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Abstract
In recent years, deep learning (DL) has been used extensively and successfully to diagnose different cancers in dermoscopic 
images. However, most approaches lack clinical inputs supported by dermatologists that could aid in higher accuracy and 
explainability. To dermatologists, the presence of telangiectasia, or narrow blood vessels that typically appear serpiginous or 
arborizing, is a critical indicator of basal cell carcinoma (BCC). Exploiting the feature information present in telangiectasia 
through a combination of DL-based techniques could create a pathway for both, improving DL results as well as aiding 
dermatologists in BCC diagnosis. This study demonstrates a novel “fusion” technique for BCC vs non-BCC classification 
using ensemble learning on a combination of (a) handcrafted features from semantically segmented telangiectasia (U-Net-
based) and (b) deep learning features generated from whole lesion images (EfficientNet-B5-based). This fusion method 
achieves a binary classification accuracy of 97.2%, with a 1.3% improvement over the corresponding DL-only model, on a 
holdout test set of 395 images. An increase of 3.7% in sensitivity, 1.5% in specificity, and 1.5% in precision along with an 
AUC of 0.99 was also achieved. Metric improvements were demonstrated in three stages: (1) the addition of handcrafted 
telangiectasia features to deep learning features, (2) including areas near telangiectasia (surround areas), (3) discarding the 
noisy lower-importance features through feature importance. Another novel approach to feature finding with weak annota-
tions through the examination of the surrounding areas of telangiectasia is offered in this study. The experimental results 
show state-of-the-art accuracy and precision in the diagnosis of BCC, compared to three benchmark techniques. Further 
exploration of deep learning techniques for individual dermoscopy feature detection is warranted.
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Introduction

Basal cell carcinoma is one of the two most common types 
of skin cancer in the USA, with over two million new cases 
diagnosed yearly [1]. Dermatologists usually diagnose BCC 
by visual inspection. However, certain benign lesions can 
be confused with BCC and cause an unnecessary biopsy. 
Automating this diagnosis and ensuring early detection will 
reduce the burden on patients and healthcare professionals 
and produce more accurate results [2, 3].

Deep learning methodologies applied to dermoscopy 
images have yielded high diagnostic accuracy, now exceed-
ing that of dermatologists [3–5]. Skin cancer diagnosis from 
images has advanced by implementing fusion ensembles, 

metadata, and some handcrafted features [6–10]. It is only 
pertinent to expand and explore the intersection of visually 
and clinically apparent features with deep learning tech-
niques for disease detection.

Telangiectasia or thin arborizing vessels within the 
lesion is a crucial factor for dermatologists when looking 
for BCC. Their detection, either by visual inspection or 
any computational method, can provide pathways to make 
BCC diagnosis more accurate. Cheng et al. [11] investi-
gated a local pixel color drop technique to identify vessel 
pixels. Kharazmi et al. [12] applied independent compo-
nent analysis, k-means clustering, and shape for detecting 
vessels and other vascular structures. Kharazmi et al. [13] 
detected vessel patches by using stacked sparse autoencod-
ers (SSAE) as their deep learning model. Maurya et al. [14] 
used a U-Net-based deep-learning (DL) model to perform 
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semantic segmentation of these blood vessels. Semantically 
segmented precise binary masks provide means to effec-
tively quantify the vessel feature information.

There are very few image processing or deep learning 
studies that utilize these vascular structures to diagnose 
BCC. Cheng et  al. [15] used an adaptive critic design 
approach to discriminate vessels from competing structures, 
enabling BCC classification. Kharazmi et al. [16] utilize 
features extracted from these vascular structures to clas-
sify BCC using a random forest classifier. Kharazmi et al. 
[17] learned from sparse autoencoders, combined them with 
patient profile information and fed them to a Softmax clas-
sifier for BCC diagnosis. Recently, Serrano et.al [18] used 
clustering-based color features and GCLM-based texture 
features to train VGG16 and MLP models to extract deep 
learning features that they use to train another MLP model. 
The final MLP classifies lesions with either the presence or 
absence of one of seven BCC patterns, providing BCC clas-
sification. None of these studies utilizes deep learning–based 
vessel segmentation and classification together to achieve a 
BCC diagnosis. Through our fusion of telangiectasia and 
deep learning features, we also demonstrate how clinically 
observable features can be tracked better with deep learning 
and ultimately contribute to an improvement in diagnosis.

In this study, state-of-the-art accuracy in BCC classifica-
tion was achieved by making the following unique contribu-
tions: (1) clinically inspired and explainable BCC diagnosis 
with deep learning–based telangiectasia mask generation as 
an intermediate step, (2) an ensemble learning classifier uti-
lizing a hybrid input feature set consisting of object, shape, 
and color telangiectasia features integrated with deep learn-
ing features.

Materials and Methods

Image Datasets

The skin lesion images used in this study come from three 
datasets: the HAM10000 dataset (ISIC 2018) of Tschandl 
et al. [19], a publicly available skin lesion dermoscopy 
dataset containing over 10,000 skin images for seven diag-
nostic categories, the ISIC 2019 dataset [19–21], and data-
sets R43 from NIH studies CA153927-01 and CA101639-
02A2 [22].

For training the U-Net model that generates telangiectasia 
masks, 127 images were selected from the HAM10000 data-
set, 90 images from the ISIC 2019 dataset, and 783 images 
from the NIH study dataset, leading to a total of 1000 BCC 
images. The ISIC 2019 dataset included a few repeat images, 
omitted from our BCC dataset. The ground truth binary ves-
sel masks were manually drawn by our team and verified by 
a dermatologist (WVS). The BCC dataset and the ground 
truth masks are shown in Fig. 1. For the non-BCC dataset, 
we selected 1000 images from the HAM10000 dataset from 
five benign categories: benign keratosis, nevus, actinic kera-
tosis, dermatofibroma, and vascular lesion. The distribution 
for each category is shown in Fig. 2. The five categories 
represent the five most common benign skin conditions. 
Since this is a binary classification, the BCC vs non-BCC 
categories are balanced (1000 each). In the 1000 image non-
BCC dataset, the categories maintain the same ratio as in the 
original HAM dataset which is illustrated in Fig. 2b. The 
images are 8-bit RGB of size 450 × 600 from the HAM10000 
dataset and 1024 × 768 from the NIH study dataset. All the 
images are resized to 448 × 448 before training.

Fig. 1   Left to right, first row: the first two images are BCC from the HAM10000 (ISIC2018) dataset; the last two images are BCC from the NIH 
study dataset. The second row presents telangiectasia overlays for the images in the first row
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For both U-Net and EfficientNet-based models’ training, 
standard train-test splits of 80–20 were used. The training set 
was further split 80–20 to create a validation set. For BCC 
classification, the images were randomly selected, leading 
to subsets of 1288 for training, 324 for validation, and 395 
for testing. For the U-Net model, the training set consisted 
of 650 images, the validation set comprised 162 images, and 
the test set included 195 images. These 195 BCC images 
combined with 200 non-BCC images make up the holdout 
test set for the BCC model.

Data Augmentation

For medical datasets with relatively few examples and a lack 
of variation, data augmentation helps create more training 
samples. Augmentation provides deep learning models the 
ability to generalize and hence provides regularization with-
out overfitting. For both the U-Net and EfficientNet-based 
BCC classification models, the geometric augmentations 
include rotation ranging from + 30 to − 30° in reflect mode 
(to not distort the vessels) horizontal and vertical flip, width 
shift with a range of (− 0.2, + 0.2), height shift with a range 
of (− 0.2, + 0.2), and shear with a range (− 0.2, + 0.2). These 
geometric augmentations are shown in Fig. 3. The number 
of images in each class before and after augmentation is 
shown in Table 1.

Colors of skin lesions contain important distinguishing 
information and augmenting the original color of the lesions 
may ultimately make their classification harder. However, 
for telangiectasia, color augmentations can help fix the issue 
of vessels and red-pigmented skin being similar in color. 
Hence, color augmentations were utilized for training the 
U-Net model on the telangiectasia dataset to generate ves-
sel masks, but not applied to the DL model responsible for 
calculating skin lesion features. For the U-Net model, his-
togram stretching to each color channel was applied, fol-
lowed by contrast-limited adaptive histogram equalization, 
normalization, and brightness enhancement [14], as shown 
in Fig. 4. Due to the narrowness of the vessels, all the ves-
sel masks are dilated with a 3 × 3 structuring element and 
closed with a 2 × 2 structuring element, as shown in Fig. 4. 
This dilation prevents the vessels in the masks from being 
broken when augmented. Since the goal is to identify ves-
sels within the lesion, the vessel masks are multiplied with 
U-Net-generated lesion masks to yield vessels only within 
the lesion. For both models, the images were square-cropped 
and then resized to 448 × 448.

Proposed Methodology

Our proposed methodology integrates clinically relevant 
handcrafted features of telangiectasia with high-level 

Fig 2   a From left, first row: benign keratosis, nevus, actinic keratosis; from left second row: dermatofibroma and vascular lesion. b Number of 
images from each category used in the non-BCC dataset.

Fig. 3   Different geometric augmentations
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features extracted from a pre-trained deep learning model 
according to a feature importance score determined by the 
average Gini impurity decrease. We then utilize the higher 
predictive ability of ensemble learning methods to feed this 
hybrid feature set to a random forest classifier and create our 
novel fusion BCC diagnosis technique. Our method includes 
the following main components:

•	 Semantically segmenting telangiectasia with a U-Net-
based model to yield a binary vessel mask.

•	 Applying image processing and statistical methods to cal-
culate descriptive vessel features based on the objects in 
the vessel mask.

•	 Extracting high-level deep learning features from fine-
tuning a pre-trained EfficientNet-based model.

•	 Calculating the feature importance score for all the features 
and selecting only the top-most features above a threshold.

•	 Classifying the skin lesions into BCC or non-BCC using a 
random forest classifier trained on the hybrid feature set.

Our methodology is illustrated in Fig. 5.

Semantic Segmentation of Telangiectasia

In recent years, U-Net- [23] based semantic segmentation 
models have been the go-to for biomedical segmentation. 
Our vessel detection deep learning model is based on the 
U-Net model in [14] that generates binary vessel masks as 
the output. Distinguishing thin arborizing telangiectasia 
from sun damage telangiectasia which is sometimes pre-
sent in benign skin lesions is a difficult task [11]. To add 
to this, since vessels occupy only 2–10% of the skin lesion 
image; it is quite a challenging task even for deep learn-
ing models. A combination loss function used in the U-Net 
model addresses this issue of severe class imbalance [14]. It 
is important to note that in cases of sun damage, the telan-
giectasia patterns are usually simpler and tend to be wider, 
shorter, and less defined, exhibit more variability in width, 

and are less densely clustered compared to those observed in 
BCC [11]. Hence, for training the U-Net model, only BCC 
images were used, since our goal is to find BCC indicat-
ing telangiectasia. For testing, masks were generated from 
the trained U-Net model for both the BCC and non-BCC 
datasets. As shown later, the U-Net model was able to find 
vessels in both BCC and non-BCC categories. The distin-
guishing properties are captured through the image process-
ing operations explained in the next section.

Handcrafted Feature Generation from Vessel Masks

Traditional image processing techniques provide several 
tools to calculate telangiectasia features explicitly. Fea-
tures are generated using objects in the vessel mask. From 
Maurya et al. [14], annotations for telangiectasia suffer 
from interobserver variability, fine or blurry telangiec-
tasia, and poor contrast in images. There may be missed 
vessels along the boundary of annotations that need to be 
included. Also, regions surrounding the vessels can be 
helpful in differentiating basal cell carcinoma [11]. To 
include these probable missed features, we generate a sur-
round mask for the vessel objects. Every object from the 
vessel mask is extracted and dilated with a disk structuring 
element of radius 12 (d1) and radius 5 (d2), resulting in 
two dilation variants of the object. Removing d2 from d1 
gives the object surround mask, as shown in Fig. 6.

We calculate a total of 80 vessel features that include 
information about vessel color, geometry, shape, and statis-
tical measure related to those features. Table 2 explains the 
handcrafted features we generated. Features 1 to 8 are gen-
eral vessel descriptors [11]. Features 1–4 represent BCC’s 
narrower, longer, and more numerous vessels. Eccentricity 
features 5–8 are calculated to account for straighter BCC 
vessel structures. For the example images shown in Fig. 6, 
347 and 240 vessel objects are detected. The figure shows 
surround masks generated for two such vessel objects. Fea-
tures 5 to 8 are calculated for the surround masks and make 

Table 1   The number of images 
in each class before and after 
augmentation

Model Class Before augmentation After augmentation

U-Net BCC Training 650; validation162 Training3900; validation 972
EfficientNet BCC Training 650; validation 162 Training 3900; validation 972
EfficientNet Non-BCC Training 638; validation 162 Training 3828; validation 972

Fig. 4   Left: color augmenta-
tions; right: vessel mask dilation
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up features 9 to 12. Features 13 to 22 include the number of 
objects calculated after morphologically eroding the final 
vessel mask with a circular structuring element of radius 
from 1 to 10. Features 23 to 32 include the area of objects 
calculated after morphologically eroding the final vessel 
mask with a circular structuring element of radius from 1 to 
10. Features 33 to 44 are color features for vessels. Features 
45 to 56 are color features in the HSV plane and features 57 
to 80 are features 33 to 56 (RGB and HSV features) applied 
to the surround of vessel objects.

Feature Vectors from EfficientNet

To calculate deep learning features, we use a pre-trained 
EfficientNet model. EfficientNets are a series of convolu-
tional neural network models introduced by Tan et al. [24] 
that uniformly scale all network depth, width, or resolution 
dimensions by a compounding coefficient. These models 
achieved state-of-art top-1 accuracy on the ImageNet [25] 
dataset with fewer parameters. Their primary building block 
is a mobile inverted bottleneck called MBConv. The fam-
ily of EfficientNet networks has different numbers of these 
MBConv blocks. The EfficientNetB5 model consists of two 
main blocks: MBConv1 and MBConv6. The detailed struc-
tures of these blocks are shown in Fig. 7.

The MBConv block or the inverted residual block 
improved the MobileNet [26] or residual blocks and fol-
lowed a narrow- > wide- > narrow approach, which means 
that the connections in the MBConv blocks move from one 
bottleneck to another, using a residual connection. The basic 
MBConv block implements the following operations: 1 × 1 
convolution that expands the dimensionality from the nar-
row channels to wider channels, a 3 × 3 or 5 × 5 channel-wise 
or depth-wise convolution operation to get output features, 
ultimately followed by another 1 × 1 convolution that down-
samples the number of channels to the initial value. Since 
this output block and the initial block have the same dimen-
sionality, they are added together. The primary purpose of 
the Squeeze operation is to extract global information from 
each of the channels of an image. Each block starts with 
a feature transformation on an image X to get features U, 
which are then squeezed to a single value using global aver-
age pooling [24]. This output is then fed to a fully connected 
layer followed by a ReLU function to add nonlinearity and 
reduce complexity. From here, another fully connected layer 
followed by a sigmoid function performs the excitation oper-
ation to get per-channel weights. The final output is achieved 
by rescaling these feature maps U with these activations.

Since the original EfficientNet-B5 model was built for 
ten-class classification, we remove the top layers to add a 

Fig. 5   Proposed architecture 
employing a fusion of deep 
learning and handcrafted 
features from vessels for BCC 
classification

Fig. 6   Object surround masks: 
Top row from left: example 
lesion image 1 with telangiec-
tasia, its ground truth mask, 
its surround mask for object 
1 (the contiguous connected 
vessel area), its surround mask 
for object 2 (the vessel on the 
bottom right). Bottom row from 
left: example lesion image 2 
with telangiectasia, its ground 
truth mask, its surround mask 
for object 1 (the contiguous 
connected vessel area), its sur-
round mask for object 2 (the 
vessel on the bottom right)
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global average pooling layer, a dropout layer, and a final 
dense layer for binary classification. For our model, the ini-
tial input image size is 448 × 448 × 3.

Our model contains 14 different stages and is used first 
for classification, followed by feature extraction with the 
trained model. For the classification stage, we start with 
a 3 × 3 filter convolution, batch normalization, and swish 
activation function reducing the image dimensions in half 
from 448 to 224 and increasing the channels from 3 to 48. 

Hence, the feature map dimensions are 224 × 224 × 48. 
Stage 2 consists of three layers of an MBConv1 block with 
a 3 × 3 filter that maintains the previous stage resolution 
but decreases the number of channels, resulting in a feature 
map of size 224 × 224 × 24. Stages 3 (5 layers), 4 (5 lay-
ers), and 5 (7 layers) use three MBConv6 blocks each of 
kernel size 5 × 5 continuously reducing the resolution but 
increasing the feature map size to 28 × 28 × 128 (end of stage 
5). Stages 6 (7 layers), 7 (9 layers), and 8 (3 layers) apply 

Table 2   Different handcrafted features calculated from the U-Net binary vessel masks

Feature number Measure Description Meaning

1 Number of objects Number of vessels in the final vessel 
mask

BCC has more vessels

2 Average object length Average length for all vessels within a 
lesion

BCC vessels are longer

3 Average object width Average width for all vessels within a 
lesion

BCC vessels are narrower

4 Average object area Average area for all vessels within a 
lesion

BCC vessels are larger

5 Maximum eccentricity Maximum ratio of the distance between 
the foci of the ellipse enclosing the 
vessels and its major axis length

BCC vessels are straighter

6 Minimum eccentricity Minimum ratio of the distance between 
the foci of the ellipse enclosing the 
vessels and its major axis length

BCC vessels are straighter

7 Average eccentricity Average eccentricity of all the vessels 
per vessel mask

BCC vessels are straighter

8 Standard deviation of eccentricity Average standard deviation of 
eccentricity of all the vessels per 
vessel mask

BCC vessels are straighter and more 
uniform

9 to 12 Same as 5 to 8, but surround Same as features 5 to 8 for the 
surrounding objects in the vessel mask

Regions around the vessel may contain 
distinguishing information

13 to 22 Eroded objects Number of objects after the vessel mask 
is eroded with a disk structure of 
radius 1 to 10

BCC objects are fewer after given 
number of erosions

23 to 32 Eroded objects area Area of objects after the vessel mask is 
eroded with a disk structure of radius 
1 to 10

BCC object areas are smaller after given 
number of erosions

33 to 35 Maximum value of red, green, and blue 
objects

Maximum red, green, and blue value of 
every vessel; then averaged over total 
number of vessels per image

BCC vessels appear darker than lesion

36 to 38 Minimum value of red, green, and blue 
objects

Minimum red, green, and blue value of 
every vessel; then averaged over total 
number of vessels per image

BCC vessels appear darker than lesion

39 to 41 Average value of red, green, and blue 
objects

Average red, green, and blue value of 
every vessel; then averaged over total 
number of vessels per image

BCC vessels appear darker than lesion

42 to 44 Standard deviation of red, green, and 
blue objects

Standard deviation of red, green, and 
blue value of every vessel; then 
averaged over total number of vessels 
per image

BCC vessels appear darker than lesion

45 to 56 Same as 33 to 44 Features 33 to 44 applied in HSV color 
space

HSV color space is more robust to 
lighting and shadow variations

57 to 80 Same as 33 to 56 Features 33 to 56 applied on the 
surround of objects in the vessels

Regions around the vessel may contain 
distinguishing information
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three more MBConv6 blocks each, with kernel sizes 3 × 3, 
5 × 5, and 3 × 3, ultimately producing a feature map of size 
14 × 14 × 2048. At stage 9, a 1 × 1 convolution with 2048 
filters results in a feature map of size 14 × 14 × 2048. Stages 
10 and 11 apply batch normalization and Softmax activa-
tion retaining the feature size as the previous layer. Stage 12 
uses global average pooling to bring the resolution to 2048, 
followed by a dropout (stage 13) and dense layer (stage 14) 
leading to the final classification. The model is fine-tuned 
after the 200th layer, and the best model is saved. We per-
form feature extraction at stage 12 after the global average 
pooling layer, thereby resulting in a 2048-size feature vector 
for the training, validation, and test sets. The stages, opera-
tions, resolutions, channels, and layers are shown in Table 3.

Random Forest for Feature Importance and Final Classification

The 80 feature vectors calculated from the vessel masks 
and the 2048 feature vector from the EfficientNet model are 
ranked according to a random forest feature importance algo-
rithm determined by the average Gini impurity decrease [27]. 
Once the most relevant features are selected, we employ dif-
ferent combinations of these fusion feature sets to a random 
forest classifier to yield the final classification result.

Training Details

All models were built using Keras with a TensorFlow back-
end in Python 3.7 and trained using a single 32 GB Nvidia 

V100 graphics card. The training and network parameters 
for the U-Net model generating the vessel masks are taken 
from [14]. The EfficientNet-B5 model is fine-tuned after the 
200th layer. Hyperparameter information is given in Table 4.

Experimental Results and Discussion

We present test results for the proposed architecture in the 
following order:

Fig. 7   Detailed structure of MBConv1, MBConv6, and squeeze and excitation block

Table 3   Different layers of the EfficientNet-B5-based model for BCC 
classification

Stage Operator/Block Resolution Channels Layers

1 Conv 3 × 3 + BN + Swish 224 × 224 48 1
2 MBConv1, k3 × 3 224 × 224 24 3
3 MBConv6, k5 × 5 112 × 112 40 5
4 MBConv6, k5 × 5 56 × 56 64 5
5 MBConv6, k5 × 5 28 × 28 128 7
6 MBConv6, k3 × 3 28 × 28 176 7
7 MBConv6, k5 × 5 14 × 14 304 9
8 MBConv6, k3 × 3 14 × 14 512 3
9 Conv 1 × 1 14 × 14 2048 1
10 BN 14 × 14 2048 1
11 Activation 14 × 14 2048 1
12 Global average pooling 2048 1 1
13 Dropout 2048 1 1
14 Dense 1 1 1
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•	 Vessel mask generation with U-Net and handcrafted fea-
tures calculation.

•	 Deep learning features generated from an Efficient-Net-
based classifier.

•	 Feature importance score results for both the features 
mentioned in the last two steps.

•	 Final fusion models used for BCC vs non-BCC classification.

The classification results are evaluated on the holdout test 
set that consists of 195 BCC and 200 non-BCC images. The 
evaluation metrics used are accuracy, sensitivity, specificity, 
and precision (PPV) [28, 29].

Vessel Segmentation Test Results for BCC 
and Non‑BCC Images

Figure 8 shows an example of vessel masks generated from 
the U-Net model for BCC and non-BCC images. Columns 
1 and 3 show non-BCC and BCC images, respectively, 
whereas columns 2 and 4 show the predicted masks from 
the U-Net model. The second image in column 1 has some 
vessels outside the lesion captured in the predicted masks. 
Compared to the telangiectasia vessels in the BCC images, 
these vessels appear disconnected and thinner. Handcrafted 
masks can capture such distinctive properties. The 80 

Table 4   Hyperparameters for 
the EfficientNet-based model 
and random forest classifier

Model Hyperparameter Value

BCC vs non-BCC classification and DL fea-
ture generation with Efficient-Net

Epochs 120
Learning rate 0.0001
Batch size 20
Early stopping Yes
Patience 5
Loss function Binary cross-entropy
Optimizer RMSProp
Dropout rate 0.2

Random forest classifier No. of estimators 1000
Minimum samples per split 2
Bootstrapping yes
Maximum number of features per 

decision

√

Numberoffeatures

Fig. 8   From left: column 
1 shows non-BCC images, 
column 2 shows their predicted 
masks, column 3 shows BCC 
images, and column 4 shows 
predicted BCC masks
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handcrafted features mentioned in Table 2 are then calcu-
lated from these masks and used as explained later in the 
“Feature Importance with Random Forest” section, where 
the feature importance scores for them are calculated.

Deep Learning Training Results from Fine‑Tuning

We achieved the best deep learning results from the Efficient-
Net-B5 baseline model. The weights after layer 200 were 
unfrozen, and the model was fine-tuned to our binary BCC 
vs. non-BCC classification. The preliminary transfer learning 
model converged at 100 epochs and took nine more epochs to 
converge after fine-tuning. Figure 9 shows the loss and accu-
racy curves for the training and validation sets. The validation 
and test set accuracies were 95.9% and 95.2%, respectively. 
After the model is trained, the 2048 length feature vector is 
extracted for the training, validation, and test sets.

Feature Importance with Random Forest 

Feature importance is calculated for deep learning and 
handcrafted features using the random forest classifier 

[27]. The selection of key features results in models 
requiring optimal computational complexity while 
ensuring reduced generalization error due to noise intro-
duced by less important features. The top 50 deep learn-
ing features with an importance score greater than 0.005, 
and the top 23 handcrafted features with an importance 
score greater than 0.01 are selected. Figure 10 shows 
the selected features with their importance scores. From 
Fig.  10b, we observe that the most important hand-
crafted features generally include the area of vessel 
objects, number of vessel objects, vessel eccentricity 
features, and color values of the vessel objects and the 
surrounding area.

Final Classification with Deep Learning and Random 
Forest Classifier

Table 5 shows six different fusion models that we tested. 
The different models are based on the following two selec-
tion criteria:

•	 Pretrained model used for extracting deep learning features:
(a)	 EfficientNetB5, EfficientNetB0, and InceptionV3.

•	 Feature set size:

Fig. 9   Loss (a) and accuracy (b) plots before and after fine-tuning the EfficientNet-B5-based model

Fig. 10   Importance scores for deep learning (a) and handcrafted features (b)
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(a)	 Select deep learning and handcrafted features with 
the highest importance score.

	 (i)	    Total 73: 50 for deep learning and 23 for  
         handcrafted.

(b)	 All deep learning and handcrafted features.

	 (i)	 EfficientNet B5: total 2128; 2048 for deep 
learning and 80 for handcrafted.

	 (ii)	 EfficientNet B0: total 1360; 1280 for deep 
learning and 80 for handcrafted.

	 (iii)	 InceptionV3: total 2128; 2048 for deep 
learning and 80 for handcrafted.

We achieve the best scores across all metrics with our 
Fusion 2 model that uses select critical features extracted 
from the fine-tuned EfficientNet-B5 model and handcrafted 
features extracted from vessel masks that feed a random for-
est classifier to yield a final classification result. We achieve 
an accuracy of 0.972, sensitivity of 0.979, specificity of 
0.965, and precision of 0.965. We achieve an AUC of 0.995.

Table 6 shows the improvements in metrics as we move 
from the fine-tuned EfficientNet-B5 model to our fusion 
model. The accuracy, sensitivity, specificity, and preci-
sion improve by 1.3%, 3.7%, 1.5%, and 1.5%, respectively, 
suggesting the importance of adding handcrafted features. 
Omitting the surround features from the list of handcrafted 
features drops the AUC slightly, from 0.995 to 0.993. The 
confusion matrix is shown in Fig. 11.

Performance Comparison with Existing Vessel‑Based 
BCC Detection 

We compared the performance of our proposed fusion model with 
three other published results [16–18]. Table 7 lists the datasets, fea-
tures, classifiers, and scoring metrics for the models. We achieve 

better accuracy and precision values with our method (bold) than 
the existing best values. All the methods listed except ours use 
some type of color and texture features; only ours semantically 
segments telangiectasia as an intermediate step.

Discussion

A crucial clue for the clinical diagnosis of basal cell car-
cinoma is the presence of telangiectasia within the lesion. 
Classical image processing methods to detect these vessels 
in this study used statistical measures to quantify telangiec-
tasia features. These measures included characteristics such 
as color values relative to the surrounding lesion area [11] 
or independent component analysis of melanin and hemo-
globin components followed by thresholding and clustering 
[17]. From these vessel masks, different color, texture, and 
shape features are calculated. Our group used a deep learn-
ing–based U-Net model to detect these vessel masks with 
high accuracy vs. ground truth, obtaining a mean Jaccard 
score within the variation of human observers [14].

Recently, deep learning methods achieved superior results 
for detecting features such as hair [30] and globules [31]. 
From these deep learning–generated masks, classical fea-
tures are calculated with the assumption that if the masks 
are more accurate, the features will be as well. Developing 
a single model for diagnosis without extracting individual 
features from whole images using pre-trained deep learn-
ing models also has been used extensively. However, it is 
impossible to know which features the deep learning model 
deems more important, contributing to its black-box nature. 
Our structure-based detection model partially remedies this 
shortcoming by detecting specific features. Moreover, this 
report shows improved diagnostic accuracy for BCC vs. non-
BCC classification by combining deep learning and classical 
features with ensemble learning.

Table 5   Performance comparison of our different fusion models

Model Feature set size Accuracy Sensitivity Specificity Precision

EfficientNet-B5-FT-Fusion2 73: 50 EfficientNet-B5-FT + 23 handcrafted 0.972 0.979 0.965 0.965
EfficientNet-B0-FT-Fusion2 73: 50 EfficientNet-B0-FT + 23 handcrafted 0.967 0.979 0.955 0.960
InceptionV3-FT-Fusion2 73: 50 InceptionV3-FT + 23 handcrafted 0.955 0.965 0.95 0.95
EfficientNet-B5-FT-Fusion1 2128: 2048 EfficientNet-B5-FT + 80 handcrafted 0.964 0.967 0.955 0.95
EfficientNet-B0-FT-Fusion1 1360: 1280 EfficientNet-B0-FT + 80 handcrafted 0.934 0.945 0.94 0.933
InceptionV3-FT-Fusion1 2128: 2048 InceptionV3-FT + 80 handcrafted 0.93 0.942 0.934 0.93

Table 6   Performance 
comparison with baseline deep 
learning model EfficientNet-B5

Model Feature set size Accuracy Sensitivity Specificity Precision

EfficientNet-B5-FT-Fusion2 73: 50 EfficientNet-
B5-FT + 23 
handcrafted

0.972 0.979 0.965 0.965

EfficientNet-B5-FT 2048 EfficientNet-B5 0.959 0.942 0.950 0.950



1147Journal of Imaging Informatics in Medicine (2024) 37:1137–1150	

Figure 8 displays the advantages of the method presented 
here. Benign lesions have fewer vessels, and the total ves-
sel area is less, as shown in columns 2 and 4 of Fig. 8. The 
number of vessel areas and their total number figure promi-
nently in the most discriminatory features obtained from 
these masks, as shown in Fig. 10b. Eccentricity and color 
of objects found, all critical features of telangiectasia, are 
also crucial handcrafted features derived from these masks.

We achieve state-of-the-art results with this approach that 
are better than deep learning or traditional image processing 
results, indicating promise for our structure-based detection 
model. We also achieve clinically explainable results, open-
ing similar pathways to solve other diagnostic challenges. 
Our results also confirm the superiority of ensemble learn-
ing methods for selecting a robust feature combination that 
improves the model’s accuracy. As seen from Table 5, all 
metrics improve when the features with higher importance 

scores are used. Another observation concerns the recent 
study by Serrano et al. [18]. The authors used different BCC 
features to annotate images with the presence or absence of 
features. We achieve a similar AUC but slightly better accu-
racy with our proposed model, using only a single automati-
cally segmented BCC structure: telangiectasia. Due to this 
added local pixel information, our results achieve state-of-
the-art accuracy automatically without observing and anno-
tating every single pattern that may or may not be present. 
In previous work, we determined significant interobserver 
variability in vessel annotation [14]. However, DL can learn 
to detect structures with more consistency than those pro-
viding the masks for DL training. Thus, DL appears to be 
able to generalize from limited and inexact data sets and 
can detect vessel-like structures in different kinds of skin 
lesions, not just BCC. Figure 8 shows that our U-Net-based 
vessel detection model can identify these structures even in 

Fig. 11   Confusion matrix for 
the test set

Table 7   Performance comparison with other BCC classification methods

Manuscript Dataset Feature categories Final classifier Accuracy Sensitivity Precision

Kharazmi et al. 2017 659; 299 BCC and 360 non-
BCC

Vascular features Random Forest 0.965 0.904 0.952

Kharazmi et al. 2018 1199; 599 BCC and 600 non-
BCC

Patient profile information & 
SAE feature learning

Softmax 0.911 0.853 0.877

Serrano et al. 2022 692 BCC and 671 non-BCC Color and texture features MLP 0.970 0.993 0.953
Proposed method 2000; 1000 BCC and 1000 

non-BCC
EfficientNet-B5 & localized 

vessel handcrafted color and 
shape features

Random Forest 0.972 0.979 0.965
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non-BCC images. Once the telangiectasia is detected, dis-
tinguishing qualities in BCC vessels (thinness, arborizing) 
are captured when we calculate the handcrafted features as 
indicated in Table 2. Using handcrafted features also helps 
us distinguish between vessels present outside the lesion, as 
they do not contribute to BCC diagnosis.

To account for the missed vessels due to blurry bounda-
ries [14], our introduction of surround-area features also 
leads to an overall improvement in the AUC value. For seg-
mentation problems, surround area detection by boundary 
expansion is a novel solution to feature finding that can con-
tribute to better classification.

There are several limitations of this work. The vessel 
mask marking was supervised by a single dermatologist 
(WVS). Only one team observer (one of AM, DS, SS, or 
WVS) annotated each mask. The final sensitivity was less 
than for the study by Serrano et al.; however, the overall 
accuracy was higher. Even though there is a lot of inter-
section among the datasets of similar studies, the lack of a 
shared dataset with ground truths makes it harder to establish 
a true benchmark comparison. Hence, through this research, 
we share our telangiectasia masks and images openly [32].

All the comparable studies discussed, that employ deep 
learning models, including ours, do not include statistical 
significance tests. Selecting the most appropriate hypoth-
esis testing in deep learning is challenging and is time as 
well as resource-consuming. The focus in deep learning has 
been more on predictive accuracy and model generaliza-
tion rather than mean comparison among groups. However, 
research is progressing for the selection of appropriate sta-
tistical significance tests for model selection in machine 
learning. The datasets in our study as well as the ones in all 
comparable studies also lack diversity in skin color which 
limits their scope.

Conclusion and Future Work

This study proposes a telangiectasia-based fusion model 
approach for classifying BCC vs. non-BCC lesion images. 
To train our vessel identification model’s deep learning 
(U-Net) arm, we developed telangiectasia masks for 1000 
BCC images, available at [32]. No such telangiectasia over-
lay database for BCC currently exists. Using the results 
from [14], we calculate the color and texture features 
from telangiectasia vessel masks and deep learning fea-
tures learned from the EfficientNet-B5 model to yield a 
final classification result. Using a random forest model to 
combine features of each model provides a framework for 
fusion models.

Our fusion model outperforms past BCC classification 
models in precision and accuracy, over a larger dataset than 

in previous studies, one that is publicly available. Our state-
of-the-art accuracy demonstrates the effectiveness of the 
proposed fusion techniques for this medical dataset. Our 
results produce more explainable results than whole-image 
deep learning results as we target clinically observable and 
relevant telangiectasia features. The current study is the only 
one, to the best of our knowledge, that uses semantically 
generated telangiectasia vessel features for BCC diagnosis.

In the future, we would like to continue this research by 
including more clinical features for our fusion model and 
employing additional statistical techniques to account for 
significant differences as well as ANOVA with appropriate 
post hoc tests. Nonetheless, as demonstrated in this study, 
for medical image datasets that are limited in size/quality, 
fusion techniques can offer a way to establish state-of-the-
art diagnostic models and increase explainability as well as 
clinical confidence in results.
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