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Abstract

Over recent decades, therapeutic proteins have had widespread success in treating a myriad 

of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality 

attribute that significantly influences the physical properties, safety profile and biological activity 

of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue 

to developing more efficacious therapies. In this review, we discuss specific examples of how 

variations in glycan structure and glycoengineering impacts the stability, safety, and clinical 

efficacy of protein-based drugs that are already in the market as well as those that are still 

in preclinical development. We also highlight the impact of glycosylation on next generation 

biologics such as T cell-based cancer therapy and gene therapy.
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1. Glycosylation of Therapeutic Proteins

Since the commercial release of human insulin as the first therapeutic protein in the early 

1980s, biologics have been the fastest-growing class of therapeutic molecules. In 2019 

alone, the market share for biopharmaceuticals amounted to over 200 billion dollars in 

the United States(Feng et al., 2022, Moorkens et al., 2017, de Bousser et al., 2023), with 

over 350 new products approved for clinical use by the Food and Drug Administration by 

2021(Feng et al., 2022). Therapeutic proteins make up the biggest fraction of the biologics 

sector, encompassing a plethora of antibodies, vaccines, immune factors, hormones, blood 

factors, and enzymes and are used to treat both communicable and non-communicable 

diseases such as cancer, diabetes, multiple sclerosis, and SARS-CoV-2, to name a few 

(Figure 1).

The dominance of protein-based therapeutics in the market speaks to their immense positive 

impact in the clinic. Compared to small molecule drugs, proteins demonstrate high target 

specificity, which can result in lower toxicity from fewer off-target effects and improved 

pharmacological potency. However, these biopharmaceuticals are not without issues, such 

as intrinsic limitations in their physicochemical and pharmacological characteristics. Thus, 

a focal point of biologic development has been to generate more efficacious formulations of 

therapeutic proteins through protein and cellular engineering.

Many protein-based drugs are engineered glycoproteins that are recombinantly expressed 

in animal cell-lines, and almost all such biopharmaceuticals undergo post-translational 

modification (PTM). Perhaps the most important class of PTM for many biologics is 

glycosylation, a process that occurs on most eukaryotic secreted and membrane proteins. 

Glycosylation involves the covalent addition of carbohydrates (glycans) to a protein 

through two major linkages: (a) the amide nitrogen atom on an asparagine (Asn) residue 

(N-linked glycosylation), and (b) the hydroxyl oxygen on serine (Ser), threonine (Thr) and 

tyrosine (Tyr) residues (O-linked glycosylation). These carbohydrate groups can be a single 

monosaccharide or chains of branched or linear oligosaccharides(Reily et al., 2019, Varki 

et al., 2022) (Figure 1). Furthermore, a glycoprotein can have many different “glycoforms”, 

with variations pertaining to either glycosylation site occupancy (macroheterogeneity) or 

differences in glycan structure (microheterogeneity). Not only does glycosylation increase 

protein structural diversity, glycan heterogeneity is also a crucial contributor in determining 

biophysical, and pharmacological properties of glycoproteins. Glycoengineering—the 

manipulation of glycan composition—has therefore been an invaluable tool in generating 

products that demonstrate optimal therapeutic efficacies(Sola et al., 2007, Sola and 

Griebenow, 2009, Ma et al., 2020, Sinclair and Elliott, 2005, Chen et al., 2022, Dammen-

Brower et al., 2022). This process can pertain to the addition or removal of glycosylation 

sites on a protein, or the alteration of its native glycosylation profile. Because of the impact 
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of glycans on protein structure, function, and dynamics, we view glycoengineering as an 

essential protein engineering method that complements and amplifies changes introduced 

by mutagenesis. In this review, we describe how glycosylation significantly impacts key 

characteristics of protein-based drugs such as their stability, transport and uptake, half-life, 

therapeutic efficacy, and immunogenicity. We also discuss how glycoengineering can be 

applied to improve newer classes of biologics such as T cell- and oligonucleotide-based 

therapies.

1.1 Stability

Proteins are innately prone to degradation due to physical and chemical processes like 

denaturation, proteolysis, aggregation, oxidation and hydrolysis. Overcoming the inherent 

instability of glycoproteins is key to therapeutic protein development. Preservation of 

glycoprotein conformation ensures that they remain intact and functionally active during 

storage and after they have been administered to patients. Degradation of therapeutic 

proteins can result in reduced or complete loss of efficacy and compromised safety.

The presence of large, hydrophilic groups such as glycans on a protein can improve 

their stability by preventing aggregation, contributing to increased thermal and chemical 

stability, and making them more resistant to enzymatic degradation(Lis and Sharon, 1993, 

Mitra et al., 2006, Shental-Bechor and Levy, 2008, Sola and Griebenow, 2009, Sola et 

al., 2007, Zheng et al., 2011, Zhou and Qiu, 2019, Wang et al., 1996, Lee et al., 2015). 

Glycosylation can lead to an increase in internal electrostatic interactions, and strengthen 

hydrogen bonds and hydrophobic interactions within the protein, making it more resistant 

to denaturation(Sola and Griebenow, 2009, Sola and Griebenow, 2006, Sola et al., 2007, 

Lee et al., 2015). Glycans around the peptide backbone also make the protein less 

accessible to proteases through steric hindrance, thereby making them less susceptible to 

proteolysis(Nishiyama et al., 2000, Sola and Griebenow, 2009). One mechanism through 

which glycosylation improves solubility is to increase the solvent-accessible surface area of 

the glycoprotein facilitated by the presence of the glycans(Tams et al., 1999, Paul et al., 

2021, Sola and Griebenow, 2006). This can prevent protein aggregation, which often leads 

to an increased likelihood of adverse immune reactions and accelerated clearance from the 

bloodstream(Lundahl et al., 2021, Pham and Meng, 2020, Wang, 2005). Resistance against 

aggregation is therefore important in preserving both the safety and efficacy of the molecule.

Most biologic drugs are typically more stable and less prone to aggregation, and 

denaturation than their non-glycosylated counterparts (Supplementary Table 1). Biologics 

such as interferon-β (IFN-β)(Runkel et al., 1998, Karpusas et al., 1998, Farrell et al., 2012), 

alpha-1 antitrypsin (AAT)(Jeppsson et al., 1975, Travis et al., 1985, Kwon and Yu, 1997), 

granulocyte stimulating factor (GCSF)(Oh-eda et al., 1990), erythropoietin (EPO)(Narhi et 

al., 1991) become more susceptible to aggregation and thermal degradation upon removal of 

glycan moieties, to name a few examples. Protection against protease digestion can also be 

imparted just by the presence of glycosylation, such as in the case of interferon-γ(Sareneva 

et al., 1995), interferon-α(Ceaglio et al., 2008, Ceaglio et al., 2010) and GCSF(Carter et al., 

2004). Furthermore, the abundance and type of attached carbohydrates can also be tweaked 

to improve physical characteristics of the protein. Site specific addition of glucosyl moieties 
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on human insulin improved physical stability in solution(Baudys et al., 1995, Uchio et 

al., 1999). Indeed, a glycoengineered variant of insulin that is O-mannosylated at Thr27 

(B-chain) has a comparable activity to the naturally occurring protein while being more 

resistant to enzymatic degradation and oligomerization(Guan et al., 2018).

1.2 Half-life

The therapeutic efficacy of a biopharmaceutical is largely impacted by how long it 

remains functional in circulation. Glomerular filtration by the kidneys eliminates small 

proteins and peptides, and depends mostly on size and charge, with molecules under 

~30 kDa typically being eliminated through this route(Tryggvason and Wartiovaara, 2005, 

Maack et al., 1979, Mahmood and Green, 2005, Dammen-Brower et al., 2022). Since 

the glomerular filter is negatively charged, anionic peptides are typically repelled by the 

charge similarity and therefore less likely to be eliminated(Rennke et al., 1975, Bocci, 

1989, Tryggvason and Wartiovaara, 2005, Mahmood and Green, 2005). Apart from renal 

filtration, protein clearance is also mediated by receptors that recognize and bind specific 

types of glycans. Two avenues of serum clearance are through the mannose receptor (MR)

(Stahl, 1992, Ashwell and Harford, 1982) and the asialoglycoprotein receptor (ASGPR)

(Stockert, 1995, Ashwell and Harford, 1982, Ashwell and Morell, 1974) (Figure 2A). 

Both are C-type lectin receptors that recognize and bind specific carbohydrates decorating 

glycoproteins, thereby facilitating their elimination from the blood. Mannose receptors are 

found primarily in liver Kupffer and endothelial cells(Hubbard and Stukenbrok, 1979, 

Schlesinger et al., 1978, Linehan et al., 1999, Takahashi et al., 1998) and immune 

cells, such as macrophages(Shepherd et al., 1982, Stahl et al., 1978, Stahl and Gordon, 

1982, Wileman et al., 1986, Largent et al., 1984, Martinez-Pomares, 2012) and immature 

dendritic cells(Sallusto and Lanzavecchia, 1994, Martinez-Pomares, 2012). They bind 

glycans bearing a terminal mannose, fucose, or N-acetylglucosamine (GlcNac)(Stahl, 1990, 

Taylor and Drickamer, 1993). ASGPRs, on the other hand—while also abundantly found 

in liver cells—recognize terminal β-linked galactose or N-acetylgalactosamine (GalNac) 

that have been desialylated; hence the prolonged serum longevity of highly sialylated 

glycoproteins(Stockert, 1995, Ashwell and Harford, 1982, Morell et al., 1968, Morell et 

al., 1971, Ashwell and Morell, 1974, Van Den Hamer et al., 1970, Park et al., 2003). 

Additionally, ASGPRs can bind and clear proteins bearing a terminal Sia2,6GalNac and 

Sia2,6Gal(Park et al., 2005), suggesting that in addition to sialic acid capping, engineering 

the terminal linkage to be α-2,3 instead of α-2,6 could prolong the half-life of a therapeutic 

protein(Andre et al., 2004, Andre et al., 1997, Unverzagt et al., 2002, Tian et al., 2019).

Because a protein’s circulatory half-life can be significantly impacted by glycosylation, 

evading and bypassing the different serum clearance mechanisms through glycoengineering 

is important aspect in biopharmaceutical design (Supplementary Table 2). Adding or 

modifying sugar groups to increase the size, hydrodynamic radius and net negative charge of 

the protein can decrease the rate of removal via kidney filtration. Incomplete glycosylation 

or glycan removal has resulted in recombinant human proteins with much shorter in 
vivo half-lives compared to their fully glycosylated counterparts—such as in the case 

of AAT(Travis et al., 1985, Ross et al., 2012, Yu and Gan, 1978, Weber et al., 1985), 

EPO(Wasley et al., 1991, Yamaguchi et al., 1991, Fukuda et al., 1989) and Granulocyte-
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Macrophage Colony Stimulating Factor (GM-CSF)(Okamoto et al., 1991). Conversely, 

simply adding more attached carbohydrates to proteins—such as EPO(Su et al., 2010, 

Elliott et al., 2004), follicle-stimulating hormone (FSH)(Perlman et al., 2003, Weenen et 

al., 2004) and interferon-α(Ceaglio et al., 2008)—can prolong circulation and activity in 
vivo. Glycoengineering to increase in levels of sialylation or sialic acid capping of terminal 

galactose or GalNac is also utilized to inhibit ASGPR binding and limit hepatic clearance. 

This approach has been applied to improve serum longevity for therapeutic proteins such 

as EPO(Egrie et al., 2003, Egrie and Browne, 2001), human growth hormone(Flintegaard 

et al., 2010), α-galactosidase(Sohn et al., 2013a), iduronate sulfatase(Muenzer et al., 2007, 

Muenzer et al., 2006), and β-glucuronidase(Cadaoas et al., 2020).

1.3 Transport and Uptake

In addition to eliminating molecules from circulation, glycan-binding cell-surface receptors 

also participate in the cellular targeting and tissue distribution of therapeutic glycoproteins, 

particularly those used for enzyme replacement therapy (ERT). Lysosomal storage diseases 

(LSDs) are inherited metabolic disorders with a deficiency of lysosomal enzymes and 

an accumulation of unwanted metabolites, ultimately resulting in clinical dysfunction in 

peripheral organs and the central nervous system(Futerman and van Meer, 2004, Parenti 

et al., 2013, Bonam et al., 2019). Many LSDs are treated by ERT, whereby patients 

receive intravenous supplementation of the deficient enzyme—which is itself a glycoprotein. 

Trafficking and uptake of these lysosomal enzymes are mediated largely by the mannose-6-

phosphate dependent pathway, which involves recognition and binding by mannose-6-

phosphate receptors (MPRs)(Sly, 1985, Parenti et al., 2013, Varki and Kornfeld, 1980, 

Achord et al., 1978, Stahl et al., 1978) (Figure 2B). Like ASGPRs and MRs, MPRs are 

lectins that recognize and bind specific glycosylation features on glycoproteins, particularly 

those that bear mannose-6-phosphate residues(Kaplan et al., 1977, Seo and Oh, 2022). It 

is therefore no surprise that glycan manipulation of ERT enzymes for better lysosomal 

targeting has improved their cellular uptake and therapeutic efficacy.

Gaucher’s Disease is one of the very first LSDs for which ERT was developed(Barton 

et al., 1991). This disorder is typified by a deficiency in β-glucocerebrosidase(Brady 

et al., 1966, Brady et al., 1965), a lysosomal hydrolase internalized by macrophages 

through an MR-dependent pathway(Sato and Beutler, 1993, Shaaltiel et al., 2007). 

Intravenous supplementation of the β-glucocerebrosidase is the most prevalent treatment 

modality among individuals affected with Gaucher’s disease. Enriching for exposed 

terminal mannose residues on this enzyme leads to better engagement of macrophages 

through MRs and increased uptake by affected cells(Doebber et al., 1982, Furbish et 

al., 1981, Friedman et al., 1999). Thus, the three commercially available versions of β-

glucocerebrosidase (Imiglucerase(Grabowski et al., 1995), Velaglucerase alfa(Zimran et al., 

2007) and Taliglucerase alfa(Shaaltiel et al., 2007)) were developed to contain high mannose 

structures(Tekoah et al., 2013).

Additional ERTs developed for the management of other LSDs include α-galactosidase 

for Fabry Disease(Desnick, 2001, Schiffmann et al., 2000, Schiffmann et al., 2001), α-

glucosidase for Pompe Disease(Kishnani et al., 2006, Rossi et al., 2007, Van den Hout 
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et al., 2004, Chen et al., 2009), α-L-Iduronidase for Mucopolysaccharidosis (MPS) Type 

I(Kakkis et al., 2001, Clarke et al., 2009, Parini and Deodato, 2020, Wraith et al., 2004, 

Dornelles et al., 2017), iduronate sulfatase for MPS Type II(Muenzer et al., 2002, Garcia 

et al., 2007, Muenzer et al., 2007, Muenzer et al., 2006, Sohn et al., 2013b, Wraith, 2008), 

GalNac-6-Sulfatase for MPS Type IVA(Hendriksz et al., 2014, Hendriksz et al., 2018), 

GalNac-4-Sulfatase for MPS Type IV(Harmatz et al., 2006, Harmatz et al., 2004), and β-

glucuronidase for MPS Type VII(Fox et al., 2015, Wang et al., 2020, Harmatz et al., 2018); 

all of these rely on MPR signaling to facilitate lysosomal targeting and delivery (Seo and 

Oh, 2022, Oh, 2015). Similar to β-glucocerebrosidase, these therapeutic protein products 

have been glycoengineered to improve cellular uptake and biodistribution by enriching for 

glycoforms bearing mannose-6-phosphate residues (Oh, 2015, Seo and Oh, 2022, Lee et al., 

2003, Sakuraba et al., 2006, Zhu et al., 2004, Zhu et al., 2009, Park et al., 2018, Lachmann, 

2011, Tiels et al., 2012, Kakkis et al., 1994, Muenzer et al., 2007, Togawa et al., 2014, Parini 

and Deodato, 2020, Tomatsu et al., 2007) (Supplementary Table 3).

1.4 Immunogenicity

Even more important than biological potency, product safety is paramount in biologics. 

Adverse immunological responses to therapeutic proteins undermine both the safety of the 

subject and the molecule’s therapeutic efficacy. In addition to the development of unwanted 

acute allergic or inflammatory reactions against a recombinant protein, unwanted immune 

engagement can also lead to a partial or complete loss of pharmacological activity due to 

binding by neutralizing antibodies(Porter, 2001, Wadhwa et al., 2015, Wang et al., 2008) 

or accelerated serum clearance(Ehrenpreis, 2017, Lundahl et al., 2021, Filipe et al., 2014). 

The development of anti-drug antibodies has been documented among patients treated 

with recombinant EPO(Mayeux and Casadevall, 2003, Casadevall et al., 2002), interferon-

α(Bonetti et al., 1994, Douglas et al., 1993, Fossa et al., 1992), interferon-β(Zang et al., 

2000, Konrad et al., 1987, Larocca et al., 1989), insulin(Di Mario et al., 1986, Fineberg et 

al., 1983), thrombopoietin(Li et al., 2001), and factor VIII(Pratt and Thompson, 2009)—to 

name a few examples. Stimulation of the immune response against therapeutic proteins is 

driven by several factors, including aggregate formation(Pham and Meng, 2020, Lundahl et 

al., 2021, Wang, 2005)—which in turn, can be controlled through glycan manipulation (see 

Section 1.1). Numerous glycosylated therapeutic proteins, such as interferon-β(Runkel et al., 

1998, Kivisakk et al., 2000) and EPO(Elliott et al., 1996), are less immunogenic compared 

to their deglycosylated counterparts due to increased stability and a decreased propensity 

for aggregation. In some cases, increasing protein sialylation could also be applied to 

minimize the antigenicity of the drug. Desialylated EPO for example, has demonstrated 

higher immunoreactivity(Wide et al., 2003), and decreased antigenicity was observed with 

increased sialylation for asparaginase(Fernandes and Gregoriadis, 2001) (Supplementary 

Table 4).

The presence of non-human glycan structures in recombinant biotherapeutics can also 

trigger adverse immune responses. Although host expression systems in bacteria, yeast and 

plants have been utilized in the past, mammalian systems such as Chinese Hamster Ovary 

(CHO) cells are predominantly used to manufacture recombinant glycoproteins with the 

aim of producing glycoforms that most closely resemble their human-derived counterparts. 

Rocamora et al. Page 6

Biotechnol Adv. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite this, inherent genetic differences between the glycosylation machineries of 

nonhuman mammals, such as murine myeloma cell lines (i.e. NS0 and Sp2/0), relative to 

humans can lead to the addition of glycan moieties that are normally absent in humans, and 

thus trigger adverse immunological reactions. The most commonly reported immunogenic 

glycan epitopes are the ɑ-Gal epitope (Galɑ1,3-Gal) and N-glycolylneuraminic acid 

(Neu5GC)(Butler and Spearman, 2014, Goh and Ng, 2018) (Figure 2C).

Antibodies against ɑ-Gal are naturally abundant in human serum (approximately 1% of 

circulating immunoglobulins), due to continuous antigenic stimulation from normal gut 

flora(Galili et al., 1988). This can lead to hypersensitivity against proteins terminating in 

ɑ-Gal residues. Unfortunately, many monoclonal antibodies generated from mouse-derived 

cell lines contain ɑ-Gal epitopes(Sheeley et al., 1997, Yoo et al., 2002, Macher and 

Galili, 2008), which undermines their clinical safety. Such was the case with cetuximab, 

a monoclonal antibody for treating colorectal and head neck cancers. A subset of patients 

treated with cetuximab experienced anaphylaxis due to the pre-existing population of ɑ-Gal 

IgE antibodies in their bloodstream(O’Neil et al., 2007, Chung et al., 2008). Roughly 30% 

of the 21 glycoforms present in cetuximab were capped by ɑ-Gal residues(Qian et al., 2007). 

Neu5GC is a modified sialic acid that is also potentially immunogenic glycan structure 

common to many nonhuman mammalian cell lines. It can be assimilated from exogenous 

sources into newly synthesized glycans and presented on human cells, but as with ɑ-Gal 

epitopes, humans produce circulating antibodies against Neu5GC(Altman and Gagneux, 

2019, Padler-Karavani et al., 2008, Tangvoranuntakul et al., 2003, Nguyen et al., 2005). 

This co-existence of anti-Neu5GC antibodies and epitope incorporation correlates well with 

chronic inflammation-mediated diseases(Okerblom and Varki, 2017, Varki, 2017, Dhar et 

al., 2019). Adverse reactions have been observed among patients treated with rabbit-derived 

anti-thymocyte globulin, likely due to the immune response triggered by Neu5GC(Salama et 

al., 2017, Amon et al., 2017, Yehuda and Padler-Karavani, 2020). A comparative study of 

murine myeloma-derived cetuximab, bearing terminal Neu5GC residues, and CHO-derived 

panitumumab, containing negligible Neu5GC residues, also revealed that when exposed to 

human serum containing high levels of anti-Neu5GC antibodies, immune complex formation 

was only observed against cetuximab(Ghaderi et al., 2010); this suggests that patients who 

have higher levels of anti-Neu5GC antibodies could be prone to adverse reactions when 

treated with cetuximab (Supplementary Table 4).

Given the importance of glycosylation to modulating the glycoprotein immunogenicity, 

tweaking its composition can help elevate the immune response when necessary—as in 

the case of vaccines. Vaccines come in a variety of formulations that can consist of the 

whole pathogen itself, or protein-, polysaccharide-, and nucleic acid-based molecules(Cid 

and Bolivar, 2021); however, for protein-based subunit vaccines, glycosylation can vary 

substantially depending on the heterologous expression host and may not reflect the natural 

glycan pattern found on the native pathogen. Many viruses, such as SARS, influenza, 

and HIV, have surface proteins that are extensively coated by host-derived glycans. In 

addition to being essential to binding and entry into the host cells, these attached sugars 

form a glycan shield, masking the viral epitopes that can be neutralized by circulating 

antibodies and allowing them to evade the host immune system(Wanzeck et al., 2011, 

Fenouillet et al., 1994, Watanabe et al., 2020, Tate et al., 2014). In some cases, the presence 
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of the glycan structures is integral to the immunogenic epitope and are necessary for 

engagement by neutralizing antibodies(Behrens et al., 2016). Modifying glycosylation on 

subunit viral vaccine candidates, such has hemagglutinin (influenza), S protein (SARS) 

and ENV protein (HIV), can significantly alter immune response and improve clinical 

efficacy. By altering glycans on hemagglutinin (HA) to trim heterogenous complex-type 

glycans down to only N-linked GlcNacs, better binding and neutralization was obtained, 

along with broader cross-strain activity in mice (Chen et al., 2014, Wang et al., 2009). 

Likewise, an S protein vaccine against SARS-CoV-2 that was enzymatically modified to 

be mono-GlcNac-decorated induced a stronger immune response compared to normally 

glycosylated S protein, and protected vaccinated animals against wild-type virus and other 

variants of concern(Huang et al., 2022). Furthermore, an mRNA vaccine candidate with 

specific glycosites removed in the S2 domain of the S protein resulted in higher antibody 

neutralization and CD8+ T cell activity against variants of concern relative to the wild-type 

SARS-CoV-2 mRNA vaccine(Wu et al., 2022). One caveat, however, of mRNA vaccines 

is that while genetic engineering of glycan occupancy can be achieved, optimizing glycan 

microheterogeneity at specific sites is not possible on this platform, due to the fact that the 

protein glycosylation machinery is completely dependent on the host cell. The stronger and 

broader immune engagement observed in vaccine candidates after glycan shield removal is 

likely due to the exposure of conserved previously hidden epitopes on the protein surface. 

Alternatively, the addition/removal of glycan structures can also lead to the creation of 

neoepitopes not found in the native pathogen, which can subsequently be targeted by the 

immune response. Using this approach, immune response to HIV vaccine candidates can 

be redirected. By knocking in a novel glycosite on an HIV Env trimer vaccine candidate, 

they masked a previously immunodominant epitope and instead created new epitopes on 

the protein that could be recognized by neutralizing antibodies by knocking out multiple 

N-linked glycosites(Ringe et al., 2019). It is important to note, however, that full removal 

of glycans could decrease vaccine efficacy for sites where the glycans impact protein 

conformation(Chen et al., 2014, Huang et al., 2022, Wu et al., 2022). Moreover, eliminating 

glycans entirely runs the risk of creating neoepitopes that are not recognized by the immune 

system upon infection by the native virus, as seen with deglycosylated HIV env (Zhou et al., 

2017). Nevertheless, these examples demonstrate that by leveraging informed glycan design, 

protein-based subunit vaccines could provide stronger and longer lasting protection, and also 

be effective against a broader spectrum of strains and variants, reducing the frequency of 

needed updates to formulations in response to new mutants.

2 Monoclonal Antibodies

Monoclonal antibodies (mAb), such as recombinant immunoglobulins of the IgG1 subtype, 

are monospecific in terms of the epitope recognized. Therapeutic mAbs account for 80% 

of total antibody sales in the United States(IAVI/Wellcome, 2020). Furthermore, the global 

therapeutic mAb market is expected to generate more than $300 billion globally per year 

(Lu et al., 2020). Therefore, understanding their critical quality attributes, specifically 

glycosylation, ensures their safety and similarity as effective therapies.

IgG antibodies contain two heavy chains and two light chains to form three major domains: 

two identical Fab domains for antigen binding and an Fc domain (dimeric base of the 
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antibody)(Schroeder and Cavacini, 2010). Asparagine(N) 297-linked glycosylation occurs in 

the Fc region and in the form of biantennary complex structures(Mimura et al., 2018, Varki 

et al., 2022) (Figure 3). Glycosylation at the Fc region of IgG proteins can greatly impact 

antibody structure and effector functions (Jefferis, 2009a, Jefferis, 2012).

The constant region of antibodies contains binding sites for immune effector molecules 

such as the complement system or Fc receptors (Vidarsson et al., 2014). These receptors 

help recruit immune mediators, generally via Fc receptor binding. Antibody Fc receptors 

mediate the cell killing effects of mAbs by complement-dependent cytotoxicity (CDC), 

antibody-dependent cellular cytotoxicity (ADCC), or antibody-mediated phagocytosis by 

monocytes/macrophages(Weiner et al., 2010, Ludwig et al., 2003, Jefferis, 2009b). In 

ADCC, this is accomplished by engaging immune complexes with FcγRIIIa on natural 

killer (NK) cells, or by directly inducing tumor cell apoptosis through the suppression of 

pro-survival ligands or inhibition of signal receptor dimerization. CDC is activated by the 

binding of complement component C1q to the mAb Fc region to initiate the complement 

cascade (Raju, 2008, Dekkers et al., 2017, Zhou et al., 2008b, Pereira et al., 2018). These 

mechanisms are particularly important for cancer immunotherapy; indeed, Fc-mediated 

effector cell recruitment and functions, such as ADCC, are crucial to tumor-targeting 

antibodies. For instance, rituximab or trastuzumab activity was abolished in genetically 

modified mice that lacked FcγR expression or had defective FcγR signaling. In contrast, 

FcγRIIb knockout mice showed enhanced efficacy(Clynes et al., 2000, de Haij et al., 2010). 

Although glycosylation at the N297 region accounts for only 2–3% of antibody mass, IgG-

Fc glycosylation and structure are critical for Fc effector functions, such as ADCC and CDC 

(Chan and Carter, 2010, Jefferis, 2009b). Aglycosylated Fc-IgGs reduce binding affinity to 

FcγRI and eliminate binding to FcγRII and FcγRIII receptors, and C1q-mediated processes 

such as phagocytosis, ADCC, and CDC are abated or severely impaired in aglycosylated 

IgG. (Sazinsky et al., 2008, Raju et al., 2000, Nose and Wigzell, 1983, Pound et al., 1993, 

Sarmay et al., 1992, Tao and Morrison, 1989, Woof and Burton, 2004).

2.1 Fc Glycosylation and mAb Effector Function: Fucosylation

Core fucosylation of Fc N-glycans on mAbs occurs when ɑ-1,6-linked fucose is attached to 

the innermost GlcNAc moiety (Garcia-Garcia et al., 2021). The removal of the core fucose 

increases Fc affinity for FcγRIIIa in all IgG subclasses, thereby inclusively augmenting 

ADCC activity and improving therapeutic efficacy(Shields et al., 2002, Shinkawa et al., 

2003). Due to the impact of Fc fucosylation on FcRγIIIa binding, many monoclonal 

antibodies and antibody-drug conjugates being developed for the clinic are being engineered 

or “glyco-optimized” to decrease fucose(Golay et al., 2022, Tong et al., 2021, Pereira et al., 

2018), with a few already commercially available or in clinical trials, such as obinutuzumab 

(anti-CD20)(Tobinai et al., 2017), mogamulizumab (anti-CCR4)(Watson and Marx, 2019), 

belantamab mafodotin (anti-BCMA)(Lassiter et al., 2021), benralizumab(anti-IL5Rα)(Pelaia 

et al., 2018), imgatuzimab (anti-EGFR)(Temam et al., 2017) and tomuzotuximab (anti-

EGFR)(Fiedler et al., 2018) (Supplementary Table 5). Furthermore, an increase or decrease 

in ADCC activity produced by other glycan features always occurs in the context of core 

fucosylation(Li et al., 2017, Shinkawa et al., 2003).
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2.2 Fc Glycosylation and mAb Effector Function: Sialylation

Whether or not sialic acids are well-suited in ADCC- and CDC-related therapies, sialylated 

IgGs have recently garnered substantial interest as immunosuppressants for autoimmune 

and inflammatory diseases, as demonstrated by intravenous immunoglobulin (IVIG) therapy 

(Nimmerjahn and Ravetch, 2008, Kaneko et al., 2006). IVIG therapy involves administering 

concentrated IgG derived from pooled plasma to patients (Seite et al., 2008). As a 

highly effective biologic in treating several autoimmune diseases, including idiopathic 

thrombocytopenic purpura (ITP), chronic inflammatory demyelinating polyneuropathy, and 

myasthenia gravis, IVIG consumption has increased approximately 400-fold since 1980, and 

approximately 100 tons are consumed per year(Orange et al., 2006, 2019). Sialylated IgGs 

initiate anti-inflammatory responses through murine C-type lectin-like receptor-specific 

intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-RI) (DCSIGN in humans), 

expressed by macrophages and dendritic cells. As a result, FcγRIIb is upregulated, 

increasing Treg cell populations and suppressing inflammatory responses (Anthony and 

Ravetch, 2010, Anthony et al., 2008, Kaneko et al., 2006, Sondermann et al., 2013). 

Although IgG sialylation is not the main determinant of anti-inflammatory effect of 

IVIG therapy, IgG sialylation does enhance the efficacy(Schwab and Nimmerjahn, 2013). 

Increased endogenous IgG sialylation improved treatment of Kawasaki disease during 

IVIG therapy(Ogata et al., 2013), and sialylated human IgG reduced the severity of 

rheumatoid arthritis in mouse models, an effect that was not observed using desialylated 

human IgG(Kaneko et al., 2006). Similarly, a 10-fold increase in anti-inflammatory activity 

was seen with tetra-Fc sialylation compared to asialylated IVIG across several animal 

models(Washburn et al., 2015).

2.3 Fc Glycosylation and mAb Effector Function: Galactosylation

The effector functions of galactosylation, particularly ADCC, should be addressed on a case-

by-case basis. In some cases, the terminal galactose residue content had no effect on ADCC 

activity. For example, the degalactosylation of rituximab and other recombinant mAbs with 

variable galactose contents confirmed that ADCC activity was unaffected(Hodoniczky et 

al., 2005). To complicate matters, increased galactosylation can promote ADCC activity 

or inhibit ADCC activity(Houde et al., 2010, Nimmerjahn et al., 2007, Kumpel et al., 

1994, Pereira et al., 2018, Zhang et al., 2020b, Aoyama et al., 2019, Thomann et 

al., 2016). Interestingly, site-specific galactose attachment on the N-glycan structure in 

afucosylated palivizumab influences FcγRIIIA binding and ADCC activity, as shown with 

enzymatic transglycosylation using chemically defined N-glycans(Hatfield et al., 2022). 

Although terminal galactose may only play a minor role in ADCC activity, it is critical 

for CDC activity(Hodoniczky et al., 2005). Galactosylated rituximab had higher CDC than 

degalactosylated glycoforms due to its higher affinity to C1q receptors; when Campath-1H 

was deglycosylated, CDC activity was reduced by 50%(Peschke et al., 2017, Hodoniczky et 

al., 2005, Boyd et al., 1995). Based on these findings, additional research on the effects of 

galactosylation on ADCC activity and its subclasses is required, and different glycoforms 

should be considered whenever developing new drugs.
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2.4 Fc Glycosylation and mAb Effector Function: Bisecting GlcNac

Human serum contains ~10% IgGs by protein mass, and many of their N-glycans 

contain bisecting GlcNAc structures(van de Bovenkamp et al., 2016, Gudelj et al., 2018). 

These features can only be produced in human or murine cells (e.g., S20); CHO cells 

are unable to produce N-glycans with bisecting GlcNAc because of a lack of active N-

acetylglucosaminyltransferase-III (GnT-III) required for its synthesis(Campbell and Stanley, 

1984, Sallustio and Stanley, 1989, Umana et al., 1999), although the enzyme can be 

genetically activated(Karottki et al., 2020, Shamie et al., 2021). Overexpression of GnT-III 

was applied to increase bisecting GlcNAc attachment to N-glycans in therapeutic mAbs, 

thereby improving FcR-binding(Davies et al., 2001). Specifically, ADCC activities were 

10–30-fold higher when mAbs containing bisecting GlcNAc N-glycans bound to FcRIIIa 

receptors (Davies et al., 2001, Shinkawa et al., 2003). For example, adding bisecting 

GlcNAc without removing core fucosylation improved ADCC by approximately 10-fold, 

indicating that N-glycans with bisecting GlcNAc structures can enhance ADCC activity. 

Furthermore, trastuzumab-bearing N-glycans modified with bisecting GlcNAc increased 

ADCC 10-fold, comparable to that observed for similarly modified rituximab(Hodoniczky et 

al., 2005). However, these finding have been contradicted. Since incorporation of bisecting 

GlcNAc is not a suitable substrate for 1,6-fucosyltransferase, N-glycans containing such 

structures are always associated with loss of core fucosylation. As a result, removing 

the core fucose rather than bisecting GlcNAc may still have the greatest impact on the 

therapeutic antibody ADCC activity(Shinkawa et al., 2003, Schachter, 2000).

2.4 Fc Glycosylation and mAb Effector Function: Mannosylation

The prevalence of high-mannose N-glycans on recombinant mAbs can vary substantially 

(more than 1–20% in both CHO and murine cells), but endogenous human IgG contains 

only trace amounts (<0.1%) of these glycovariants(Flynn et al., 2010, Goetze et al., 2011). 

ADCC activity is enhanced in mAbs with high-mannose glycoforms(Liu, 2015, Yu et al., 

2012, Shi and Goudar, 2014, Brady et al., 2015, Liu et al., 2017). However, similar to the 

other glycoforms mentioned previously, changes in ADCC are more directly associated with 

the loss of core fucosylation(Zhou et al., 2008a, Brady et al., 2015). Furthermore, mAbs 

with high mannose structures can have a negative impact on CDC activity by lowering 

the binding affinity with C1q(Walsh, 2018). Other studies have reported similar results 

for high-mannose mAbs that reduce CDC activity by lowering binding to C1q. Thus, 

Fc mannosylated mAbs have a positive effect on ADCC but a negative effect on CDC 

activity(Yu et al., 2012, Zhou et al., 2008a, Hiatt et al., 2014).

3. Future Perspectives: Next Generation Biologics

Glycoengineering of therapeutics has been applied to a variety of therapeutic 

glycoproteins(Walsh, 2018, Majewska et al., 2020). Beyond protein-based drugs, however, 

next-generation biologics, such as cell therapy- and nucleic acid-based therapeutics, offer 

opportunities for treating cancer, infectious diseases, immune disorders, and inherited 

genetic diseases(Kulkarni et al., 2021, Weber et al., 2020). Here we describe how 

glycosylation can impact cell therapy, gene therapy, and drug delivery platforms, including 

specific examples of glycoengineering to improve biological activity and clinical efficacy.
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3.1 T-Cell Therapy

T-cell based immunotherapies, in particular chimeric antigen receptor (CAR) T-cells, are 

gaining traction especially for cancers of the blood and bone marrow(June et al., 2018, 

Feins et al., 2019). For these, T-cells are collected and transfected to express surface 

receptors that bind to and eliminate tumor cells. T-cell therapies rely on interactions between 

tumor cell ligands or antigen presenting cells (APCs) and co-stimulatory receptors on 

T-cells, such as CD28, inducible costimulatory (ICOS), and 4–1BB, which promote T-cell 

proliferation and cytotoxicity (Chen and Flies, 2013) (Figure 4A). Receptors on immune 

cells—including T-cell receptors (TCRs)—are glycosylated, and specific glycosylation 

patterns are pivotal in immune function, including communication between immune cells 

and the modulation of their anti-tumor activity(Sun et al., 2021, Mereiter et al., 2019). 

For example, inhibiting N-glycosylation of CD28 increased interaction with its CD80 

ligand, thereby enhancing its co-stimulatory signaling activity(Ma et al., 2004). Sialidase 

treatment of T-cells and APCs also enhanced CD28-mediated activation of T-cells and 

reactivation of exhausted T-cells, possibly by eliminating sialic acid-containing glycans that 

compete for CD28-CD80 interactions(Edgar et al., 2021). Removing specific glycosites 

in ICOS led to intracellular sequestration of the receptor(Kamei et al., 2010) and altered 

its ligand binding affinity(Kamei et al., 2010, Rujas et al., 2020). Galectin-9 also binds 

4–1BB, a co-stimulatory signaling receptor on T-cells, thus controlling T-cell function 

by facilitating 4–1BB surface expression(Madireddi et al., 2014). Deglycosylation of 

4–1BB results in reduced galectin-9 binding(Madireddi et al., 2014). Furthermore, the 

mutation of N-glycosylation sites reduces membrane expression of 4–1BB and decreases 

polyubiquitination, thereby inducing multimerization of 4–1BB, which may hamper 4–1BB 

receptor signaling(Sun et al., 2022).

Co-inhibitory signaling pathways mediated by receptors on T-cells (e.g., PD-1, CTLA-4, 

and TIM-3) induce exhaustion and apoptosis and inhibit cytotoxic function(Chen and Flies, 

2013) (Figure 4A). The PD-1/PD-L1 axis has been a target of cancer immunotherapy, and 

its inhibitory function depends on PD-1 glycosylation. PD-1 depends on core fucosylation, 

as the inhibition of FUT8 attenuated PD-1 cell surface expression and promoted PD-1 

degradation, resulting in augmented T-cell activity and anti-tumor responses(Okada et al., 

2017, Zhang et al., 2020a). Among the PD-1 N-glycosylation sites, N116 mediates the 

interaction between galectin-9 and PD-1, which induces TIM-3/PD-1 dimerization and 

attenuates galectin-9/TIM-3-mediated cell death(Yang et al., 2021). Furthermore, PD1 

N-glycosylation maintains its expression and its interaction with PD-L1 (Sun et al., 

2020). PD-1 N-glycosylation varies when produced by different host systems, leading to 

different the binding affinities of camrelizumab, an anti-PD-1 monoclonal antibody(Liu 

et al., 2020). Another co-inhibitory receptor expressed on T-cells, CTLA-4, interacts with 

CD80/86 proteins to transmit the inhibitory signal. N-glycosylation (N78/110) contributes 

to CTLA-4 dimerization and T-cell activity(Darlington et al.). CTLA-4 surface expression 

was decreased in Mgat5-negative T-cells, and increased upon hexosamine treatment, 

implying N-glycan branching enhances the CTLA-4 surface retention and suppresses its 

endocytosis(Grigorian et al., 2007, Lau et al., 2007). Furthermore, defective N-glycan 

branching reduced CTLA-4 surface expression and promoted multiple sclerosis(Mkhikian 
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et al., 2011). Finally, TIM-3 N-glycosylation is critical its interaction with galectin-9, which 

inhibits T-cell effector function(Zhu et al., 2005a).

Because of the importance of glycosylation on T-cell development, function and activation, 

manipulation of glycan structures on key ligands or even the cell itself can also be applied 

to improve immunotherapeutic outcomes of T-cell therapeutics. The mutation of PD-1 

N-glycosylation at site N74 decreased PD-1 surface expression in CAR T-cells, thereby 

enhancing their cytotoxicity and cytokine secretion(Shi et al., 2019). Also, Deactivation of 

Mgat5—which catalyzes the addition of branched, β1,6-GlcNac N-glycans on T cells—led 

to a reduction of β1,6-GlcNac N-glycan branching on the surface of CAR T-cells, and 

enhanced their expansion rate and antitumor activity compared to the wild-type population 

(de Bousser et al., 2023). Exofucosylation can increase surface sialyl-Lewis X, a glycan that 

enhances E-selectin binding, thereby improving CAR T-cell targeting efficiency(Mondal et 

al., 2019). Furthermore, N-glycosylation on the CAR hinge domain derived from CD28 

contributes to CAR surface expression and CAR-T cytotoxicity(Hirobe et al., 2022). 

Drugs, including small molecules, sugar analogues, and mAb, can also be utilized to 

target glycosylation on various proteins to support immunotherapy(Zheng et al., 2022). 

BMS1166 inhibits PD-L1 glycosylation and blocks its endomembrane transport, resulting 

in T-cell activation(Chen et al., 2020). Another small molecule, N-linked glycosylation 

inhibitor-1, targets oligosaccharyltransferase, thus inhibiting N-glycosylation of epidermal 

growth factor receptor, cyclooxygenase-2, B7-H4 and other proteins to impede tumor cell 

proliferation(Lopez-Sambrooks et al., 2016, Rinis et al., 2018, Song et al., 2020). Similarly, 

inhibition of N-glycosylation with 2-deoxy-D-glucose (2DG) enhances T-cell cytotoxicity 

and promotes memory T-cell differentiation (Sasawatari et al., 2020). 2DG hindered the 

N-glycosylation of target proteins, including MICA/B and PD-L1, and enhanced the anti-

tumor activity combined with other treatments (Andresen et al., 2012, Shao et al., 2018, 

Kim et al., 2020). 2-fluoro-L-fucose has also inhibited fucosylation of PD-1 and B7-H3, 

resulting in T-cell proliferation and activation(Okada et al., 2017, Huang et al., 2021). Sialic 

acid mimetics can block sialylation to suppress tumor growth and increase the proportion 

of NK cells, CD8+ T-cells, and CD4+ T-cells with reduced regulatory T-cells(Bull et al., 

2018). Enhanced T-cell activity is achieved by mAbs with superior binding affinity to the 

N-glycosylation at site N58 of PD-1(Liu et al., 2020, Wang et al., 2019b, Liu et al., 2019, 

Lu et al., 2022). Fusion proteins also show promise, such as a sialidase-conjugated mAb 

that targets human epidermal growth factor receptor 2 and enhances the NK cell antitumor 

activity by desialylating HER2-positive tumor cells(Xiao et al., 2016). Understanding and 

ultimately manipulating the glycoproteome can therefore be invaluable to immunotherapies.

3.2 Viral Drug Delivery

Successful delivery of therapeutic nucleic acids, such as plasmid DNA, mRNA, antisense 

oligonucleotide (ASO), and small interfering RNA (siRNA) remains challenging since 

their negative charges inhibit transfer across the plasma and nuclear membranes(Molle et 

al., 2022). However, delivery platforms such as viral vectors, including adeno-associated 

viruses (AAV), adenoviruses, and lentiviruses overcome this challenge and are used in gene 

therapy(Bulcha et al., 2021, Sharon and Kamen, 2018). However, the target specificity, 

vector yield and transduction efficiency of viral vectors, such as AAV, is determined by 
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capsid serotypes and capsid protein PTMs, such as ubiquitination, SUMOylation, and O-

glycosylation (Wang et al., 2019a, Mary et al., 2019a).

Glycans have been detected on capsid proteins in several AAV serotypes, including AAV2, 

3, 5, 7, 8, 9, rh10 (Mary et al., 2019a). N-glycosylation of viral proteins can affect infectivity 

and the immune response by assisting in protein folding and trafficking and modulating 

the interaction between virus and host immune system(Vigerust and Shepherd, 2007). 

Inhibition of N-glycosylation increased AAV2 transduction efficiency and decreased vector 

yield(Mary et al., 2019a, Mary et al., 2019b), and the site-specific mutation of glycosylation 

sites revealed that modulation of glycosylation increased the hepatic and ocular gene 

transfer of AAV2(Mary et al., 2019a, Mary et al., 2019b). Proteomic analysis of AAV5-

producing HEK293 showed an upregulation of MAN2A2, an alpha-mannosidase which 

trims high-mannose structures resulting in complex N-glycans in Golgi, suggesting that the 

glycosylation pathway can be targeted to improve AAV production(Strasser et al., 2021). 

Furthermore, bioconjugation of GalNAc on capsid proteins can increase AAV2 transduction 

efficiency and reduce neutralizing antibody production against AAV2 and AAV8 (Mevel et 

al., 2019).

Glycans and glycan-binding proteins (lectins) are also important to virus and host 

interactions, including viral entry and tissue tropism(Raman et al., 2016) (Figure 4B). Cell-

surface glycans, such as heparan sulfate proteoglycans (HSPG), sialic acids, and terminal 

galactose, aid in attachment and infection of AAV serotypes(Stroh and Stehle, 2014, Meyer 

and Chapman, 2022). Membrane-associated HSPG are receptors for AAV2 and AAV3, so 

disrupting HSPG synthesis genes and/or treatment with heparin inhibits attachment and 

infection (Summerford and Samulski, 1998, Handa et al., 2000, Rabinowitz et al., 2002). 

Terminal sialylation is also critical for AAV infectivity; heparan sulfate and sialic acids are 

necessary for binding and transduction of AAV6 (Halbert et al., 2001, Wu et al., 2006, Ng 

et al., 2010), while AAV4 and AAV5 use O-linked and N-linked sialic acids as a primary 

receptor, respectively(Chen et al., 2005, Walters et al., 2001, Kaludov et al., 2001, Walters et 

al., 2002). Inhibiting sialylation also decreases binding and transduction efficiency of AAV1 

(Wu et al., 2006, Chen et al., 2005). For AAV9, however, enzymatic digestion of sialic 

acids increased the surface binding and transduction, suggesting that N-linked galactose 

facilitates its binding and transduction (Shen et al., 2011, Bell et al., 2011). Understanding 

the glycan binding specificity of different AAV serotypes can help improve gene therapy 

vectors (Mietzsch et al., 2014), and engineering capsid protein affinity to glycans is being 

attempted (Madigan and Asokan, 2016).

3.3 Non-Viral Drug Delivery

Nucleic acids and other therapeutic molecules can also be administered as naked molecules 

or with non-viral delivery platforms. Many cell types recognize and bind specific glycan 

structures, such as terminal mannose, fucose, galactose, GalNac and GlcNac; conjugation 

of carbohydrate moieties to oligonucleotide-based drugs can improve their stability, cell 

specificity, and delivery (Bakowski and Vogel, 2022) (Figure 4C). This can impact 

cancer therapy, where lectin receptors are often overexpressed in tumors versus healthy 

tissue(Berthe et al., 2003, Ishiwata et al., 1997, Pavelic et al., 2003, Laube, 2009, Hebert, 
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2006), and glycoengineering can be exploited to reduce drug toxicity in healthy cells and 

improve clinical efficacy.

Galactosylated polyethylene glycol and mannose 6-phosphate polyethylene glycol can be 

covalently linked to siRNA to successfully inhibit gene expression in hepatocytes in vitro 
(Zhu and Mahato, 2010), and conjugation of siRNA to GalNAc (a ligand for ASGP 

receptors), facilitated targeted delivery and robust gene silencing both in vitro and in vivo 
(Nair et al., 2014). Different designs of GalNAc conjugation have been tested to optimize 

synthesis and targeting efficiency(Matsuda et al., 2015, Rajeev et al., 2015). Furthermore, 

conjugation of multivalent GalNAc to antisense oligonucleotides and siRNAs using GalNAc 

phosphoramidite monomer has extended the structural flexibility of the number of GalNAc 

units for effective silencing(Yamamoto et al., 2016, Sharma et al., 2018).

Glycoengineering of delivery platforms can also improve uptake or alter biodistribution of 

nanoparticles (NP) and extracellular vesicles (EV) by leveraging glycan receptors(Bakowski 

and Vogel, 2022, Bost et al., 2021) (Figure 4C). NPs coated with fucose can transfer 

liposomes into pancreatic cancer cells(Yoshida et al., 2012), and galactosylated liposomes 

and lipid nanoparticles (LNP) can deliver therapeutic molecules such as azidothymidine, 

doxorubicin, paclitaxel, and siRNA (Garg and Jain, 2006, Wang et al., 2010, Jain et al., 

2015, Wang et al., 2016, Yang et al., 2018). Mannosylated NPs demonstrated improved 

delivery of both DNA and RNA into dendritic cells(Kim et al., 2006, Markov et al., 2015, 

Goswami et al., 2019), and mannose-based NPs containing dasatinib showed efficient uptake 

into macrophages(Rushworth et al., 2020). Coating liposomes with mannose-6-phosphate 

also increased cellular uptake of a cytotoxic molecule C6Cer, and selectively induced 

apoptosis in cancer cells(Minnelli et al., 2018). The surface of EVs are naturally enriched 

with glycoproteins, and glycosidase treatment impacts EV binding affinity, showing that 

surface glycans are important in target cell uptake(Williams et al., 2019). Indeed, the 

inhibition of EV surface N- and O-glycosylation enhanced uptake, and O-glycan removal 

significantly increased the EV accumulation into lung tissues in vivo (Nishida-Aoki et al., 

2020). Similarly, removal of sialic acid on EV surfaces shifted their biodistribution from 

the liver to the lungs (Royo et al., 2019). As with nanoparticles, adding glycans to EVs 

can target cells with specific lectin receptors. For example, compared to unconjugated EVs, 

mannose-conjugated carriers containing an immune stimulant MPLA, demonstrated higher 

cellular uptake and elevated cytokine secretion in dendritic cells, which primarily express 

mannose receptors (Choi et al., 2019). These findings underscore the immense potential 

impact of glycosylation on improving the efficacy and safety profiles of new and current 

platforms for drug delivery.

3. Conclusion and Outlook

There is no denying that optimizing glycosylation in the drug discovery and development 

workflow can immensely improve protein-based, oligonucleotide-based and cell-based 

therapeutic products. The last two decades have seen significant advancements with 

regard to the creation of glycoengineering platforms that involve genetic modification of 

plant(Grabowski et al., 2014), yeast(Jacobs et al., 2009, Beck et al., 2010, Arico et al., 

2013), human(Hart et al., 2017, Meuris et al., 2014), and hamster(Shitara, 2009, Pereira 
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et al., 2018) producer cell lines to generate recombinant products with homogenous 

and tailored glycan structures for improved safety and efficacy. By combining these 

technologies with systems biology approaches that aim to better understand the cell’s 

highly complex glycosylation machinery(Spahn et al., 2017, Spahn et al., 2016, Liang et 

al., 2020, Krambeck et al., 2017), we may be better able to predict and design optimal 

glycoprofiles and build the capacity to produce glycoengineered biologics more reliably and 

cost-effectively at scale.
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Highlights

• Glycosylation is a common feature of a wide variety of protein-based drugs 

and profoundly impacts their stability, safety, and therapeutic efficacy

• Manipulating glycan heterogeneity is a powerful tool that is utilized to 

develop products with optimal physical and biological properties

• Glycoengineering can also be used to improve the efficacy of next-

generation biologics such as T cell immunotherapy and oligonucleotide-based 

therapeutics
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Figure 1. Most protein-based drugs undergo N-linked or O-linked glycosylation.
Most therapeutic proteins such as subunit vaccines, monoclonal antibodies, hormones, 

enzymes and immune factors undergo N-linked or O-linked glycosylation. N-linked glycans 

consist of carbohydrate molecules that are attached to the nitrogen atom on Asparagine 

(Asn) residues in the protein, while O-linked glycans consist of carbohydrates linked to the 

oxygen atom on Serine (Ser) or Threonine (Thr) residues in the protein.
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Figure 2. Protein glycosylation is a critical quality attribute that has a significant impact on the 
stability, efficacy, and safety of the drug
(A) Sialylation of therapeutic proteins prolongs circulatory half-life by helping them 

evade capture by lectin receptors that facilitate clearance from the bloodstream. The 

presence of the terminal sialic acid masks the sugars that would otherwise be bound 

by asialoglycoprotein receptors (terminal Gal/GalNac) and mannose receptors (terminal 

Man/Fuc/GlcNac). (B) The presence of Mannose-6-Phosphate residues on therapeutic 

proteins facilitate better targeting and uptake by cells—such as macrophages—that express 

Mannose-6-Phosphate receptors. (C) Some glycan structures are associated with adverse 

immune responses among human subjects due to their structural dissimilarity to human-

derived glycans. Such immunogenic glycans include the α-Gal Epitope and the Neu5Gc 

residue—both of which are derived from non-human, mammalian protein expression 

systems.
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Figure 3. Fc Glycosylation impacts monoclonal antibody effector function.
All IgG antibodies are N-glycosylated at Asn-297 on their Fc region. The absence or 

presence of core fucose, bisecting GlcNac, terminal mannose/galactose/sialic acid residues 

on the Fc Asn-297 glycosite are crucial to regulating antibody function.

Rocamora et al. Page 43

Biotechnol Adv. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Glycosylation impacts therapeutic efficacy of biologics beyond protein therapeutics
(A) Anticancer T-cell therapies rely on interactions between the T-cell and the tumor cell or 

antigen presenting cell. Some of these important interactions include CD28⬄CD80/CD86 

which positively regulates T-cell activation and promote downstream anti-tumor activity, 

while PD1⬄PDL1 and CTLA-4⬄CD80/CD86 negatively regulate T-cell activation and 

reduce anti-tumor activity. N-linked glycan heterogeneity on these interacting proteins 

significantly impacts their binding affinity, expression level and cellular localization and 

therefore play a role in ensuring the therapeutic efficacy of such cell-based treatment 

modalities. (B) The presence/absence and identity of N-linked glycans on AAV capsid 

proteins can affect host cell infectivity, vector yield and immune response. Furthermore, 

the primary receptors of all AAV serotypes are O-linked and N-linked glycans such as 

terminal sialic acid and terminal galactose residues found on the host cell surface. N- and 

O-linked glycosylation, therefore, are key factors that modulate AAV transduction efficiency 

and tissue tropism. (C) Because different cell types usually express a distinct array of 

glycan receptors, conjugation of glycan structures to naked oligonucleotide-based drugs and 

delivery platforms such as nanoparticles and extracellular vesicles can improve targeting 

efficiency as well as modulate biodistribution in vivo.
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