H3.3 variant in chromatin prevents TSK activity, 

resulting in DNA damage at replication forks. (c) In the atxr5/6 mutant, absence of 

H3.1K27me1 causes aberrant binding of TSK and genomic instability outside of replication 

forks. (d) In a tsk context, H3.1 is loaded and mono-methylated correctly, but TSK is not 

available to resolve stalled or broken replication forks. (e) Schematic depiction of known 

H3.1-dependent structural phenotypes in the Arabidopsis genome: genomic stability (wild-
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type), large tandem duplications (CAF-1 mutants), heterochromatin amplification (atxr5/6 

mutants). PCH: pericentromeric heterochromatin; CA: chromosome arm.
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Figure 2. Interplay between H3.1 and DNA polymerases during replication.
In constitutive heterochromatin, parental nucleosomes are enriched in H3.1 mono-

methylated at K27. At the replication fork, the CMG helicase, which includes MCM2–7, 

CDC45, and GINS, unwinds parental double stranded DNA. DNA polymerase epsilon (Pol 

ɛ) then synthesizes the leading strand, while DNA polymerases alpha (Pol α) and delta (Pol 

δ) synthesize the lagging strand, with their respective catalytic subunits POL2A, POLA1, 

and POLD1. The CAF-1 complex interacts with the PCNA clamp to load newly synthesized 

H3.1-H4 tetramers on both strands of the fork, after which ATXR5/6 deposit H3K27me1. 

Parental H3-H4 are recycled symmetrically to the leading and lagging strands. POL2A can 

bind H3.1 in its unmethylated (i.e., newly synthesized) and mono-methylated (i.e., parental) 

forms with potential implications for epigenetic inheritance. DPB3–4 are the plant homologs 

of mammalian POLE3–4, two non-catalytic subunits of Pol ɛ that were shown mediate 

recycling of parental H3-H4 to the leading strand. The MCM2-CTF4-Pol α axis is required 

for recycling of parental H3-H4 to the lagging strand in mammals, and may accomplish 

similar functions in plants.
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