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Abstract

Purpose—Estimating causal effects in observational pharmacoepidemiology is a challenging 

task, as it is often plagued by confounding by indication. Restricting the sample to those with an 

indication for drug use is a commonly performed procedure; indication-based sampling ensures 

that the exposed and unexposed are exchangeable on the indication - limiting the potential 

for confounding by indication. However, indication-based sampling has received little scrutiny, 

despite the hazards of exposure-related covariate control.
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Methods—Using simulations of varying levels of confounding and applied examples we describe 

bias amplification under indication-based sampling.

Results—We demonstrate that indication-based sampling in the presence of unobserved 

confounding can give rise to bias amplification, a self-inflicted phenomenon where one inflates 

pre-existing bias through inappropriate covariate control. Additionally, we show that indication-

based sampling generally leads to a greater net bias than alternative approaches, such as regression 

adjustment. Finally, we expand on how bias amplification should be reasoned about when 

distinct clinically relevant effects on the outcome among those with an indication exist (effect-

heterogeneity).

Conclusion—We conclude that studies using indication-based sampling should have robust 

justification - and that it should by no means be considered unbiased to adopt such approaches. 

As such, we suggest that future observational studies stay wary of bias amplification when 

considering drug indications.

Plain language summary

To understand the benefits and harms of drug use epidemiologists often rely on observational data 

– where the world is observed as it naturally occurs. In doing so, epidemiologists can study a wide 

range of phenomena. But this is not straightforward, as it is not always clear why some individuals 

use a drug and some do not. The difference between drug users and non-users may obscure the 

results, sometimes resulting in an incorrect conclusion. One commonly used approach to resolve 

this complexity is to study individuals who share a similar indication for drug use, and assume 

that this makes individuals more comparable. However, in this study, we describe that doing so is 

not always as beneficial as it might seem. In fact, we show that restricting the study to individuals 

with a particular drug indication – as is commonly done in pharmacoepidemiology – can hamper 

rather than aid epidemiologists in their pursuit. Using causal graphs, mathematical simulations 

and real-world examples we showcase how this bias appears and what epidemiologists can do to 

resolve it. We conclude our study with a recommendation that epidemiologists should consider 

this form of bias in all pharmacoepidemiological investigations.
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1. Introduction

Studies of the effectiveness and safety of medications are often biased by confounding by 

indication when utilizing observational data, sometimes referred to as a most stubborn 
bias.1 Specifically, the indication for drug use may influence the outcome of interest, 

independently of the exposure, which induces confounding in the estimate of the drug-

outcome relationship. This is less of an issue when the outcome is unintended (an 

unexpected consequence or benefit), as is the case in studies of drug safety and repurposing. 

When the indication for treatment is inherently linked to the outcome, as is the case 

when the outcome is intended, this confounding may instead be paramount. Hence new 

methods, such as those considering active comparators (i.e., comparing the drug of interest 

to another commonly used medication with a known effect for the same indication),2,3 
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circumvent confounding by indication by ensuring that everyone in the study shares the 

indication. Other frameworks, such as target trial emulation, are useful when reasoning 

about various selection mechanisms.4,5 Yet, some of these methods may be problematic. We 

here introduce how methods that rely on indication-based sampling may indeed exaggerate, 

rather than alleviate, bias in observational studies of drug effects.

Indication-based sampling is a procedure commonly performed in pharmacoepidemiology 

where one selects a cohort of individuals with an indication for drug use, and sometimes the 

absence of contraindication, either from a larger data frame (e.g., electronic health/medical 

records data)6–9 or by enrolling participants into a primary cohort.10 Such an approach is 

sometimes colloquially referred to as restriction, here we coin the term indication-based 

sampling to emphasise its orientation around drug indication. The motivation for performing 

indication-based sampling is often to make individuals exposed and unexposed to the drug 

under study near-identical regarding the indication (exchangeable), thereby reducing the 

potential for confounding by indication.

As such, using indication-based sampling, researchers aim to ensure perfect balance on 

a key determinant of drug use. We must then ask ourselves, however – why are some 

individuals with the indication using the drug? And why are some not? There must be 

factor(s) that drive this difference, assuming it is not purely stochastic. If the factor(s) has 

some independent effect on the outcome (i.e., meet the criteria of a classic confounder), the 

researchers will have unwittingly amplified its potential to bias the drug-outcome association 

as the exposed and unexposed are more likely to be discordant on it. In other words, by 

removing the information in the exposure that is explained by the indication, we amplify the 

influence of other, potentially unknown factors, that influence the exposure and potentially 

the outcome. Such a phenomenon is known as bias amplification.11 Importantly, this 

phenomenon occurs even if the indication for drug use is a classic confounder.11 That is, the 

bias amplification potential of selection on the indication is independent of the confounding 

originating from the indication. In fact, this amplified bias may distort associations between 

treatment and outcome to a larger extent than confounding by indication itself. This is 

particularly true when the unobserved confounding of the treatment and the outcome 

outweighs the confounding from indication, as one might expect in studies where the 

outcome is unintended.

Yet, we are unaware of any previous description of how bias amplification arises under 

indication-based sampling. There are previous descriptions in the econometric literature 

of bias amplification in propensity score analysis,12,13 and detailed descriptions of the 

phenomena in the causal inference literature.11,14–16 Furthermore, it has, to our knowledge, 

not been demonstrated that indication-based sampling may amplify bias to a greater degree 

than when conditioning on drug indication. As indication-based sampling is common in 

pharmacoepidemiology and health technology assessments, elucidation of the potential for 

bias amplification through this method of design is important for future studies.

Here, we provide a description of bias amplification under indication-based sampling, which 

we highlight using simulations of varying levels of confounding and applied examples from 

pharmacoepidemiology, overall and in relation to effect-heterogeneity. To guide applied 
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analysts, we contrast the amount of bias amplification under indication-based sampling to 

that of standard regression adjustment in an unrestricted sample. Ultimately, we showcase 

how and when indication-based sampling may distort measures of treatment effects over 

and beyond the most stubborn bias of confounding by indication1 and thus when such 

sampling should be avoided counter to current practice and in spite of recent enthusiasm for 

active-comparators and target trial emulation in observational research.

2. Informal description of bias amplification

The bias from indication-based sampling can be appreciated if one conceptualizes indication 

as an instrumental variable (i.e., a factor that has a causal effect on the exposure and 

that does not influence the outcome of interest except via the exposure). Specifically, it is 

possible to conceptualize drug indication as an instrumental variable (IV) of the exposure 

(Figure 1A), regardless of whether it is a perfect IV or not. It has been demonstrated in 

theoretical work11–16 and reiterated in epidemiological literature,17–21 that conditioning on 

IVs induces bias amplification of unobserved confounders (U). That is, the bias from U on 

the exposure-outcome association becomes amplified. Importantly, bias amplification will 

arise in all circumstances where one condition on an IV in the presence of an unobserved 

confounder, irrespective of whether a stratification, weighting, matching, regression, or 

propensity score-based approach is used. It has been further shown that this is true even 

when the IV has some non-zero effect on the outcome of interest (a so-called ‘Near-IV’17), 

making them indistinguishable from informal epidemiological definitions of confounders 

(Figure 1B).

Pearl11 provides an intuitive description of bias amplification under the same directed 

acyclic graph as in Figure 1A. According to Pearl, if we allow Z (the indication) to vary 

freely, Z will explain some of the differences in X (drug use). However, if we constrain Z=z, 

a larger share of the variation in X must be due to U (an unmeasured confounder). As such, 

we are now under maximized confounding from U. In other words, part of the difference in 

drug use will be due to indication and some will be due to the unmeasured confounder. If we 

remove the influence of the indication through indication-based sampling, we increase the 

share of variation in drug use that is explained by the unobserved confounder – maximizing 

its potential to bias our estimate. Yielding an answer to our initial question: why are some 

individuals using the drug? Simply because they differentially experience the confounder 

under indication-based sampling.

It is also possible to reason about bias amplification from a collider perspective,22 where 

colliders can be colloquially defined as factors that are influenced by at least two other 

factors in the causal system. Specifically, drug use (X) is a collider because of the effect 

of the indication (Z) and the unmeasured confounder (U) on drug use (Figure 1C). When 

attempting to estimate the causal effect of drug use on the outcome we condition on drug 

use (e.g., by fitting a regression model). However, drug use is a collider, and we thus induce 

a correlation between Z and U. This induced bias is smaller in magnitude and the opposite 

direction of the original confounding from U. When conditioning Z=z we are removing such 

offsetting collider bias. This, in turn, leads to a net bias which is greater than had we not 

conditioned on Z. We refer the readers to Wyss, et al.22 for an elegant description of how 
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bias amplification arises due to offsetting effects under collider stratification. Importantly, 

this offsetting collider mechanism is invariant of Z’s possible influence on Y. As such, 

this bias mechanism is present independently of whether or not Z qualifies as a classic 

confounder, leading to the conclusion that the offsetting collider bias should be weighed 

against the possible confounding introduced by Z.11

To reiterate, conditioning on a ‘near-IV’ that is associated with the outcome through a 

path not mediated by the exposure will result in amplification of other factors (here, the 

‘near-IV’ is indistinguishable from a confounder).17 Under scenarios that we outline in this 

work, stratifying/restricting/constraining on the near-IV will result in a greater bias in the 

exposure-outcome association than had we not controlled for the near-IV (despite the near-

IV being a classic confounder). Thereby reinforcing the somewhat counterintuitive notion 

that controlling for a factor (by stratification) that would typically be labelled a confounder 

might increase net bias. Thus, while it is true that indication-based sampling can eliminate 

confounding by indication, it is not necessarily true that net bias will be less than when 

disregarding drug indication. To the best of our knowledge, this perplexing phenomenon 

has seldom been recognized in pharmacoepidemiology - despite its implications for causal 

inference and health technology assessments.

3. A hypothetical real-world example where indication-based sampling 

suffers the greatest net bias: Statins and lung cancer

Let us consider a hypothetical real-world example of the causal structure in Figure 2, where 

the confounding by indication from a measured indication (Z) pales in comparison to an 

unobserved confounder (U), resulting in a great amount of bias amplification.

We want to study the effect of statin use (X) on incident lung cancer (Y), as others have 

done23, in Swedish health registries. We have a clinical interest in the patient population 

with familial hypercholesterolemia (Z), an autosomal dominantly inherited disorder resulting 

in elevated low-density lipoprotein cholesterol (LDL-C) for which statins are indicated. 

Patients diagnosed with familial hypercholesterolemia are typically treated with high 

doses of high-intensity statins, or the maximum tolerated dose.24 Therefore, we perform 

indication-based sampling and only study those with a recorded diagnosis of familial 

hypercholesterolemia (Z=1). Unfortunately, as is often the case when using electronic health 

databases, we have no information on smoking (U) – a strong confounder in our relationship 

of interest.

Given that we are performing our study in Sweden, we expect the baseline risk of lung 

cancer to be 1 per 1 000 person-years (approximately the rate in adult Swedes25), statin 

use to have a prevalence of ~15% (approximately the use among adult Stockholmers26) 

and smoking to have a prevalence of ~10% (approximately the percent smokers among 

adult Swedes27). Familial hypercholesterolemia has a prevalence of ~1:200 and statin 

use has been reported to be ~50% in clinical cohorts of this population (therefore, RR: 

Z→X=3.33).28 For simplicity, we will assume that those with familial hypercholesterolemia 

smoke at the same rate as the general population of Sweden. As the indication is genetic, 

we assume that there is no effect of any confounder on the indication (RR: U→Z=1) – just 
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as in Figure 1B. We have limited a priori reason to believe that the indication affects lung 

cancer incidence (beyond that of through the postulated effect of statins). Nonetheless, we 

will assume that there may exist some weak independent effect (RR: Z→Y=1.30), as certain 

studies have implicated LDL-C in cancer incidence. Therefore, we have some confounding 

by indication. Furthermore, we know that smoking has a strong effect on lung cancer (RR: 

U→Y=10), and we know that smokers are more likely to develop arteriosclerosis and thus 

receive statins (U→X=1.75). For this hypothetical scenario, there exists no true effect of 

statins on the outcome (RR: X→Y=1) – as is also supported by recent work on statins and 

non-small-cell lung cancer.23 Now, let us take a hypothetical sample of the entire Swedish 

adult population using nationwide registries (N=8 000 000) which we follow for one year, 

from the above specified data-generating mechanism (Table 1).

Using a modified Poisson regression (model invariant) in an omniscient setting where 

we have all data available to us (including smoking status), we estimate the least 

biased RR of statins on lung cancer to 1.00, adjusting for smoking status and familial 

hypercholesterolemia using a multivariable regression (Table 2). We have bias in our crude 

estimate (RR 1.39), our familial hypercholesterolemia conditional estimate (RR 1.39), our 

estimate when we select only individuals without familial hypercholesterolemia (RR 1.38), 

and our estimate when we select only individuals with familial hypercholesterolemia (RR 

2.39) – as we would expect. We have no bias in the estimate where we only control for 

smoking status, as familial hypercholesterolemia is rare enough to not exert any confounding 

in that analysis before the second decimal (where Z is not rare, we would expect to 

see more bias in this analysis). In all analyses using real-world available data (that is, 

not including smoking status), we would erroneously conclude that statin use has some 

effect on lung cancer. However, the critical point is that indication-based sampling analysis 

suffer greater bias than crude analysis (139% vs 39%), despite indication-based sampling 

breaking the confounding from familial hypercholesterolemia when only studying those 

with familial hypercholesterolemia (Z=1). This highlights the fact that conditioning on a 

confounder may result in a net increase in bias. Finally, and of relevance to the applications 

of epidemiology, indication-based sampling is more biased than a regression adjustment 

for familial hypercholesterolemia (139% vs 39%), despite the existence of confounding by 

indication. Indication-based sampling is inferior to regression adjustment regardless of the 

magnitude of the causal effects considered and the level of confounding – as we will proceed 

to show using Monte Carlo simulations.

4. Simulations of bias amplification

Considering that potential bias amplification is dependent on the magnitude of different 

relationships in a causal system, we performed simulations with different scenarios under 

the directed acyclic graphs above (Figure 1). Specifically, we perform simulations of 

scenarios with varying 1) effect of Z on Y, 2) effect of U on Y, and 3) prevalence of Z 

and U. Scenario one examines the effect of Z on Y as the primary driver of confounding 

by indication (seeing as Z→X is a priori known to be strong), scenario two reflects 

the weighing of amplification concerns against confounding control of Z, and scenario 

three examines the impact of sample size as potentially compromised by indication-based 
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sampling and the relevance of Z and U as their influence is minimized at the extremes of 

prevalence (i.e., 0% prevalence or 100% prevalence).

Except under the scenario where we vary the relevant parameter, we simulate our datasets 

so that there exists a great effect of the indication on drug use (RR Z→X=10), no effect of 

the drug on the outcome (RR X→Y=1), no direct effect of the indication on the outcome 

(RR Z→Y=1), and modest confounding from U on the drug-outcome relationship (RR 

U→X=1.5 and U→Y=1.5). Except in the simulation where we vary the prevalence’s, we 

simulate the data so that drug use has a baseline prevalence of 5%, the outcome has a 

baseline risk of 1%, and both the indication and the confounder have a prevalence of 50%. 

In favour of simplicity, we assume that there are no other sources of systematic bias than 

confounding and the arising amplification (e.g., no measurement error or selection bias). In 

the appendix, we also consider simulation 1 but with a true causal effect of X on Y of OR 

1.50, and a version of simulation 1 where the unobserved confounder (U) has a protective 

effect on the exposure (i.e., U→X = 0.66 and U→Y varying at 1.5, 2, 5 and 10).

For each scenario, we simulated K=1 000 datasets, each with a sample size of N=1 000 

000. In each dataset, we fit a modified Poisson regression. We then obtained the arithmetic 

mean of the coefficients and 95% confidence interval upper and lower bounds over the 

datasets. As a measure of intra-scenario variability, we obtained the standard deviation of 

the coefficients over the K datasets (i.e., the Monte Carlo error on log[RR] scale). To ease 

interpretability, we exponentiated the obtained mean coefficients to relative risks and their 

corresponding confidence interval. For a description of each simulation see Appendix.

4.1. Simulation 1: Increasing confounding by indication

Considering that confounding by indication will be greater with an increasing effect of the 

indication on the outcome, we perform simulations to show how indication-based sampling 

affects amplifications under a range of effects of Z on Y. Specifically, we allow the RR of 

Z’s influence on Y to vary between 1 and 2 with increments of 0.10. The Monte Carlo error 

of the indication-based analysis (least efficient) varied between 0.009 and 0.027 across all 

scenarios.

We might be inclined to believe that indication-based sampling will be less biased the 

stronger the effect of Z on Y, as there would be greater confounding by indication. However, 

the amount of bias in our estimate of X→Y only depends on U in our indication-based 

sampling analysis (Figure 3 & sFigure 1). Explicitly, as we have forced X and Z to be 

independent (by indication-based sampling), the change in Z’s effect on Y does not induce 

bias in our estimate of X on Y. All remaining bias in our indication-based sample is thus due 

to U and any amplification – which is also constant across any magnitude of Z→Y. This is 

also the case when U has a protective effect on the exposure, although the bias is towards 

zero (see sFigure 2, Appendix).

As noted in the hypothetical example of statins and incident lung cancer, indication-based 

sampling is more biased than standard regression adjustment for Z. This is because 

indication-based sampling (or other forms of matching) maximizes imbalances in U, while 

adjusting for Z retains some probability of balances in U between X=1 and X=0.14 In other 
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words, indication-based sampling increases the difference in the distribution of U between 

those with X=1 and X=0, which has implications for the confounding potential of U.

Finally, and as we return to in the next set of simulations, when there exists only minor 

confounding from U there is minor amplification (RR U→Y≤1.5 under the simulated 

set-up), and the crude estimate is generally more biased than any method controlling for Z. 

However, when U has a greater influence (RR U→Y>1.5), the crude estimate may yield 

a lower net bias as compared to any method controlling for Z (the dotted line in Figure 3 

indicates the preference between crude and indication-based analysis).

4.2. Simulation 2: Increasing confounding from the unobserved confounder

As the strength of U will determine the relevance of amplification, we vary the effect 

of U on Y, in the absence (RR Z→Y=1) and presence (RR Z→Y=1.25) of confounding 

by indication. Specifically, we vary the RR of U’s influence on Y between 1 and 4 with 

increments of 0.10. The Monte Carlo error of the indication-based analysis (least efficient) 

varied between 0.018 and 0.029 across all scenarios.

In the absence of confounding by indication (i.e., when Z is a perfect IV), indication-based 

sampling and regression adjustment for Z is more biased than crude analysis at all levels 

of U (Figure 4). This is to be expected given that we have amplification under any method 

addressing Z, but not under the crude analysis. As such, the crude analysis is only biased 

by U, while indication-based sampling and regression adjustment are biased by U and 

amplification of U, yielding a net increase in bias compared to methods not addressing Z. 

As in examples of increasing Z→Y, indication-based sampling is more biased than standard 

regression adjustment regardless the effect of U on Y.

However, in the presence of confounding by indication, the crude analysis may be more 

biased. Specifically, the crude analysis is biased by both U and Z, while the methods 

addressing Z (indication-based sampling or regression adjustment) are biased by U and 

amplification of U. However, any magnitude of U→Y greater than a RR of ~3.5, under 

this specific simulation with some confounding by indication, would yield a greater bias in 

indication-based sampling and regression adjustment than crude analysis. This arises as the 

benefit of controlling for Z does not outweigh the imposed amplification of U whenever 

the relative risk of U on Y exceeds 3.5 (under this specific set-up). We stress that this level 

is fully dependent on the specific set-up (i.e., the data-generating mechanism) and should 

by no means be considered a generalizable threshold. As in the absence of confounding by 

indication, indication-based sampling is more biased than standard regression adjustment 

regardless of the effect of U on Y.

4.3. Simulation 3: Increasing prevalence of the indication and the unobserved 
confounder

The prevalence of Z and U will influence the optimal analytical strategy, especially as both 

bias and sample size are concerns for indication-based sampling and pharmacoepidemiology 

in general. For that reason, we perform our standard simulation with jointly varying levels 

of prevalence’s of U and Z. The Monte Carlo error of the indication-based analysis (least 

efficient) varied between 0.017 and 0.089 across all scenarios.
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Generally, the greatest amount of bias in the regression adjusted and indication-based 

approach arise as the prevalence’s of Z and U approach 50%, regardless of whether 

in the absence or presence of confounding by indication (Figure 5). As always, in the 

presence of confounding by indication, the crude estimator is generally more biased than 

the alternatives. At the extreme tails of the prevalence distributions, all estimates will 

approximate the true causal effect. This occurs as the variability in Z and U decreases, as 

either all individuals have Z and U or no one does – resulting in exchangeability over X. In 

the latter extreme, it is of course impossible to perform Z=1, as no one fulfils that condition.

However, indication-based sampling can suffer additional substantial bias when the 

prevalence of U and Z is low. This is because there is a finite number of individuals 

satisfying the condition Z=1, which could result in an inflation of chance imbalances, 

amplification magnitude, and random error when the prevalence is low. Specifically, as 

we restrict to Z=1 and as the prevalence of Z decreases, we reduce the sample and leave 

the analyses strongly influenced by fluctuations in all bias parameters (including random 

noise). The random error component of amplification in finite samples is distinct from the 

systematic component of bias amplification which has an expected direction and magnitude 

given knowledge about the true relationships between factors in a causal system (i.e., the 

data-generating mechanism). We chose to emphasise this scenario as it has implications 

for indication-based sampling performed in pharmacoepidemiology of indications with 

relatively low population prevalence (e.g., epilepsy). Notably, the Z regression adjustment 

model does not suffer the same volatility as indication-based sampling, although the model 

will fail to estimate the Z coefficient in circumstances where Z is extremely rare (and 

positivity could be violated).

5. Drug effect-heterogeneity

We have yet to consider drug effect-heterogeneity, which implies that there exist distinct 

clinically relevant effects among certain patient groups, often defined by the indication. 

Specifically, if there exists true heterogeneity in drug effects depending on the indication 

(i.e., effect-modification) it may be warranted to perform indication-based sampling. For 

example, it is only relevant to study the effect of antidepressants on suicide attempts among 

the patient population who experience an indication (e.g., severe depression), since it is 

unlikely that those without indication have any benefit of the therapy. Yet, it is still true that 

this will lead to bias amplification in the presence of an unobserved confounder (as shown 

above). Such amplification is, however, likely worth the trade-off since effect-heterogeneity 

will outweigh the induced bias.

However, in many pharmacoepidemiological studies, there is no priori reason to believe that 

effect-heterogeneity exists. For example, a common application of pharmacoepidemiology 

is the pharmacovigilance of drug teratogenicity, since clinical trials rarely include pregnant 

populations. For instance, many studies have examined the relationship between certain 

antiseizure medications (especially valproic acid) and congenital malformations.29 There is 

no evidence that antiseizure medications teratogenicity is unique to any indication. Rather, 

the teratogenicity is believed to result from a disruption of embryological development 

that is constant across pregnancies. In such a scenario, there is no immediate benefit 
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to employing indication-based sampling, even to overcome confounding by indication. 

Specifically, in the absence of effect-heterogeneity, the optimal strategy to overcome 

confounding is to perform some adjustment (e.g., regression methods), and not to perform 

indication-based sampling as this will maximize bias amplification and drastically reduce 

the eligible sample.

In scenarios where there exists no true effect-heterogeneity and we erroneously employ 

indication-based sampling, we are in fact likely to mistake bias amplification for 

heterogeneity. Consider the simple dramatic example (Table 2), where we estimate the 

relative risk to 1.38 (1.33–1.44) when forcing Z=0, and to 2.39 (1.45–3.94) when forcing 

Z=1. Were we to perform an arbitrary statistical test, we might conclude that these are 

different, and may attribute the difference to effect-heterogeneity. This is an erroneous 

conclusion, which we know since we designed the simulation so that it does not include 

effect-heterogeneity – we are merely detecting bias amplification. This erroneous conclusion 

has been noted in passing in prior examinations of bias amplification (i.e., Appendix 1 

in Myers, et al.18). Unfortunately, there is no way to distinguish amplification and effect-

heterogeneity using observed data, and we must rely on expert knowledge about the world.

For the sake of completeness, we wish to note that it is possible to overcome this trade-

off between effect-heterogeneity and amplification by assuming that Z does not affect X. 

Specifically, if Z has no causal effect on X then Z stratification will not lead to bias 

amplification, although such analysis will still be influenced by any confounding from other 

factors. Nevertheless, we believe that this “independence” assumption is of limited practical 

relevance in pharmacoepidemiology, where Z (indication) always has a strong causal effect 

on X (drug use).

In summary, while a total risk-benefit assessment may need to consider stratum-specific 

effects under effect-heterogeneity for specific outcomes (e.g., depression in the study of 

antidepressants and suicide), it can be detrimental to perform indication-based sampling in 

the study of outcomes where there is no a priori reason to believe effect-heterogeneity exists 

(e.g., the study of antiseizure medication teratogenicity).

6. Discussion

We have provided a description of how bias amplification arises under indication-based 

sampling and outlined how this problem applies to pharmacoepidemiology. While it 

is true that indication-based sampling alleviates confounding from indication, we have 

highlighted that it may result in bias amplification, a self-inflicted injury that can result 

in a net bias increase from unobserved (or residual) confounding. As such, if unobserved 

confounding is the scary monster in the corner of the room of epidemiology, then bias 

amplification is the equivalent of giving that monster a baseball bat. We have further 

shown that indication-based sampling is more biased than alternative approaches to control 

for drug indication (e.g., regression adjustment). This suggests that even if confounding 

by indication exists, it is often not warranted to perform indication-based sampling, an 

approach that also depletes the available sample size. Finally, we have detailed how bias 

amplification may be erroneously interpreted as effect-modification, while acknowledging 
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that the need for assessment of true effect modification may sometimes outweigh concerns 

of bias amplification. As such, we suggest that bias amplification should be considered 

in all aetiological studies using observational data and should be specifically addressed if 

indication-based sampling is performed.

Importantly, bias amplification also arises if one selects a cohort without indication (Z=0 

stratification), and the magnitude and direction depend on the relationships between factors. 

Specifically, the same concerns apply if one selects a cohort without indication (Z=0) as 

those described for indication-based sampling (Z=1), and as such, neither the presence 

nor absence of indication are ideal eligibility criteria - despite previous authors suggesting 

that restriction to those without clinically manifested indication may be a good strategy to 

overcome confounding by indication.30

While the expected value of the systematic bias originating from amplification can 

be outlined in an omniscient setting with an infinite sample, such expectations are 

unlikely to be true in finite samples. Specifically, since the eligible sample size is often 

substantially compromised by indication-based sampling, the random error component of 

bias amplification is likely to yield an unexpected magnitude and direction in a single study. 

To reiterate, while we can expect how the systematic bias from bias amplification will 

influence our estimates if we had an infinite sample and if we were all-knowing, we have 

little reassurance that this expected bias direction and magnitude will be true in the empirical 

setting.

While our focus has been that of traditional pharmacoepidemiology, our reasoning extends 

to any investigation using observational data. For example, bias amplification has already 

been recognized in the propensity score literature,12,13 where the inclusion of instrumental 

variables (Z) in a propensity score in the presence of unmeasured confounding leads to bias 

amplification (sometimes referred to as Z-bias15,20). Furthermore, bias amplification is the 

same phenomenon that leads to bias in within-family/trio mendelian randomization when 

one parent’s genotypes are omitted.31 It is also bias amplification that gives rise to inflation 

of non-shared confounding in sibling analyses.16,32

The use of quantitative bias analysis could aid investigators in understanding whether bias 

amplification affect their study. That is, assuming different prevalence’s and magnitudes 

of an unobserved confounder and using the (estimated or presumed) indication-exposure 

and indication-outcome associations, it is possible to derive a distribution of the expected 

magnitude of bias amplification. From such a distribution, it is possible to gauge under 

which scenarios the estimated effect is likely to be a result of bias amplification (i.e., 

examine how large an unobserved confounder would have to be to entirely explain the 

observed effect of the exposure on the outcome by bias amplification). Future research could 

focus on quantitative bias analysis of bias amplification.

We further note that reasoning about bias amplification is largely incompatible with 

the philosophy of the emulated target-trial framework,4,5 as such a framework assumes 

conditional exchangeability and justifies indication-based sampling on the premise that 

only those with indication would be enrolled in a hypothetical trial. We argue, as others 
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before us,18 that bias amplification should be carefully considered when reasoning about the 

observational emulation of a target trial and that restriction on indication should be avoided 

if possible in the data collection phase.

6.1. Limitations

Despite our efforts to be thorough in our descriptions, there are limitations of our work 

that must be acknowledged. First, as with any simulation study, there is an abundance of 

scenarios that we have not considered nor explored. The relationships between factors (data-

generating mechanisms) that we have outlined are simplifications of reality and constitute 

just some of an infinite number of possible mechanisms which could have been considered. 

One specific scenario which we have not considered is that in which the unobserved 

confounder (U) has some non-negligible effect on indication (Z). While such a scenario 

could, sometimes, justify control for indication even if it was a true IV (i.e. indication has no 

effect on the outcome) – to alleviate part of the imposed confounding by U – its implications 

must be considered in the light of recent work on trapdoor variables.33 Nonetheless, we have 

favoured simplicity to enhance transportability outside our considered mechanisms.

Second, we recognize that we have relied on informal epidemiological definitions of 

confounders. Unfortunately, even if one were to consider formal definitions of confounders, 

as those under the counterfactual framework,34 such definitions provide no utility when 

reasoning outside the omniscient setting as they rely on information about the true 

bias parameter. Yet, we note that were one to define confounders according to such 

formalizations one would be able to make the distinction between a bias amplifier and 

confounder based on the net effect on bias after controlling for their influence.

Third, we have not considered the use of bias amplification to detect confounding. Under 

known effects and the absence of effect heterogeneity (“homogenous treatment effect”), it 

is possible to leverage IVs and bias amplification to detect the presence of confounding,11 

since the only change in estimates when conditioning on an IV will be due to unmeasured 

and/or residual confounding and random noise. If the sample size is large enough to ignore 

the latter, this may serve as a formal test for the presence of confounding. The empirical 

scenarios where this may be useful remain to be outlined.

Finally, we have not considered a scenario where there exist multiple forms of bias. 

For example, we have not considered typical epidemiological bias processes such as 

misclassification. Although bias amplification may be considered a systematic error that will 

generally be independent of other processes, it should be noted that if there, for example, 

exists misclassification of the indication (Z) then the observed amplification will be distinct 

from the true amplification (i.e., in the absence of misclassification of Z). Future work 

may be directed at studying the complex interplay between multiple bias processes in the 

presence of residual confounding, and especially recognizing the random error component 

of bias processes in epidemiology.

6.2. Practical implications

While further research is needed on bias amplification, especially considering more complex 

scenarios than those generated here, we believe that there is some immediate practical 
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utility of our work. Specifically, current risk-benefit analyses used by national agencies are 

partly based on observational analyses using indication-based sampling. For example, health 

technology assessments often leverage indication-based sampling when evaluating post-

market effectiveness and safety, or agencies may require the employment of indication-based 

sampling by pharmaceutical companies when such companies are to estimate the long-term 

efficacy for subsidy decisions. While the employment of indication-based sampling may be 

warranted in scenarios where there exists true effect-modification, such analytical choices 

should be scrutinized to identify possible bias amplification.

Unfortunately, identifying the most appropriate analytical decision requires substantive 

knowledge about the true relationships between different factors (i.e., the data-generating 

mechanism). While there exist principles that should guide covariate control, such as 

the preference of factors associated with the outcome of interest17,18, it is more difficult 

to distinguish bias amplification from effect-modification. Assessing the consistency of 

associations across analytical approaches (i.e., analytical triangulation) is, however, one 

feasible strategy if data availability allows. Similar estimates of associations from indication-

based sampling and regression adjustment analysis either indicate that all bias processes 

perfectly balance, or that no bias amplification and no effect-modification exist. Principles 

of Occam’s razor suggests that the latter is more probable. It is, however, not possible 

to infer the cause of an eventual inconsistency between analytical approaches since it 

can be either because of amplification or effect-modification. As such, this analytical 

triangulation approach may serve as a rule-out check. Nevertheless, this approach may be 

readily employed in settings where data availability allows investigators to use a multitude 

of analyses (e.g., in studies using electronic health/medical records data). Unfortunately, 

and perhaps obviously, it is not possible to perform such checks if a clinical cohort has 

been enrolled using indication-based sampling, such as in pharmacovigilance studies of drug 

teratogenicity10. The challenge of bias amplification arising in clinical cohorts enrolling 

based on indication makes us inclined to re-state the take-home message of our work: bias 

amplification should be considered in the list of biases and other considerations during the 

design phase of any pharmacoepidemiological investigation using observational data.

6.3. Conclusion

Studies using indication-based sampling should have robust justification. This approach 

should by no means be considered an optimal analytical strategy, as indication-based 

sampling is generally more biased than alternative modes of analysis. As such, we suggest 

that future observational studies stay wary of bias amplification when considering drug 

indications.
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Key points

• Restricting a pharmacoepidemiological study to those with drug indications 

can result in a net increase in bias through bias amplification.

• It is, generally, less biased to use regression adjustment than to restrict the 

sample to those with a particular indication.

• The amount of bias amplification depends largely on the relationship and 

strength of the relationship between factors.

• Even if confounding by indication exists, it is often not warranted to restrict 

analyses to those with a particular drug indication.

• Bias amplification should be considered in the list of biases and other 

considerations during the design phase of any pharmacoepidemiological 

investigation using observational data.
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Figure 1. 
Directed acyclic graphs showing drug indication as a perfect IV (A), as a near-IV (B), and as 

a near-IV with induced correlation with the unmeasured factor due to collider stratification 

on drug use (C).
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Figure 2. 
Directed acyclic graph showing a hypothetical real-world example of the relationship 

between familial hypercholesterolemia (Z), statin use (X), smoking (U), and lung cancer 

(Y), and the magnitude of their relationships (RR, relative risk), where the causal effect of 

statin use on lung cancer is of interest (but there is no such effect, RR=1).
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Figure 3. The estimated relative risk of X→Y from a crude analysis (no control), an analysis 
adjusted for Z (multivariable regression), and an analysis using indication-based sampling 
(crude analysis while selecting those with Z=1), over ever-increasing confounding by indication 
(greater Z→Y), by different magnitudes of the effect of the confounder on the outcome (greater 
U→Y).
Legend: Dotted line indicating the preference in terms of net bias between crude and 

indication-based analysis; on the left side of the dotted line the crude estimator is less biased 

and on the right side of the dotted line the indication-based analysis less biased. The shaded 

area indicates a 95% confidence interval. The red line indicates the true causal effect (RR 1). 

For an extended description of the simulation, see Appendix.
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Figure 4. The relative risk of X→Y from a crude analysis (no control), an analysis adjusted for Z 
(multivariable regression), and an analysis using indication-based sampling (crude analysis while 
selecting those with Z=1), over ever-increasing confounding from U (greater U→Y), separately 
whether in the absence or presence of confounding by indication (RR Z→Y: 1.25).
Legend: Dotted line indicating the preference in terms of net bias between crude and 

indication-based analysis. The shaded area indicates a 95% confidence interval. The red line 

indicates the true causal effect (RR 1). For an extended description of the simulation, see 

Appendix.
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Figure 5. The estimated relative risk of X→Y from a crude analysis (no control), an analysis 
adjusted for Z (multivariable regression), and an analysis using indication-based sampling 
(crude analysis while selecting those with Z=1), over an ever-increasing prevalence of Z and 
U and by whether confounding by indication is absent or present (RR of Z→Y = 1.25).
Legend: The shaded area indicates a 95% confidence interval. The red line indicates the true 

causal effect (RR 1). For an extended description of the simulation, see Appendix.
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Table 1.

Tabulation of statin use (X) and lung cancer (Y) over familial hypercholesterolemia (Z) and smoking status 

(U) from a hypothetical sample of 8 000 000 individuals.

Smoking status=0 Smoking status=1

Familial 
hypercholesterolemia=0

Familial 
hypercholesterolemia=1

Familial 
hypercholesterolemia=0

Familial 
hypercholesterolemia=1

Cancer=0 Cancer=1 Cancer=0 Cancer=1 Cancer=0 Cancer=1 Cancer=0 Cancer=1

Statin 
use=0

6 084 471 6 120 1 8071 16 580 164 5 883 528 5

Statin 
use=1

1 072 881 1 091 1 7980 20 207 164 2 098 3 470 38
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Table 2.

The estimated relative risk of statins (X) on lung cancer (Y), where the true RR is 1.00, depending on whether 

we control for familial hypercholesterolemia (Z), either by regression adjustment or indication-based 

sampling, and where smoking (U) is an unmeasured confounder.

RR 95% CI P-value Relative bias

Swedish nationwide register study, where smoking is not measured

Crude analysis 1.39 1.33–1.44 <0.001 39%

Regression adjustment for familial hypercholesterolemia 1.39 1.33–1.44 <0.001 39%

Crude among those without familial hypercholesterolemia (indication-based sampling, Z=0) 1.38 1.33–1.44 <0.001 38%

Crude among those with familial hypercholesterolemia (indication-based sampling, Z=1) 2.39 1.45–3.94 0.001 139%

Omniscient setting, where everything is measured perfectly

Regression adjustment for smoking and familial hypercholesterolemia 1.00 0.97–1.04 0.822 0%

Regression adjustment for smoking 1.00 0.97–1.04 0.807 0%

Regression adjustment for smoking among those without familial hypercholesterolemia (Z=0) 1.22 0.71–2.10 0.469 22%

Regression adjustment for smoking among those with familial hypercholesterolemia (Z=1) 1.00 0.96–1.04 0.870 0%
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