Skip to main content
. 2024 Feb 8;37(3):1137–1150. doi: 10.1007/s10278-024-00969-3

Table 7.

Performance comparison with other BCC classification methods

Manuscript Dataset Feature categories Final classifier Accuracy Sensitivity Precision
Kharazmi et al. 2017 659; 299 BCC and 360 non-BCC Vascular features Random Forest 0.965 0.904 0.952
Kharazmi et al. 2018 1199; 599 BCC and 600 non-BCC Patient profile information & SAE feature learning Softmax 0.911 0.853 0.877
Serrano et al. 2022 692 BCC and 671 non-BCC Color and texture features MLP 0.970 0.993 0.953
Proposed method 2000; 1000 BCC and 1000 non-BCC EfficientNet-B5 & localized vessel handcrafted color and shape features Random Forest 0.972 0.979 0.965