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Abstract
Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-
related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association 
with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in 
patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale 
(SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurologi-
cal Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and 
morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines 
were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expres-
sion levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling 
pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients’ serum. Overexpression of 
FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and 
induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR sug-
gested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD’s protective effects. FMOD exhibits potential 
as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/
mTOR signaling pathway.
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Introduction

Traumatic brain injury (TBI) is a critical global health prob-
lem with devastating lifelong consequences, it not only leads 
to brain dysfunction but also psychiatric disorders (Pavlovic 
et al., 2019). Depression is one of the most common psychi-
atric sequelae ensuing from TBI, it might influence 25–50% 
of TBI patients (Jahan & Tanev, 2023). Studies suggested 
that TBI-related depression significantly affected personal 
life quality and even resulted in lifelong impairment (Boyko 

et al., 2023). Nevertheless, much remains unclear about 
the complicated neurobiological alternations of post-TBI 
depression.

Fibromodulin (FMOD) is a secreted protein and a mem-
ber of the Small leucine-rich proteoglycans family, which is 
primarily expressed in the extracellular matrix (ECM) (Jan 
et al., 2016). ECM remodeling is known to significantly 
impact TBI pathophysiology (George & Geller, 2018). A 
previous study reported FMOD as a key regulatory gene 
participating in the ECM-related regulation after TBI, 
potentially contributing to tissue repair and remodeling 
post-TBI (Meng et al., 2017). Yet, the biological function 
of FMOD in depression after TBI remains unclear. Inter-
estingly, decreased expression of FMOD in the brain has 
been reported in depression after Chronic Immobilization 
Stress (Jung et al., 2012). Alterations in FMOD expression 
in the brain suggested its potential correlation with depres-
sion. It is worth noting that the synaptic inhibition in the 
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Medial Prefrontal Cortex and hippocampus could influ-
ence the occurrence of depression (Abdallah et al., 2015). 
Therefore, we hypothesized that the FMOD, which exists in 
ECM, could ameliorate post-TBI depression by modulating 
synaptic plasticity.

Numerous signaling pathways are involved in the patho-
physiology of TBI. One of these pathways, the PI3K/
AKT/mTOR pathway, is known to play a crucial role 
(Mezhlumyan et al., 2022; Raab-Graham et al., 2006). Acti-
vating the PI3K/AKT/mTOR signaling could suppress neu-
ral inflammation, autophagy, and apoptosis, then increase 
synaptic protein synthesis after TBI (Ding et al., 2023; Jan 
et al., 2016). Furthermore, this pathway is also involved 
in the resolving of depression symptoms by regulating the 
function of the synapses and promoting synaptogenesis 
(Dwyer & Duman, 2013; Fakhri et al., 2021). PI3K/Akt/
mTOR signaling cascade might be the vital transduction 
in TBI-related depression. But now, scarce studies have 
explored whether the FMOD acted on PI3K/AKT/mTOR 
signaling and linked this probable mechanism to depression 
after TBI.

Herein, this study was conducted to reveal the effects 
of FMOD in post-TBI depression and its potential mecha-
nism. The self-rating depression scales (SDS) were used 
to determine the depression of TBI patients, the reduction 
of FMOD was found and was associated with TBI-related 
depression. We next investigated the efficacy of FMOD in 
the experiments in mice and primary neuronal cells. At last, 
the favorable outcomes of overexpressing FMOD in depres-
sion after TBI were exerted through the PI3K/Akt/mTOR 
signaling pathway.

Materials and Methods

Blood Specimen Collection

Venous blood was collected from 40 TBI patients upon 
admission, with an additional 20 healthy volunteers serving 
as controls. Both groups of patients were randomly selected 
based on age, gender, and BMI. (P > 0.05). Patient selection 
criteria were: a Glasgow Coma Scale score of 8–13; age 
between 18 and 55 years; TBI within the day before admis-
sion. Exclusion criteria were severe complications such as 
significant infections upon admission; a history of intracra-
nial lesions, psychiatric disorders, or similar injuries; preg-
nancy or lactation. Detailed patient information is provided 
in Supplementary Table 1.

Depression‑Like Behavior Tests in Patients

We utilized the Chinese version of the SDS to assess 
depressive symptoms (Zung, 1965). Developed by Zung 

in 1965, the SDS consists of 20 items covering emotional, 
psychological, and cognitive aspects. Elevated scores 
signify more pronounced depressive symptoms. For this 
study, we established a threshold of 53, deeming total 
scores exceeding this value indicative of the presence of 
depressive symptoms (Xing et al., 2021).

Animals Experiments

The sample size for animal specimens was calculated 
using an online tool (http://​www.​lasec.​cuhk.​edu.​hk/​sam-
ple-​size-​calcu​lation.​html). A cohort of 105 male C57BL/6 
mice, aged 6–8 weeks, were procured from the Animal 
Experimental Center of Chongqing Medical Univer-
sity and received appropriate care in accordance with 
the guidelines set by the Institutional Animal Care and 
Use Committee of Chongqing Medical University. The 
mice were allocated to different groups, including TBI, 
TBI + FMOD, TBI + sh-FMOD, TBI + sh-NC, and Sham, 
using a simple randomization approach. Fifteen mice from 
each group were involved in the behavioral experiments 
and subsequently used for sample collection and analysis 
at the conclusion of the study. Additionally, an extra 30 
mice (five per group) were utilized to determine the time 
course expression levels of FMOD. Throughout the entire 
experimental and data analysis processes, the researchers 
remained unaware of the animals’ grouping.

TBI Mouse Model Establishment

To mimic TBI in mice, controlled cortical impact (CCI) 
was selected, based on previous studies (Osier & Dixon, 
2016; Wu et al., 2022). In summary, mice were initially 
anesthetized with 3% isoflurane. Anesthesia was then 
maintained at a level of 1.5% isoflurane, and the mice 
were subsequently secured in a stereotactic frame. A 
bone flap above the left frontal lobe was removed, with 
surgical coordinates centered on the posterior fontanelle 
(2 mm posterior, 2 mm lateral). CCI was performed using 
an electronically controlled pneumatic impact device (PSI, 
USA). A 3 mm-diameter flat impactor, penetrating to a 
depth of 1.5 mm at a velocity of 5 m/s, was applied to the 
surgical site on the stereotaxic frame, with a dwell time of 
100 ms. In the sham group, mice were anaesthetised solely 
for the scalp incision and craniotomy, and were subse-
quently transferred back to the recovery cage after resus-
citation. In the remaining group, mice had their scalps 
sutured immediately after impact and were placed on a 
heating pad maintained at a constant temperature of 37 °C. 
Following resuscitation, these mice were also transferred 
back to the recovery cage.

http://www.lasec.cuhk.edu.hk/sample-size-calculation.html
http://www.lasec.cuhk.edu.hk/sample-size-calculation.html
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Adeno‑Associated Virus (AAV) 
Intracerebroventricular Injection

On day 7 after TBI, mice were anesthetized in the same 
manner as the CCI procedure and were mounted on a ste-
reotactic device (Stoelting, USA). Injections were made 
to the left lateral ventricle (coordinates from the bregma: 
anteroposterior (AP) − 0.5 mm, lateral (L) − 1 mm, dor-
soventral (DV) − 3 mm). The AAV-containing solution 
was loaded into a sterilized 5 µl Hamilton syringe (Ham-
ilton, USA). Animals received 2 µl of either FMOD short 
hairpin (sh) RNA (sh-FMOD) or empty vector (sh-NC) 
(Qingke Biotech, Beijing, China) at a rate of 0.4 µl/min 
(exact sequence can be found in Supplementary Table 2); 
the needle was left in place for another 5 min before being 
slowly retracted after injection.

Intranasal Delivery of FMOD

The acclimation training started on day 9 post-TBI and 
lasted for seven days, during which all groups were admin-
istrated with 0.9% saline (20 µl/mice/day). On day16 after 
TBI, the TBI + FMOD group received a 5 µg of FMOD 
(Sino Biological, 11514-H02H, China) formulated in 20 µl 
phosphate buffered saline once a day, while the remaining 
groups received the same amount of saline; the solutions 
were given intranasally for five days.

Modified Neurological Severity Score (mNSS) Test

On day 28 after TBI, we evaluated the neurological recovery 
of rats using the mNSS test, which assesses various aspects, 
including motor coordination, sensory function, balance, 
and reaction time, providing a comprehensive evaluation of 
rodent neurological function. Scores on the mNSS range 
from 0 to 18, and a higher total score reflects more severe 
neurological deficits.

Forced Swimming Test (FST)

The FST is a widely used and validated assessment for 
depression in rodents, reflecting their behavioural responses 
to depressive or antidepressant compounds (Cryan et al., 
2002). During the test, mice respond to unavoidable acute 
stressors by oscillating between struggling and remaining 
immobile. The test involves individually housing mice in 
transparent cylinders (25 cm high and 20 cm in diameter) 
filled with water (24 °C) at a depth of 19 cm. The total stress 
exposure duration is 6 min, and the quiescence duration rep-
resents the period in which a lack of avoidance behavior is 

observed during the last 4 min of the experiment (Ghasemi 
et al., 2009).

The Tail Suspension Test (TST)

The TST is a widely employed experimental approach to 
evaluate antidepressant effects in mice or rats (Zhang et al., 
2019). Following acclimation to a tranquil and dim envi-
ronment, mice are individually suspended by their tails on 
a horizontal bar for 6 min. Different behaviors, including 
struggling, curling, and immobility, are observed throughout 
this period, with a specific focus on immobility during the 
last 4 min.

The Sucrose Preference Test (SPT)

The SPT is utilized for the evaluation of hedonic-lack behav-
ior, a fundamental manifestation of depression. The SPT 
methodology, with minor adjustments derived from prior 
investigations (Ghasemi et al., 2009), included acclimating 
animals to 1% sucrose solution (w/v) and water for 24 h, 
succeeded by a 12-h period of water and food deprivation. 
Following this, mice were exposed to two bottles, each con-
taining 150 ml of 1% sucrose solution (w/v) or water. The 
weights of the bottles were measured both before and after 
the testing. The sucrose preference results were calculated as 
the ratio of consumed sucrose solution to the overall liquid 
intake.

Electroencephalogram (EEG)

On day 28 following TBI, we conducted EEG to assess 
sleep patterns and cerebral electrical activity in mice. Sleep 
was induced by administering 3% chloral hydrate (5 ml/
kg, Macklin, Cat#C804539, China). Active electrodes were 
placed under the scalp on both sides of the parietal cortex, 
and reference electrodes were situated above the mastoid. 
Cerebral electrical activity was monitored using an EEG 
device (Natus Neurology Inc., Middleton, Wisconsin, USA), 
allowing the visualization of sleep electroencephalogram 
and facilitating the analysis of diverse sleep stages.

Transmission Electron Microscopy

1 mm3 ipsilesional hippocampus tissues collected on day 
28 were prepared as previously described (Wu et al., 2022). 
The samples were cut in ultrathin Sects. (70 nm) and stained 
with uranyl acetate and lead citrate. We observed the syn-
apse ultrastructural changes using a transmission electron 
microscope (JEOL JEM-1400PLUS, Japan) and analyzed 
the vesicle number and postsynaptic density (PSD) length.
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Golgi‑Cox Staining and Dendritic Spine Analysis

To study the morphological changes of the mouse hip-
pocampus, the FD Rapid Golgi Stain Kit (FD NeuroTech-
nologies, PK401, USA) was applied to stain the neurons. 
Hippocampal samples collected on day 28 were prepared as 
per the manufacturer’s protocol. Brain slices were immersed 
in the impregnation solution and were stored in the dark for 
2 weeks. The dendritic images were obtained using a laser-
scanning confocal microscope (Zeiss LSM800, Germany), 
and analyzed using the Sholl Analysis plugin on the ImageJ 
software.

Cell Culture, Transient Transfection, and Scratch 
Assay

Cultured from C57BL/6 mice brains on postnatal day 1 
(P1), primary hippocampal neurons were dissociated and 
seeded at a density of 1,000,000 cells per well in a 6-well 
plate, following established procedures (Henderson et al., 
2020). The culture medium consisted of Neurobasal medium 
(Gibco, 2,444,904, USA), supplemented with B27 (Gibco, 
17,504,044, USA), 2 mM GlutaMax (Gibco, 35,050,061, 
USA), and 100 U/mL penicillin/streptomycin (Meilunbio, 
MA0110, China). Cells were incubated at 37 ℃ in a 5% 
CO2/95% air environment, with medium replacement every 
3 days. Transient transfections were conducted using the 
Lipofectamine 3000 transfection kit (Thermofisher, USA) 
between days 5 and 12 in vitro. For scratch assays on day 
13 in vitro, a sterile 10 μL pipette tip was used to create 
scratches along a 9 × 9 grid (4 mm intervals) on the 6-well 
plate surface, followed by medium replacement.

Real‑Time Quantitative PCR

The TRIzol reagent, following the manufacturer’s guidelines 
(Invitrogen, USA), was employed to extract total RNA from 
the samples. The cDNA Reverse Transcription Kit (Thermo 
Fisher, USA) was then used for cDNA synthesis. Subse-
quently, quantitative PCR was conducted using SYBR green 
(SYBR Green qPCR Master Mix, MedChemExpres, USA). 
The primers for FMOD were designed as 5′-CAA​CAC​CTT​
CAA​TTC​CAG​CA-3′ and 5′-ACC​TGC​AGC​TGG​GAG​AAG​
T-3′, while those for GAPDH were chosen as 5′-GCA​CCA​
CCA​ACT​GCT​TAG​CACC-3′ and 5′-GTC​TGA​GTG​TGG​
CAG​GGA​CTC-3′.

Western Blot

Proteins were extracted from both contralesional and ipsile-
sional hippocampus samples collected on day 28, as well as 
cells. The samples were loaded onto SDS-PAGE, followed 
by protein transfer to PVDF membranes (Millipore, USA). 
Incubation with primary antibodies (1:1000) was conducted 
overnight at 4 °C. Subsequently, bands were visualized using 
enhanced chemiluminescent substrates (Sigma-Aldrich, 
WBKLS0100, USA) after incubation with HRP-conjugated 
secondary antibodies at room temperature for 1 h. Internal 
control was maintained with β-actin (Zenbio, 200,068-8F10, 
China). Quantification and analysis of the gray value were 
performed using ImageJ software. Each experiment was 
replicated three times. The primary antibodies and reagents 
utilized included GFAP (ZEN BIO, 250,027, China), FMOD 
(GeneTex, GTX102783, USA), PSD95 (GeneTex, GTX22723, 
USA), SYP (GeneTex, GTX100865, USA), MAP2 (Protein-
tech, 17,490-1-ap, China), PI3K (Zenbio, 251,221, China), 
p-PI3K (Zenbio, 310,164, China), AKT (Zenbio, R23412, 
China), p-AKT (Zenbio, 310,021, China), mTOR (Zenbio, 
380,411, China), p-mTOR (Zenbio, 381,557, China), and 
LY294002 (CAS: 154,447-36-6; Meilunbio).

Immunofluorescence

After embedding in O.C.T. compound (Sakura Tissue-Tek, 
Japan), brain samples underwent rapid freezing in isopen-
tane at − 80 °C for 5 min to ensure complete freezing. Sub-
sequently, the cryostat was employed to prepare frozen brain 
sections. Cells, which were fixed with formaldehyde, and brain 
sections were subjected to an overnight incubation at 4 °C 
with the corresponding primary antibodies (1:100). Follow-
ing this, they underwent incubation at room temperature with 
secondary antibodies conjugated with Fluor 488/594 (Invitro-
gen, 1:400, USA) for 1 h. Cell nuclei were identified using a 
culture medium containing DAPI (Solarbio, C0065, China). 
Results captured under a confocal microscope (Zeiss LSM800, 

Fig. 1   The expression levels of FMOD are diminished in patients 
and in mice after TBI. a The relative expression level of FMOD in 
the serum of TBI patients downregulated after TBI. n = 40 TBI 
patients, n = 20 volunteers as control, p < 0.0001, two-tailed t-test. 
bThe depressive state was analyzed using the Self-Rating Depres-
sion Scale in patients 3 months after TBI. The scale score had a nega-
tive linear relationship with the expression of FMOD.  n = 40 TBI 
patients,  n = 20 volunteers as control,  p = 0.0050.  (c) ROC curve in 
the evaluation of the diagnostic value of serum FMOD for depres-
sion after TBI. Area under curve AUC = 0.7920; p = 0.0022. d Time-
line of the experiment design. e Representative WB bands of FMOD 
showing the time course of FMOD expression after TBI, n = 5 mice 
per group. Sham group vs. day 3 group: p < 0.0001, Sham group 
vs. day28 group: p < 0.0001. f Representative WB bands of FMOD 
and on day 28 after FMOD delivery, n = 5 mice per group. Sham 
group vs.TBI group: p < 0.0001, TBI group vs. TBI + FMOD group: 
p < 0.0001, TBI group vs. TBI + sh-FMOD group: p < 0.0001. g 
Immunofluorescence results showed that FMOD was enriched in the 
ECM in mouse brain tissue. One-way ANOVA followed by Tukey’s 
test. All data were represented as mean ± SD

◂
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Germany) were analyzed using ImageJ software. The primary 
antibodies used are as described previously.

Statistical Analyses

Statistical analysis of the data from all experiments was con-
ducted using GraphPad Prism version 9. Results are presented 
as mean ± SD. Homoscedasticity was assessed using Bartlett’s 
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test. Comparisons between two independent groups were per-
formed using a two-tailed t-test. Data sets involving more than 
two groups were analyzed using one-way or two-way ANOVA, 
followed by Tukey’s multiple comparisons test. Statistical 
significance is indicated as follows: *p < 0.05, **p < 0.01, 
***p < 0.001, and ****p < 0.0001.

Results

FMOD is Significantly Downregulated After TBI 
in Patients and Mice

In this investigation, a significant reduction in FMOD lev-
els within the serum of TBI patients, in comparison to 
healthy volunteers, was evident (p < 0.0001, Fig. 1a). Sub-
sequent to mental state assessment using SDS, a notewor-
thy negative correlation emerged between SDS scores and 
FMOD expression levels (p < 0.05, Fig. 1b). Additionally, 
the ROC curve analysis suggested that FMOD levels could 
potentially function as a diagnostic marker for post-TBI 
depression in patients (p = 0.0022, Fig. 1c). The observed 

decrease in FMOD expression might be associated with 
TBI-induced depression.

The expression profile of FMOD in mice following 
TBI was explored. The experimental timeline is depicted 
in Fig. 1d. The time course study was performed to pre-
liminarily evaluate the expression trajectory of FMOD 
following TBI. Compared with the Sham group, FMOD 
expression peaked on day 3 (p < 0.0001, Fig. 1e) and then 
gradually decreased to a significantly lower level on day 28 
(p < 0.0001, Fig. 1e). To ensure that the intranasal deliv-
ery or knockdown of FMOD was successful, the FMOD 
expression levels on day 28 were measured and we found 
that TBI + FMOD group showed significantly higher 
FMOD levels than TBI group (p < 0.0001, Fig. 1f). The 
TBI + sh-FMOD group reached even lower level of FMOD 
compared with TBI group (p < 0.0001, Fig. 1f). Addition-
ally, widespread distribution of FMOD in the ECM of the 
cerebral cortex tissue in normal mice was observed. How-
ever, 28 days post-TBI, a partial loss of its expression was 
detected (Fig. 1g). These findings indicated that FMOD 
may play a crucial regulatory role in TBI.

FMOD Promotes Neurological Functional Recovery 
and Reduces Depression‑Like Behaviors in the TBI 
Mouse Model

EEG analysis revealed a diminished spectral density of 
brain waves in the affected cerebral cortex of mice in the 
TBI group compared to the sham group. Specifically, the 
TBI + FMOD group exhibited a substantial augmentation 
in δ-wave energy within the affected cortex, in contrast to 
the TBI group. Meanwhile, the TBI + sh-FMOD group dis-
played a marked reduction in δ-wave energy (p < 0.0001, 
Fig. 2a). Moreover, in comparison to the TBI group, the 
TBI + sh-FMOD group exhibited no significant differ-
ence in δ-wave energy in the contralateral lesion cortex 
(p > 0.05, Fig. 2a). To summarize, EEG findings under-
score the regulatory influence of FMOD on post-TBI sleep 
disturbances.

The mNSS outcomes indicated that FMOD led to a reduc-
tion in the mNSS score on day 28 after TBI (TBI + FMOD 
vs. TBI, p < 0.05, Fig. 2b), while no significant difference 
was observed between the TBI group and the TBI + sh-
FMOD group (p > 0.05, Fig. 2b). This suggests that the over-
expression of FMOD could enhance neurological recovery.

We assessed depression-like behavior in mice 28 days 
after TBI. In the final 4 min of both the FST and TST, mice in 
the TBI group exhibited varying degrees of increased float-
ing or immobility compared to the Sham group (p < 0.0001, 
Fig. 2c). Administration of FMOD correspondingly reduced 
their duration of immobility (p < 0.01, p < 0.001, Fig. 2c). 
This suggested the emergence of depression-like behavior 

Fig. 2   Overexpressing the FMOD alleviates sleep disorders and 
depression-like behaviors in mice after TBI. a Representative power 
spectral density estimated waveform corresponding to the frequency 
in the ipsilesional and contralesional cortex on day 28 after TBI, n = 5 
mice per group. Contralesional: Sham group vs. TBI group: p < 0.01; 
TBI group vs. TBI + FMOD group: p < 0.05; TBI group vs. TBI + sh-
FMOD group: ns, not significant; Ipsilesional: Sham group vs. TBI 
group: p < 0.0001; TBI group vs. TBI + FMOD group: p < 0.0001; 
TBI group vs. TBI + sh-FMOD group: p < 0.0001. b Modified Neu-
rological Severity Scores (mNSS) were performed at 28d after TBI, 
n = 5 mice per group. Sham group vs. TBI group: p < 0.0001; TBI 
group vs. TBI + FMOD group: p < 0.05; TBI group vs. TBI + sh-
FMOD group: ns, not significant. TBI group vs. TBI + sh-NC group: 
ns, not significant. c Depression-like behavior tests, including FST, 
TST, and SPF, n = 15 mice per group. The immobility time spent 
in the FST: Sham group vs. TBI group: p < 0.0001; TBI group vs. 
TBI + FMOD group: p < 0.001; TBI group vs. TBI + sh-FMOD 
group: p < 0.05; TBI group vs. TBI + sh-NC group: ns. The immo-
bility time spent in the TST: Sham group vs. TBI group: p < 0.0001; 
TBI group vs. TBI + FMOD group: p < 0.01; TBI group vs. TBI + sh-
FMOD group: p < 0.05; TBI group vs. TBI + sh-NC group: ns. 
The sucrose preference in the SPT: Sham group vs. TBI group: 
p < 0.0001; TBI group vs. TBI + FMOD group: p < 0.01; TBI group 
vs. TBI + sh-FMOD group: p < 0.05; TBI group vs. TBI + sh-NC 
group: ns. d Representative swimming trajectories of mice from each 
group on day 25; the big red circles indicate the pool edge; the small 
red circles indicate the platform locations. Time spent in the plat-
form quadrant by each group of mice on day 28 when the platform 
was removed, n = 5 mice per group. Sham vs.TBI: p < 0.0001; TBI vs. 
TBI + FMOD: p < 0.001; TBI vs. sh-FMOD: p < 0.01; TBI vs. sh-NC: 
ns. Times of crossing through the platform quadrant of each group on 
day 28 when the platform was removed. (n = 5 mice per group). Sham 
vs.TBI: p < 0.0001; TBI vs. FMOD: p < 0.01; TBI vs. sh-FMOD: 
p < 0.01; TBI vs. sh-NC: ns. One-way ANOVA followed by Tukey’s 
test. All data were represented as mean ± SD

◂
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in mice post-TBI, with the overexpression of FMOD proving 
effective in ameliorating depressive states. Similar outcomes 
reflecting the influence of FMOD on depressive states were 
also observed in the SPT (p < 0.01, Fig. 2c).

The MWM is utilized as a behavioral paradigm to assess 
cognitive memory functions in mice. After a 5-day training 

phase, distinctive patterns in swimming trajectories emerged 
on day28 (Fig. 2d). Additionally, administering FMOD 
increased the time mice spent in the quadrant containing 
the platform (p < 0.01, p < 0.001, Fig. 2d) and enhanced 
their frequency of crossing the platform area (p < 0.01, 
Fig. 2d) after platform withdrawal on day 28. Conversely, the 
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knockdown of FMOD reversed this effect (p < 0.01, Fig. 2d). 
These findings suggested that FMOD may improve cognitive 
memory abilities in rodents, consistent with the previous 
report (Meng et al., 2016).

Upregulating FMOD Improves Synaptic Plasticity 
by Enhancing the Expression of Synaptic Proteins

TBI has a significant impact on synaptic structure and 
function, which is critical for synaptic plasticity and cog-
nitive function, often resulting in synaptic loss (Jamjoom 
et al., 2021). Depression is commonly associated with TBI, 
accompanied by hippocampal neuronal atrophy, and dimin-
ished synaptic quantity and function (Kang et al., 2012). 
The regulation of synaptic formation and plasticity involves 
synaptic proteins SYP and PSD95. In our experiments, over-
expressing FMOD was found to broaden the distribution of 
neurons and crucial synaptic proteins, PSD95 and SYP, after 
TBI. Furthermore, a distinct improvement in the continuity 
and integrity of the neuronal cytoskeleton protein MAP2 
was evident with FMOD overexpression. These results 
implied that FMOD holds the potential to mitigate neuronal 
atrophy and synaptic loss caused by TBI (Fig. 3a–c). In addi-
tion, our study noted a broader distribution of GFAP on the 
injured side (Fig. 3a). The increased GFAP expression, a key 
constituent of glial scars, after TBI suggested a significant 
formation of glial scars, which could potentially hinder the 
establishment of intercellular synapses. The findings from 

the assessment of synaptic protein expression levels sug-
gested that FMOD has the capacity to enhance the expres-
sion of MAP2, PSD95 and SYP (p < 0.001, p < 0.0001, 
Fig. 3d), while the downregulation of FMOD counteracts 
this effect (p < 0.01, p < 0.001, Fig. 3d). These results cor-
roborated that FMOD can ameliorate neuronal atrophy and 
the reduction in synaptic numbers following TBI.

To further investigate synaptic plasticity, transmission 
electron microscopy was utilized to examine the ultrastruc-
ture of synapses. The results confirmed that overexpression 
of FMOD significantly increased both the number of syn-
aptic vesicles and the length of PSDs after TBI (p < 0.001, 
Fig. 3e). Additionally, Golgi staining results showed that 
overexpression of FMOD stimulated the growth of new 
dendritic spines in neurons after TBI (p < 0.0001, Fig. 3f). 
Thus, FMOD showed potential in mitigating ultrastructural 
damage of synapses.

FMOD Regulates Synaptic Proteins Through 
the PI3K/AKT/mTOR Signaling Pathway in vivo and 
in vitro

Evidence from studies has indicated the pivotal involvement 
of the AKT-mTOR signaling pathway in the activation of 
synaptic formation in rats (Vanderplow et al., 2021) and its 
significant role in the antidepressant process through this 
pathway (Li et al., 2010). Consequently, our investigation 
aimed to explore whether FMOD could augment synaptic 
plasticity by modulating this signaling pathway. Evaluation 
of protein expression in the mouse hippocampus revealed 
that FMOD activated the PI3K/AKT/mTOR signaling 
pathway, resulting in an increased phosphorylation rate 
(p < 0.001, Fig. 4a). Conversely, diminishing FMOD atten-
uated the expression of this pathway (p < 0.01, p < 0.001, 
Fig. 4a). These observations were further substantiated 
through in vitro experiments. In a simulated TBI utilizing 
a scratch injury model, the overexpression of FMOD led to 
densely packed cell synapses and an elevation in the expres-
sion of synaptic proteins (p < 0.05, p < 0.001, Fig. 4b, c). 
Additionally, FMOD induced the phosphorylation of the 
PI3K/AKT/mTOR signaling pathway in primary neuronal 
cells, while the knockdown of FMOD reversed this process 
(p < 0.01, p < 0.001, Fig. 4d).

To ascertain the significance of the PI3K/AKT/mTOR 
pathway in the FMOD-mediated promotion of synaptic 
plasticity, we employed LY294002, a PI3K inhibitor, in pri-
mary neuronal cells to hinder the activation of the PI3K/
AKT/mTOR signaling pathway. Immunofluorescence 
findings demonstrated that LY294002 effectively counter-
acted the stimulatory impact of FMOD on synaptic growth 
(Fig. 5a). Additionally, Western blot analysis confirmed 
that LY294002 impeded the FMOD-induced upregula-
tion of SYP and PSD95 expression (p < 0.001, p < 0.0001, 

Fig. 3   FMOD regulates synaptic plasticity in the hippocampus after 
TBI. a Representative IF images reveal the colocalization of NeuN 
and GFAP in the brain coronal section on day 28 after TBI. b–c 
Representative IF images show the co-localization of SYP, PSD95, 
and MAP2 in the hippocampal CA1 area and DG area of mice after 
upregulating or downregulating the FMOD, respectively. d Repre-
sentative WB bands indicate the expression of MAP2, PSD95, and 
SYP in TBI mice after FMOD overexpression or knockdown, n = 5 
mice per group. MAP2: Sham group vs. TBI group: p < 0.0001, 
TBI group vs. TBI + FMOD group: p < 0.0001, TBI group vs. 
TBI + sh-FMOD group: p < 0.01; PSD95: Sham group vs. TBI 
group: p < 0.0001, TBI group vs. TBI + FMOD group: p < 0.001, 
TBI + sh-NC group vs. TBI + sh-FMOD group: p < 0.001; SYP: Sham 
group vs. TBI group: p < 0.0001, TBI group vs. TBI + FMOD group: 
p < 0.0001, TBI group vs. TBI + sh-FMOD group: p < 0.01. e Elec-
tron microscope representative images of synapse ultrastructure of 
the CA1 neurons after FMOD overexpression or knockdown. White 
arrows point to synaptic structures, n = 40 cells per group. Vesicle 
number in each group: Sham group vs.TBI group: p < 0.0001, TBI 
group vs. TBI + FMOD group: p < 0.01, TBI group vs. TBI + sh-
FMOD group: p < 0.0001. PSD length in each group: Sham group 
vs.TBI group: p < 0.0001, TBI group vs. TBI + FMOD group: 
p < 0.001, TBI group vs. TBI + sh-FMOD group: p < 0.0001. f Rep-
resentative Golgi-Cox staining of CA1 neurons after FMOD overex-
pression or knockdown. Count the number of dendritic spines every 
20  μm, n = 40 per group. Spine density: Sham group vs.TBI group: 
p < 0.0001, TBI group vs. TBI + FMOD group: p < 0.0001, TBI group 
vs. TBI + sh-FMOD group: p < 0.0001. One-way ANOVA followed 
by Tukey’s test. All data were represented as mean ± SD
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Fig. 5b). In addition, the pattern of protein expression of 
the PI3K/AKT/mTOR signaling pathway was in line with 
these observations. FMOD maintained the phosphorylation 
ratios of PI3K, AKT and mTOR in the Scratch + FMOD 
group (p < 0.05, p < 0.01, Fig. 5c). However, this protective 
effect was abolished by LY294002 administration (p < 0.001, 

p < 0.0001, Fig. 5c). In summary, these findings suggest that 
FMOD-induced synaptic plasticity post-TBI is contingent 
upon the activation of the PI3K/AKT/mTOR signaling 
pathway, culminating in an augmentation of synaptic pro-
tein levels.
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Discussion

This study elucidated the involvement of the ECM protein 
FMOD in the synaptic plasticity of depression after TBI for 
the first time. Initially, our findings suggest a correlation 
between depression and diminished levels of FMOD in the 
serum of TBI patients, it might be a biomarker of depres-
sion after TBI. Subsequent behavioral experiments in TBI 
mice elucidated the impact of FMOD on depressive states 
post-TBI. Furthermore, our observations in the hippocampus 
demonstrate that overexpression of FMOD mitigates TBI-
induced neuronal atrophy, synaptic quantity reduction, and 
functional decline. Research into the potential mechanisms 
underlying FMOD's impact on synaptic function in depres-
sive behavior unveiled that FMOD, acting through the PI3K/
AKT/mTOR axis, alleviated TBI-induced synaptic func-
tional impairments, thereby ameliorating depressive states.

Nowadays, studies have broadly reported numerous 
peripheral biomarkers in depression, like the heterotrimeric 
G protein, Gsalpha (Targum et al., 2022), serum uric acid (X. 

Meng et al., 2020), and the miRNA in serum (Lopez et al., 
2018). Nevertheless, only a few research indicated the serum 
biomarkers in TBI-related depression. Several studies found 
that the expression level of tau protein in the serum might 
be a meaningful biomarker to predict depressive symptoms 
after TBI (Lange et al., 2023, 2024; Pattinson et al., 2020). 
Another study illustrated that the Brain-Derived Neurotrophic 
Factor (BDNF) was preliminarily associated with depression 
following TBI. In this study, the SDS served as a tool for pre-
liminary screening and assessing the severity of depressive 
states after TBI. Then, we drew the blood of TBI patients at 
admission and assessed the expression level of FMOD. The 
consequences showed that the decrease in FMOD levels in TBI 
patients might be linked to the onset of depression post-TBI. 
Furthermore, we observed the dynamic expression pattern of 
FMOD in TBI mice, which showed a swift increase in FMOD 
expression, followed by a gradual decline to significantly lower 
levels. The important role of FMOD in neurological disor-
ders has been gradually recognized in recent years. FMOD 
has been reported to orchestrate gene expression in the central 
position following TBI through transcriptomic analysis in rat 
TBI model (Meng et al., 2017). Our outcomes verified again 
the role of FMOD in TBI and further suggested that it might 
be a novel serum biomarker to predict post-TBI depression.

In recent years, it has been demonstrated that FMOD 
plays a crucial role in regulating neurological function and 
metabolic diseases (Meng et al., 2016). Intriguingly, depres-
sion was associated with diminished volumes of critical 
brain structures involved in cognitive regulation, specifically 
the prefrontal cortex and hippocampus (Price & Duman, 
2020), marked by neuronal atrophy and synaptic inhibition 
in the medial prefrontal cortex and hippocampus (Duman & 
Aghajanian, 2012; Duman et al., 2016). However, scarcely 
any research discovered the correlation between FMOD and 
depression after TBI. In our study, the EGG results of mice 
illustrated that the impairment of δ wave activity could be 
mitigated by FMOD, additionally, the MWM test demon-
strated that FMOD improved the cognitive memory function 
of mice, which all showed that FMOD might concurrently 
influence depressive states and cognitive function after TBI. 
Subsequently, the localization and expression of PSD95, 
SYP, and MAP2 of the CA1 and DG area in the hippocam-
pus were detected, and then the synapse ultrastructure and 
dendritic spines of neurons in the CA1 area were observed, 
these outcomes implicated the FMOD could elevate the 
expression of synapse-related proteins and the density of 
dendritic spines, attenuates the ultrastructure damages of 
synapse post-TBI. FMOD is a crucial structural component 
of the ECM, and the function of the ECM in the regulation 
of neurite outgrowth, neural plasticity, and functionality 
was increasingly recognized (Dityatev et al., 2010). These 
findings support the previous study above and demonstrate 
that FMOD may have an effect on depressive symptoms 

Fig. 4   FMOD regulates synaptic proteins through the PI3K/AKT/
mTOR signaling pathway in  vivo and in vitro. a Representative 
WB bands display the expression of p-PI3K, PI3K, p-AKT, AKT, 
p-mTOR, and mTOR on day 28 in Sham, TBI, TBI + FMOD, 
TBI + sh-NC, and TBI + shFMOD groups, n = 5 mice per group. 
The phosphorylation ratio of PI3K: Sham group vs. TBI group: 
p < 0.0001, TBI group vs. TBI + FMOD group: p < 0.001, TBI 
group vs. TBI + sh-FMOD group: p < 0.001; The phosphorylation 
ratio of AKT: Sham group vs. TBI group: p < 0.0001, TBI group 
vs. TBI + FMOD group, p < 0.001, TBI group vs. TBI + sh-FMOD 
group, p < 0.001; The phosphorylation ratio of mTOR: Sham group 
vs. TBI group: p < 0.0001, TBI group vs. TBI + FMOD group: 
p < 0.0001, TBI group vs. TBI + sh-FMOD group: p < 0.01. b Rep-
resentative IF images show the co-localization of SYP, PSD95, and 
MAP2 of primary hippocampal neuron cells in the group of Sham, 
Scratch, Scratch + FMOD, and Scratch + shFMOD. c Representa-
tive WB bands exhibit the expression of MAP2, PSD95, and SYP in 
Sham, Scratch, Scratch + FMOD, Scratch + sh-NC, and Scratch + shF-
MOD groups of the cells, n = 5. MAP2: Sham group vs. Scratch 
group: p < 0.0001, Scratch group vs. Scratch + FMOD group: 
p < 0.001, Scratch group vs. Scratch + sh-FMOD group: p < 0.001; 
PSD95: Sham group vs. Scratch group: p < 0.0001, Scratch group vs. 
Scratch + FMOD group: p < 0.001, Scratch group vs. Scratch + sh-
FMOD group: p < 0.001; SYP: Sham group vs. Scratch group: 
p < 0.0001, Scratch group vs. Scratch + FMOD group: p < 0.001, 
Scratch group vs. Scratch + sh-FMOD group: p < 0.05. d Repre-
sentative WB bands exhibit the expression of p-PI3K, PI3K, p-AKT, 
AKT, p-mTOR, and mTOR in Sham, Scratch, Scratch + FMOD, 
Scratch + sh-NC, and Scratch + shFMOD groups of the cells, n = 5 
The phosphorylation ratio of each protein was calculated and ana-
lyzed. PI3K: Sham group vs. Scratch group: p < 0.0001, Scratch 
group vs. Scratch + FMOD group: p < 0.001, Scratch group vs. 
Scratch + sh-FMOD group: p < 0.001; AKT: Sham group vs. Scratch 
group: p < 0.0001, Scratch group vs. Scratch + FMOD group: 
p < 0.001, Scratch group vs. Scratch + sh-FMOD group: p < 0.001; 
mTOR: Sham group vs. Scratch group: p < 0.0001, Scratch group vs. 
Scratch + FMOD group: p < 0.001, Scratch group vs. Scratch + sh-
FMOD group: p < 0.001. One-way ANOVA followed by Tukey’s test. 
All data were represented as mean ± SD
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and cognitive function through modulation of the prefrontal 
cortex and hippocampus after TBI.

In addition, as a proteoglycan present in the ECM, 
FMOD is a potent mediator of growth factor-related 
signaling pathways (Zheng et al., 2017). For example, 
FMOD could modulate TGF-β1 activities via transient 

phosphorylation of SMAD2, enhanced phosphorylation 
of SMAD3, and suppressed AP-1-mediated non-canonical 
TGF-β1 signaling transduction, ultimately significantly 
reducing scar formation in animal cutaneous wounds 
(Zheng et al., 2017). While the PI3K/AKT/mTOR signal-
ing pathway was identified as involved in the biological 

Fig. 5   Inhibiting the PI3K/AKT/mTOR signaling pathway hinders 
the facilitative effect of FMOD. a Representative IF images show the 
co-localization of SYP, PSD95, and MAP2 of primary hippocam-
pal neuron cells in the group of Sham, Scratch, Scratch + FMOD, 
and Scratch + FMOD + Ly. b Representative WB bands show 
the expression of MAP2, PSD95, and SYP in Sham, Scratch, 
Scratch + FMOD, Scratch + sh-NC, and Scratch + FMOD + Ly 
groups of the cells, n = 5. MAP2: Sham group vs. Scratch group: 
p < 0.0001, Scratch group vs. Scratch + FMOD group: p < 0.05, 
Scratch + FMOD group vs. Scratch + FMOD + LY294002 group: 
p < 0.001; PSD95: Sham group vs. Scratch group: p < 0.0001, 
Scratch group vs. Scratch + FMOD group: p < 0.01, Scratch + FMOD 
group vs. Scratch + FMOD + LY294002 group: p < 0.0001; SYP: 
Sham group vs. Scratch group: p < 0.0001, Scratch group vs. 
Scratch + FMOD group: p < 0.001, Scratch + FMOD group vs. 

Scratch + FMOD + LY294002 group: p < 0.0001. c Representa-
tive WB bands exhibit the expression of p-PI3K, PI3K, p-AKT, 
AKT, p-mTOR, and mTOR in Sham, Scratch, Scratch + FMOD, 
and Scratch + FMOD + Ly groups of the cells, n = 5. The phos-
phorylation ratio of each protein was calculated and ana-
lyzed. PI3K: Sham group vs. Scratch group: p < 0.0001, Scratch 
group vs. Scratch + FMOD group: p < 0.01, Scratch + FMOD 
group vs. Scratch + FMOD + LY294002 group: p < 0.0001; 
AKT: Sham group vs. Scratch group: p < 0.0001, Scratch group 
vs. Scratch + FMOD group: p < 0.05, Scratch + FMOD group 
vs. Scratch + FMOD + LY294002 group: p < 0.001; mTOR: 
Sham group vs. Scratch group: p < 0.0001, Scratch group vs. 
Scratch + FMOD group: p < 0.001, Scratch + FMOD group vs. 
Scratch + FMOD + LY294002 group: p < 0.0001. One-way ANOVA 
followed by Tukey’s test. All data were represented as mean ± SD
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process both in TBI and depression (Feng et al., 2022; Y. 
Wu et al., 2023). Additionally, it has been demonstrated 
that the knockdown of FMOD leads to a decrease in the 
phosphorylation of the PI3K/AKT/mTOR signaling path-
way, resulting in the inhibition of both proliferation and 
migration of retinal pigment epithelial cells (Hu et al., 
2018). This finding is consistent with our results. How-
ever, further research is required to investigate how FMOD 
regulates the pathophysiological changes associated with 
depression related to traumatic brain injury.

In conclusion, our results indicated that FMOD is a novel 
therapeutic target for depression after TBI treatment by acti-
vating the PI3K/AKT/mTOR signaling pathway, thereby 
improving synaptic plasticity, and ameliorating depression-
like behaviors.
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