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Digital measures may provide objective, sensitive, real-world measures of disease progression in
Parkinson’s disease (PD). However, multicenter longitudinal assessments of suchmeasures are few.We
recently demonstrated that baseline assessments of gait, tremor, finger tapping, and speech from a
commercially available smartwatch, smartphone, and research-grade wearable sensors differed
significantly between 82 individuals with early, untreated PD and 50 age-matched controls. Here, we
evaluated the longitudinal change in these assessments over 12 months in a multicenter observational
study using a generalized additive model, which permitted flexible modeling of at-home data. All
measurements were included until participants started medications for PD. Over one year, individuals
with earlyPDexperiencedsignificant declines in severalmeasures of gait, an increase in the proportionof
daywith tremor,modest changes in speech, and few changes in psychomotor function. Asmeasured by
the smartwatch, the average (SD) arm swing in-clinic decreased from 25.9 (15.3) degrees at baseline to
19.9 degrees (13.7) atmonth 12 (P = 0.004). The proportion of awake time an individual with early PD had
tremor increased from 19.3% (18.0%) to 25.6% (21.4%;P < 0.001). Activity, asmeasured by the number
of steps taken per day, decreased from 3052 (1306) steps per day to 2331 (2010; P = 0.16), but this
analysis was restricted to 10 participants due to the exclusion of those that had started PDmedications
and lost the data. The change of these digital measures over 12 months was generally larger than the
corresponding change in individual items on the Movement Disorder Society—Unified Parkinson’s
Disease Rating Scale but not greater than the change in the overall scale. Successful implementation of
digital measures in future clinical trials will require improvements in study conduct, especially data
capture. Nonetheless, gait and tremor measures derived from a commercially available smartwatch and
smartphone hold promise for assessing the efficacy of therapeutics in early PD.

Therapeutic progress for Parkinson’s disease (PD) has been slow, which has
fueled interest in the development of more objective, precise, sensitive, and
frequent measures of the disease that can be assessed in the real-world1.
Digital tools, including smartwatches2, smartphones3,4, and wearable
sensors5,6, offer the potential to provide such assessments. However, few

studies7 have evaluated multiple such tools in a multicenter study aimed at
individualswith earlyPD. Further, unlikemany, our study evaluates broadly
adopted and user-friendly devices.

In amulticenter observational study involving 82 individuals with early,
untreated PD, we recently demonstrated that a commercially available
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smartwatch paired with a smartphone research application can assess key
motor and non-motor features of the disease, including gait, psychomotor
function, tremor, and voice8. These assessments differed significantly from
those in an age-matched cohort of 50 individuals without PD and often
correlated with accelerometers used for research and with traditional mea-
sures of the disease, such as the Movement Disorder Society—Unified Par-
kinson’sDisease Rating Scale (MDS-UPDRS)8. Here, we report on how these
measures changed over 12 months. These results can inform the design of
future clinical trials aimed at the growing population of individuals with PD9.

Results
Study participants
Eighty-two individuals with early, untreated PD and 50 age-matched controls
consented to participate in the study at 17 research sites in the United States
from June 2019 throughDecember 2020. Of these individuals, 57 participants
with PD completed the 12-month study without starting dopaminergic ther-
apy (Fig. 1). Of the 23 that did begin dopaminergic therapy, 2 did so by three
months, 11 by 6 months, 5 by nine months, and 5 by twelve months. Forty-
nine of the 50 age-matched controls also completed month 12 assessments.

As shown in Table 1, the participants with PD were more likely to be
men and were similar to those who enrolled in the Parkinson’s Progression
Markers Initiative10. Average adherence for the active, at-home tasks did not
differ between participants with PD (70.8%) and controls (70.9%; P = 0.98).
There also was no significant difference in adherence based on gender
(P = 0.25) or race (P = 0.48).

Gait
As shown in Table 2, the average measures of numerous gait assessments
declined significantly among individuals with early PD. These measures

included reductions in arm swing, gait speed, step length, and stride length.
As measured by the smartwatch, the average (SD) arm swing in the clinic
decreased from 25.9 (15.3) degrees at baseline to 19.9 degrees (13.7) at
month 12 (P = 0.004). Formobile devices, differenceswere derived from the
smartwatch (arm swing) and smartphone (the latter three) based on
assessments done in the clinic but not at-home, and largely agree with
measures from the research-grade sensors. In some cases, gait measures
(e.g., cadence) weremore variable when assessed at-home than in the clinic.
The test–retest reliability of most gait measures was generally good with
intra-class correlation coefficients (ICC) above 0.7 (SupplementaryTable 1).
Additional differences in the variability and asymmetry of the gaitmeasures
were observed as detailed in Supplementary Table 2.

For the individual digital measures, we calculated a standardized
change by dividing the mean of the difference between follow-up (month
12) and baseline assessments by the standard deviation of their difference.
The magnitude of the standardized change in arm swing, gait speed, step
length, and stride length ranged from 0.57 to 0.66 compared to 0.24 for item
2.12 on the MDS-UPDRS (self-reported problems with walking and bal-
ance) and 0.06 for item 3.10 on theMDS-UPDRS (rater evaluation of gait).

Tremor
As shown in Fig. 2, the average (SD) proportion of time individuals with PD
experienced rest tremor at-home increased from 19.3% (18.0%) at baseline
to 25.6% (21.4%; P < 0.001) at month 12 as assessed by the smartwatch.
Among the 57 participants with PD for whom there was sufficient passive
data to evaluate, thirteen had tremor for less than 3% of the day, which
changed little over one year. Control participants had minimal tremor (less
than 1% of the day) that did not change over the study’s duration. The
standardized change in the proportion of the daywith tremor as assessed by

Fig. 1 | Flow of Participants. Flow of participants in the Watch-PD study over 12 months.
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the smartwatch was 0.65 compared to 0.40 for item 2.10 on the MDS-
UPDRS (self-reported tremor) or 0.53 for item 3.18 on the MDS-UPDRS
(rater evaluation of constancy of tremor).

Psychomotor
Notably, several psychomotor metrics showed significant changes over 12
months both for individuals with PD (Table 2) and for controls (Table 3).
For example, the average total taps in-clinic and at-home increased sig-
nificantly in both the dominant and non-dominant hands in both groups
(Fig. 3). Furthermore, the average inter-tap interval (time between taps) in
both hands decreased significantly in both groups with the exception of the
individuals with PD at-home in the dominant hand. The average inter-tap
interval for individuals with PD also decreased significantly over 12months
on both the more and less-affected sides. On the more-affected side, the
average inter-tap interval decreased at-home from 206.1ms (65.1ms) at
month 0 to 177.6ms (92.5ms) at month 12. On the less-affected side, the
average inter-tap interval decreased at-home from 176.9ms (69.3ms) at

month 0 to 138.9ms (90.8ms) at month 12. For the fine motor task, the
average number completed significantly increased over 12 months in PD
and controls for both hands in-clinic and at-home. The number completed
in thefinemotor task also increasedwithinPDparticipants in both themore
and less-affected sides. However, in both the finger tapping and fine motor
tasks, the magnitude of change was greater for controls than in individuals
with PD, suggesting a reduced longitudinal performance in the PD group.
Test–retest reliability for the psychomotor tasks ranged from poor (ICC of
0.28 for the inter-tap interval on the non-dominant hand in the clinic) to
excellent (ICC of 0.95 for finger tapping total taps at-home on the domi-
nant hand).

Cognition
As shown in Supplementary Table 2, the average time to completion on
Trails A in people with PD decreased over 12 months in the clinic from
27,843ms (5745ms) at baseline to 23,520ms (6684ms) atmonth 12 and at-
home from 24,719ms (5109ms) at month 0 to 23,091ms (6599ms) at

Table 1 | Characteristics of research participants who enrolled and who completed the month-12 visit

Enrolled baseline results Enrolled and completed the month-12 visit month-12
results

Characteristic PD
cohort
(n = 82)

Control
cohort (n = 50)

P value PD cohort without starting
anti-Parkinson medica-
tion (n = 57)

Control
cohort (n = 49)

P value

Demographic
characteristics

Age, y 63.3 (9.4) 60.2 (9.9) 0.07 64.1 (9.4) 61.5 (9.7) 0.17

Male, n (%) 46 (56) 18 (36) 0.03 32 (56) 18 (37) 0.05

Race, n (%) 0.81 0.51

White 78 (95) 48 (96) 55 (96) 47 (96)

Black or African American 0 (0.0) 0 (0) 0 (0.0) 0 (0)

Asian 3 (4) 1 (2) 2 (4) 1 (2)

Not specified 1 (1) 1 (2) 0 (0.0) 1 (2)

Hispanic or Latino, n (%) 3 (4) 1 (2) 0.99 2 (4) 1 (2) 0.99

Education >12 years, n (%) 78 (95) 48 (96) 0.99 54 (95) 47 (96) 0.99

Clinical characteristics Right or mixed handedness, n (%) 74 (90) 47 (94) 0.53 51 (89) 46 (94) 0.50

Parkinson’s disease duration,
months

10.0 (7.3) N/A N/A 22.1 (7.3) N/A N/A

Hoehn and Yahr, n (%) <0.001 <0.001

Stage 0 0 (0) 49 (100) 0 (0) 47 (96)

Stage 1 19 (23) 0 (0) 7 (12) 1 (2)

Stage 2 62 (76) 0 (0) 49 (86) 1 (2)

Stage 3–5 1 (1) 0 (0) 1 (2) 0 (0)

MDS-UPDRS

Total score 35.2 (12.4) 5.9 (5.3) <0.001 40.5 (14.2) 6.4 (5.0) <0.001

Part I 5.5 (3.6) 2.8 (2.6) <0.001 5.9 (4.0) 3.0 (3.5) <0.001

Part II 5.6 (3.8) 0.4 (1.0) <0.001 7.1 (4.7) 0.4 (1.1) <0.001

Part III 24.1 (10.2) 2.7 (3.5) <0.001 27.4 (11.1) 2.9 (3.3) <0.001

Montreal Cognitive Assessment 27.6 (1.4) 28.1 (1.5) 0.04 27.5 (2.3) 28.5 (1.8) 0.02

Parkinson’s Disease Quality of Life
Questionnaire

7.7 (6.7) N/A N/A 9.1 (8.3) N/A N/A

Geriatric Depression Scale (short
version)

1.6 (1.9) 1.0 (1.2) 0.05 1.8 (1.5) 1.0 (1.4) 0.004

REM Sleep Behavior Disorder
Questionnaire

4.4 (3.1) 2.7 (2.0) <0.001 4.5 (3.2) 2.5 (2.1) <0.001

Epworth Sleepiness Scale 4.9 (3.2) 4.6 (3.7) 0.66 4.8 (2.5) 4.4 (3.4) 0.50

Scale for Outcomes in Parkinson’s
Disease for Autonomic Symptoms

9.1 (5.1) 5.3 (4.2) <0.001 9.2 (5.4) 5.1 (4.4) <0.001

PD Parkinson’s disease, N/A not available, MDS-UPDRSMovement Disorder Society—Unified Parkinson’s Disease Rating Scale.
Results are mean (standard deviation) for continuous measures and n (%) for categorical measures.
One control cohort participant is missing baseline Hoehn and Yahr and MDS-UPDRS scores and one additional is missing the MDS-UPDRS part III and total scores.
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month 12. Furthermore, the average time to completion on Trails B also
decreased both in the clinic from 24,870ms (3838ms) at baseline to
19,656ms (3913ms) atmonth12andat-home from23,245ms (3789ms) at
month0 to 19,476ms (3791ms) inpeoplewithPD. Similar trendswere seen
for controls in performance on both Trails A and B. The discrepancy
between time to complete Trails B and Trails A (Trails B–Trails A)
increased, but not significantly, in both groups. The average number correct

on the Symbol-Digit Modalities Test in-clinic and at-home increased sig-
nificantly over the 12months inboth groups.Theaveragepercent correcton
the visuospatial working memory test also increased significantly over
12 months in both groups in-clinic and at-home (Tables 2 and 3). The
test–retest reliability measures for cognition were weak to moderate across
tasks, with the lowest ICC at 0.03 for Trails B-A in the clinic and the highest
ICC at 0.55 for total time to complete Trails A.

Table 2 | Change in selected endpoints measured in-clinic in PD over 12 months

Variable Cohort N Task Device Loca�on Month 0 Month 12 p-value
MDS-UPDRS
MDS-UPDRS Part III total PD 78 Clinical ra�ng clinic 23.6 (9.6) 29.7 (11.2) <0.001
MDS-UPDRS Part II total PD 78 Self report clinic 5.4 (3.5) 7.7 (4.3) <0.001
MDS-UPDRS Part I total PD 78 Clinical ra�ng clinic 5.4 (2.7) 6.2 (3.4) 0.10
MDS-UPDRS I+II+III total PD 78 Clinical ra�ng clinic 34.6 (11.5) 43.9 (14.4) <0.001

Gait
Stride length (m) PD 71 1 minute walk Smartphone home 1.03 (0.12) 1.03 (0.14) 0.73
Stride length (m) PD 67 1 minute walk Smartphone clinic 1.13 (0.12) 1.04 (0.19) 0.007
Stride length (m)  average of both legs PD 77 Dual task Research accel. clinic 1.13 (0.14) 1.10 (0.15) 0.008
Stride length (m)  average of both legs PD 78 2 minute walk Research accel. clinic 1.20 (0.12) 1.15 (0.14) <0.001
Step length (m) PD 71 1 minute walk Smartphone home 0.51 (0.06) 0.52 (0.07) 0.77
Step length (m) PD 67 1 minute walk Smartphone clinic 0.56 (0.06) 0.52 (0.09) 0.008
Self-reported walking and balance PD 78 item 2.12 Self report clinic 0.3 (0.3) 0.5 (0.5) 0.03
Rater evalua�on of gait PD 78 item 3.10 Clinical ra�ng clinic 0.7 (0.4) 0.7 (0.4) 0.65
Gait speed (m/s) PD 71 1 minute walk Smartphone home 0.92 (0.13) 0.90 (0.15) 0.50
Gait speed (m/s) PD 67 1 minute walk Smartphone clinic 1.02 (0.11) 0.91 (0.21) 0.01
Gait speed (m/s)  average of both legs PD 77 Dual task Research accel. clinic 0.99 (0.15) 0.96 (0.17) 0.10
Gait speed (m/s)  average of both legs PD 78 2 minute walk Research accel. clinic 1.08 (0.13) 1.03 (0.15) <0.001
Cadence (steps/min) PD 71 1 minute walk Smartphone home 107.1 (8.7) 106.2 (9.0) 0.43
Cadence (steps/min) PD 65 1 minute walk Smartphone clinic 108.5 (7.9) 107.9 (7.9) 0.67
Cadence (steps/min) average of both legs PD 78 2 minute walk Research accel. clinic 108.8 (7.2) 107.4 (7.7) 0.06
Cadence (steps/min)  average of both legs PD 77 Dual task Research accel. clinic 104.2 (8.1) 104.3 (8.3) 0.88
Arm swing (deg) watch arm PD 71 1 minute walk Smartwatch home 23.0 (12.9) 20.6 (12.5) 0.07
Arm swing (deg) watch arm PD 66 1 minute walk Smartwatch clinic 25.9 (15.3) 19.9 (13.7) 0.004
Arm Swing (deg) more affected arm PD 78 2 minute walk Research accel. clinic 42.4 (20.3) 36.5 (20.9) <0.001
Arm Swing (deg) less affected arm PD 78 2 minute walk Research accel. clinic 24.6 (16.9) 20.5 (16.4) <0.001
Arm Swing (deg) average of both arms PD 78 2 minute walk Research accel. clinic 33.5 (16.3) 28.5 (16.6) <0.001

Tremor
Tremor (%) PD 57 Passive Smartwatch home 19.3 (18.0) 25.6 (21.4) <0.001
Self-reported problems with tremor PD 78 item 2.10 Self report clinic 1.2 (0.5) 1.4 (0.6) 0.02
Rater evalua�on of constancy of tremor PD 78 item 3.18 Clinical ra�ng clinic 1.6 (1.4) 2.0 (1.5) 0.001

Turns
Turn dura�on (s) PD 78 Dual task Research accel. clinic 2.5 (0.3) 2.6 (0.3) 0.11
Turn dura�on (s) PD 78 2 minute walk Research accel. clinic 2.4 (0.3) 2.5 (0.3) 0.02
Turn dura�on (s) PD 77 1 minute walk Smartphone home 2.3 (0.3) 2.4 (0.4) 0.48
Turn dura�on (s) PD 79 1 minute walk Smartphone clinic 2.4 (0.3) 2.4 (0.3) 0.80

Speech
Self-reported problem with speech PD 78 item 2.01 Self report clinic 0.4 (0.6) 0.6 (0.6) 0.06
Rater evalua�on of speech PD 78 item 3.01 Clinical ra�ng clinic 0.5 (0.4) 0.8 (0.5) <0.001
Digital speech composite scores PD 75 Phona�on, reading Smartphone home 1.2 (1.9) 1.7 (2.0) 0.03
Digital speech composite scores PD 70 Phona�on, reading Smartphone clinic 1.5 (2.0) 1.6 (2.2) 0.85

Cogni�ve/Psychomotor
Trail making task B minus trail making task A (ms) PD 78 Trails Smartphone home 661 (778) 1209 (782) 0.53
Trail making task B minus trail making task A (ms) PD 79 Trails Smartphone clinic 550 (3085) 3826 (3169) 0.02
Percentage total correct from VSWM PD 76 VSMW Smartphone home 73.9 (5.6) 80.7 (6.5) <0.001
Percentage total correct from VSWM PD 78 VSMW Smartphone clinic 74.3 (6.6) 77.9 (8.0) 0.04
Percentage total correct from SDMT PD 78 SDMT Smartphone home 20.5 (4.4) 22.2 (4.9) 0.02
Percentage total correct from SDMT PD 80 SDMT Smartphone clinic 19.7 (4.7) 21.2 (5.5) 0.05
Intertap intervals (ms) more affected side PD 76 Intertap intervals Smartphone home 206.1 (65.1) 177.6 (92.5) 0.14
Intertap intervals (ms) more affected side PD 76 Intertap intervals Smartphone clinic 218.0 (53.3) 160.7 (80.3) 0.002
Intertap intervals (ms) dominant hand PD 76 Intertap intervals Smartphone home 178.1 (63.3) 152.1 (96.0) 0.15
Intertap intervals (ms) dominant hand PD 78 Intertap intervals Smartphone clinic 206.0 (54.9) 154.0 (86.4) 0.005
Fingertapping (taps per 30s) more affected side PD 76 Fingertapping Smartphone home 111.0 (40.9) 132.7 (52.2) <0.001
Fingertapping (taps per 30s) more affected side PD 78 Fingertapping Smartphone clinic 102.0 (34.7) 135.8 (52.7) <0.001
Fingertapping (taps per 30s) dominant hand PD 76 Fingertapping Smartphone home 116.6 (41.5) 141.2 (54.1) <0.001
Fingertapping (taps per 30s) dominant hand PD 78 Fingertapping Smartphone clinic 107.7 (36.6) 144.3 (52.2) <0.001
Finemotor dominant hand PD 76 Finemotor Smartphone home 3.9 (1.2) 4.3 (1.6) 0.21
Finemotor dominant hand PD 78 Finemotor Smartphone clinic 3.9 (1.2) 4.3 (1.6) 0.09
Fine motor more affected side PD 76 Finemotor Smartphone home 3.68 (1.05) 3.33 (1.19) 0.07
Fine motor more affected side PD 78 Finemotor Smartphone clinic 3.58 (1.07) 3.62 (1.31) 0.83

MDS-UPDRS the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, SDMT Symbol-Digit Modalities Test, VSWM Visuospatial Working Memory Task, PD
Parkinson’s Disease.

Fig. 2 | Change over 12 months in proportion of waking hours with tremor as
measured by the smartwatch for individuals with Parkinson’s disease versus
controls. This figure illustrates the modeling approach. a shows the change in

tremor for each participant.b shows subject-specific line fits across the year, while (c)
shows predicted change from baseline for each cohort.
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Speech
The at-home digital speech composite scores also increased significantly
from 1.2 (1.9) at baseline to 1.7 (2.0; P = 0.03) at month 12 for individuals
with PD (Table 2). No significant change was seen in the in-clinic speech
composite or in any speech measures for the control cohort. As seen in
Supplementary Table 1, test–retest reliability for speech measures was
generally lower than for gait measures, with ICCs in the range of 0.6–0.7 for
the most reliable measures. As shown in Supplementary Table 2, the
composite metric shows improved reliability over several individual speech
features. The composite score shows a standardized change inmagnitude of
0.25 compared to 0.33 for item 2.01 (self-reported speech) or 0.66 for item
3.01 (rater evaluation of speech).

Activity
Atbaseline, individualswith PD (n = 45)had a trend toward a lower average
(SD) daily step count (3494 (1930) steps daily) compared to control parti-
cipants (n = 15) (4930 (3270) steps daily; P = 0.13) as assessed by the
smartwatch.After applying the inclusion criteria detailed in themissingdata
section, we observed that participants with PD wore the smartwatch for
14.4 hours per day on average compared to 13.5 hours per day for controls
(P = 0.03). To reduce the impact of differences in wear time, we also looked
at steps per hour. Individuals with PD (n = 45) walked 238 (129) steps per
hour at baseline, while control participants (n = 15) walked 362 (214) steps
per hour (P < 0.001). Considering the pandemic’s impact on activity level,
interpreting the longitudinal change in the step counts requires caution. At
month 12, only 10 individuals with PD who were still off medication had
passive data for analysis. Due to the limitation of sample size, we did not
apply the model to the step count data. For the 10 individuals with PDwho
were not taking dopaminergic medication, themean number of steps taken
daily decreased from 3052 (1306) to 2331 (2010) steps (P = 0.16), and the
number of steps per hour decreased from198 (82) steps per hour at baseline
to 159 (142) steps perhour atmonth 12 (P = 0.29) (SupplementaryTable 3).

Clinical measures
Overall, composite measures of the MDS-UPDRS had the largest standar-
dized change in this observational study (Table 2). For individuals with PD,
the standardized change from baseline to month 12 for the MDS-UPDRS
part I was 0.30, for part II was 1.16, and for part III was 1.17. The stan-
dardized change for the sum of parts I, II, and III for those with Parkinson’s
was 1.33.

Discussion
Over 12 months, digital measures derived from a commercially available
smartphone and smartwatch changed significantly in multiple domains,
most notably gait and tremor, among individuals with early PD. Combined
with the observed differences among individuals with and without PD on
numerous measures at baseline, these digital assessments hold promise
(Table 4) for helping evaluate the efficacy of future therapies1,3,7,11 and
monitoring individuals in this population. Use of digital tools to quantify
manifestations of Parkinson’s disease has attracted increasing interest over
the past 2 decades, and the present results build on many prior studies
summarized in review articles12–15 by providing 12-month longitudinal
follow-up, comparing an early, unmedicated PD population to an age-
matched control group, and including digital assessments that span a range
of functional domains. Consistent with prior longitudinal reports6,16,17 and
predictions from cross-sectional studies18–20, well-established gait para-
meters including stride length, gait speed, and arm swing amplitude were
among the mobility measures that showed significant longitudinal change
specifically in the cohort of people with PD.However, the finding that these
parameters did not show significant longitudinal progression when mea-
sured from the unsupervised walking test done at-home was unexpected.
One possible explanation for this finding is that the in-clinic timed walk
protocol required a 10-meter straight path, while the unsupervised walking
path would be determined by the participant and may have involved much
shorter segments, circular or curving trajectories, and so forth. This high-
lights one of the challenges with remote digital monitoring: diminished
control over the details of task performance. With that in mind, it was
encouraging to see that some of the measures showing the largest change
over 12 months were task-independent and passively assessed (tre-
mor, steps).

This study engaged multiple stakeholders, including the pharmaceu-
tical industry, regulators, investigators, and individuals with PD21. Con-
sistentwith recent initiatives22 from theU.S. Food andDrugAdministration
(FDA), this study included the “voice of the patient”23. To that end, we
conductedqualitative interviewswithparticipants fromthis studywhorated
gait/balance, tremor, and fine motor measures as the most meaningful to
them24,25.

Gait speed is considered the “functional vital sign”26 and is associated
with mortality in older adults27. It also has been accepted by European
regulators as a digital endpoint in Duchenne muscular dystrophy28 and has
already been the basis for an approved therapy for multiple sclerosis29. In
PD, gait speed has been shown to be affected early in disease, including
during the prodromal period30 and to decrease over one year when mea-
sured at-home in individuals at different stages of the disease16, a finding
reinforced in this study.

Activity is a widely usedmeasure of health in everyday life bymillions.
Activity has also been accepted as a digital endpoint (moderate-to-vigorous
physical activity) by the FDA for idiopathic pulmonary fibrosis31, and is
affected early in the course of PD, including during the prodromal
period32,33. Tremor, while not a universal symptom in PD, is an important
feature to study participants24.

The standardized changes observed for several individual digital
measures (e.g., arm swing) were modest and not as large as the MDS-
UPDRS Part 3 summation itself. In our study, digital measures of gait and
tremor appear to be among themost promising as longitudinal progression
markers, with standardized changes from digital measures often exceeding
the observed changes in the corresponding individual items of the MDS-
UPDRS. Importantly, the increase in standardized changes in these

Fig. 3 | Dominant hand (top) finger tapping at-home and non-dominant hand
(bottom) finger tapping at-home.
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measures would translate directly into smaller sample sizes (for example,
under the assumption of 40% treatment effect on tremor which has a
standardized change of ~0.7, the required sample in each arm is 202).
Supplementary Table 4 provides estimated sample size by standardized
change and assumed treatment effect for studies powered based on these
measures. These digital measures also showed good test–retest reliability
(ICCsgenerally greater than0.7). In-clinic comparisonswith research-grade

accelerometers also displayed consistency between the measurement devi-
ces here and in our baseline paper8.

In contrast to assessments of gait and tremor, performance on mea-
sures of psychomotor and cognitive function appeared to improve over
12 months in both PD and control cohorts. Performance among controls
generally reached a stable asymptote faster than individuals with PD sug-
gesting that the latter group may need greater exposure to a given task to

Table 4 | Summary of findings to date from the Watch-PD study

Domain Findings Device Assessment Comment

Gait
• Arm swing
• Gait speed

• Reduced at baseline compared to controls
• Decreases significantly over 12 months

Smartwatch and
smartphone

Active Promising measure for assessment in future
clinical trials in PD population

Tremor
• Proportion of day with
tremor

• Increased at baseline compared to controls
• Increased significantly over 12 months

Smartwatch Passive Promising measure for assessing the efficacy
of therapies aimed at reducing tremor

Neuropsychology
• Finger tapping

•Reduced at baseline compared to controls but
no significant progression over 12 months

Smartphone Active Results may have been complicated by learn-
ing effects

Cognitive
• Trails tests

•Reduced at baseline compared to controls but
no significant progression

Smartphone Active Other measures of cognition may be more
sensitive to change

Speech
• Composite score

• Reduced at baseline compared to controls
and shows modest progression

Smartphone Active Beneficial for differentiating PD from controls

Activity
• Steps taken daily

• Reduced at baseline compared to controls
and may decrease with time

Smartwatch Passive Promising measure but larger datasets
required

Table 3 | Change in selected endpoints in control participants over 12 months

Variable Cohort N Task Device Loca�on Month 0 Month 12 p-value
MDS-UPDRS
MDS-UPDRS Part III total Controls 48 Clinical ra�ng clinic 2.7 (2.6) 2.9 (3.2) 0.57
MDS-UPDRS Part II total Controls 48 Self report clinic 0.4 (0.8) 0.4 (0.8) 0.79
MDS-UPDRS Part I total Controls 48 Clinical ra�ng clinic 2.8 (2.5) 2.9 (2.8) 0.75
MDS-UPDRS I+II+III total Controls 48 Clinical ra�ng clinic 6.0 (4.1) 6.3 (4.6) 0.62

Gait
Stride length (m) Controls 46 1 minute walk Smartphone home 1.06 (0.12) 1.05 (0.12) 0.72
Stride length (m) Controls 44 1 minute walk Smartphone clinic 1.12 (0.15) 1.16 (0.15) 0.16
Stride length (m)  average of both legs Controls 48 Dual task Research accel. clinic 1.20 (0.15) 1.20 (0.14) 0.85
Stride length (m)  average of both legs Controls 48 2 minute walk Research accel. clinic 1.25 (0.13) 1.24 (0.13) 0.65
Step length (m) Controls 46 1 minute walk Smartphone home 0.53 (0.06) 0.52 (0.06) 0.74
Step length (m) Controls 44 1 minute walk Smartphone clinic 0.56 (0.08) 0.58 (0.08) 0.15
Self-reported walking and balance Controls 48 item 2.12 Self report clinic 0.0 (0.0) 0.0 (0.1) 0.56
Rater evalua�on of gait Controls 48 item 3.10 Clinical ra�ng clinic 0.0 (0.2) 0.1 (0.3) 0.25
Gait speed (m/s) Controls 46 1 minute walk Smartphone home 0.98 (0.12) 0.96 (0.14) 0.41
Gait speed (m/s) Controls 44 1 minute walk Smartphone clinic 1.06 (0.16) 1.09 (0.17) 0.50
Gait speed (m/s)  average of both legs Controls 48 Dual task Research accel. clinic 1.10 (0.17) 1.09 (0.16) 0.86
Gait speed (m/s)  average of both legs Controls 48 2 minute walk Research accel. clinic 1.19 (0.16) 1.17 (0.14) 0.48
Cadence (steps/min) Controls 47 1 minute walk Smartphone home 111.3 (9.7) 110.1 (10.1) 0.31
Cadence (steps/min) Controls 45 1 minute walk Smartphone clinic 113.4 (8.5) 113.6 (8.8) 0.87
Cadence (steps/min) average of both legs Controls 48 2 minute walk Research accel. clinic 113.6 (9.3) 113.1 (8.9) 0.55
Cadence (steps/min)  average of both legs Controls 48 Dual task Research accel. clinic 109.0 (9.7) 109.3 (9.5) 0.74
Arm swing (deg) watch arm Controls 47 1 minute walk Smartwatch home 44.5 (13.9) 44.7 (20.1) 0.96
Arm swing (deg) watch arm Controls 45 1 minute walk Smartwatch clinic 47.5 (17.2) 47.3 (17.8) 0.94
Arm Swing (deg) average of both arms Controls 48 2 minute walk Research accel. clinic 54.9 (15.2) 53.6 (17.2) 0.46

Tremor
Tremor (%) Controls 25 Passive Smartwatch home 0.7 (0.6) 0.7 (0.5) 0.57
Self-reported problems with tremor Controls 48 item 2.10 Self report clinic 0.0 (0.0) 0.0 (0.0) None
Rater evalua�on of constancy of tremor Controls 48 item 3.18 Clinical ra�ng clinic -0.0 (0.0) 0.0 (0.1) 0.26

Turns
Turn dura�on (s) Controls 48 Dual task Research accel. clinic 2.1 (0.3) 2.1 (0.3) 0.74
Turn dura�on (s) Controls 48 2 minute walk Research accel. clinic 2.1 (0.3) 2.1 (0.4) 0.45
Turn dura�on (s) Controls 47 1 minute walk Smartphone home 2.2 (0.3) 2.2 (0.5) 0.81
Turn dura�on (s) Controls 49 1 minute walk Smartphone clinic 2.1 (0.3) 2.0 (0.3) 0.65

Speech
Self-reported problem with speech Controls 48 item 2.01 Self report clinic 0.0 (0.1) -0.0 (0.1) 0.41
Rater evalua�on of speech Controls 48 item 3.01 Clinical ra�ng clinic 0.0 (0.0) 0.0 (0.0) None
Digital speech composite scores Controls 46 Phona�on, reading Smartphone home 0.1 (1.3) 0.2 (1.4) 0.67
Digital speech composite scores Controls 46 Phona�on, reading Smartphone clinic -0.1 (1.4) -0.3 (1.4) 0.49

Cogni�ve/Psychomotor
Trail making task B minus trail making task A (ms) Controls 47 Trails Smartphone home 538 (863) 1523 (862) 0.27
Trail making task B minus trail making task A (ms) Controls 49 Trails Smartphone clinic 297 (1527) 1862 (1527) 0.24
Percentage total correct from VSWM Controls 46 VSMW Smartphone home 77.5 (6.7) 81.5 (8.5) 0.007
Percentage total correct from VSWM Controls 48 VSMW Smartphone clinic 74.4 (6.9) 80.6 (8.3) <0.001
Percentage total correct from SDMT Controls 47 SDMT Smartphone home 22.5 (4.0) 26.4 (4.1) <0.001
Percentage total correct from SDMT Controls 49 SDMT Smartphone clinic 21.7 (3.7) 25.4 (4.0) <0.001
Intertap intervals (ms) dominant hand Controls 46 Intertap intervals Smartphone home 140.7 (36.7) 110.9 (42.5) <0.001
Intertap intervals (ms) dominant hand Controls 48 Intertap intervals Smartphone clinic 161.4 (19.3) 130.9 (37.2) 0.02
Fingertapping (taps per 30s) dominant hand Controls 46 Fingertapping Smartphone home 145.4 (34.7) 156.3 (38.4) 0.05
Fingertapping (taps per 30s) dominant hand Controls 48 Fingertapping Smartphone clinic 135.9 (28.8) 160.7 (36.6) <0.001
Finemotor dominant hand Controls 46 Finemotor Smartphone home 5.3 (0.9) 6.0 (1.2) <0.001
Finemotor dominant hand Controls 48 Finemotor Smartphone clinic 5.1 (1.0) 6.0 (1.2) <0.001

CI confidence interval,MDS-UPDRS the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, SDMT Symbol-Digit Modalities Test, VSWM Visuospatial
Working Memory Task.
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reach stable performance. In the future, these measures could be used to
evaluate changes in individuals, in addition to at the group leveI.

Unlike gait and tremor, the standardized changes in the speech digital
measures were smaller than the corresponding MDS-UPDRS individual
items. The sensitivity of the digital speech measures can likely be improved
by using alternative analytical approaches. For example, Rusz and
colleagues34 foundmodest but significant progression in speech in early PD
and identified voice onset time (not assessed in this study) as a keymeasure.
In our study, digital speech assessments were also hampered by several data
quality issues as previously discussed8. Finally, the lower test–retest relia-
bility of speech features (as compared to gait) in our dataset may help
explainwhy progressionwas significant at-home but not in-clinic.At-home
measurements were much more frequent than those in the clinic (and also
had less background noise8) and thus may have been better able to smooth
out measurement noise and generate a higher signal-to-noise ratio. Our
overall findings are generally consistent with ref. 34; we sawmodest overall
progression. Both studies also found that among speech measures,
decreased pitch range was the strongest differentiator of PD and control
cohorts at baseline but did not show progression in the PD group
over 1 year.

In addition to individual digital measures, future efforts may seek to
develop composite digital measures4 that combine assessments of motor,
non-motor, and social function, both in the clinic and in the real world.
Ideally, such measures would accurately track subject-level progression.
Such a measure could complement traditional rating scales by reflecting
assessments (e.g., proportion of day with tremor, overall activity) that are
likely meaningful, but cannot be tested with a scale administered episodi-
cally. These compositemeasures could also bemore sensitive to change than
individualmeasures, just as the summarymeasures of theMDS-UPDRS can
detect change better than individual items.

This study has several limitations. Among them are the COVID-19
pandemic,missing data, adherence, lack of standardization, learning effects,
and a limited scope of assessments. The pandemic occurred in the midst of
this study leading us to transition some clinic visits to remote ones and
potentially reduced physical activity among all participants35. The pan-
demic, though, did highlight the need for real-world measures of disease.
Missing data due to software issues limited our ability to collect data for
some assessments (e.g., number of steps taken) in many individuals. Gen-
eralized Additive Models (GAM) allowed for the fitting of individualized
curves for each participant and can handle the uneven time sampling seen
with at-home data, but the model can struggle to capture the underlying
group patterns when limited data are available. Thus we were not able to
apply these models for step count. The modeled results (reported in Sup-
plementary Table 2) differed in their absolute values from empirical ones
(reported in Supplementary Table 3), but the overall results were generally
consistent. Real-timemonitoring of data and adherence,managing software
changes, and maintaining close contact with participants could all reduce
missing data.

Standardizing the use of digital devices was also difficult. In this study,
participants with PD were supposed to wear the smartwatch on the more-
affected side; however, somewore thewatchondifferentwrists andwerenot
always consistent. For some measures (e.g., cadence), home assessments
were more variable than clinical ones perhaps due to greater variability in
the setting and less support from trained staff. Some tasks (e.g., finger
tapping) also appeared to be affected by practice effects, as the speed with
which they were conducted improved in both groups. Including repeated
tests of these tasks atmultiple visits (e.g., screening and baseline)might help
mitigate these effects. Due to study design, time between visits used for
test–retest reliability results was 4–6 weeks, a duration which could reduce
precision of this measurement. Future studies may opt to repeat digital
assessments during the same visit or at a shorter interval to better evaluate
test–retest reliability. Finally, the measures in this study were more focused
on motor features while smartphones and smartwatches can also assess
valuable non-motor36 (e.g., autonomic function37, sleep38) and socialmetrics
(e.g., time or distance away from home39) of PD.

Limitations notwithstanding, in a study designed to replicate the
conduct of amulticenter clinical trial in individualswith early, untreatedPD,
we found numerous valuable digital measures derived from a commercial
smartwatch and smartphone. The response of these metrics to
medications4,40 remains to be established. However, this study bring us
closer to having meaningful digital measures for future use in PD clinical
trials.

Methods
Study design, setting, participants
As described previously,WATCH-PD (WearableAssessment in TheClinic
and at Home in PD, NCT03681015) is a 12-month, multicenter observa-
tional study that evaluated the ability of digital devices to assess disease
features and progression in persons with early, untreated PD8. Participants,
recruited from 17 Parkinson Study Group research sites, were evaluated in
the clinic and at-home. In-person visits occurred at screening/baseline and
then at months 1, 3, 6, 9, and 12. Due to the COVID-19 pandemic, most
month-3 visits were converted to remote visits via video or phone, and
participants could elect to complete additional visits remotely.

We sought to evaluate a population similar to the Parkinson’s Pro-
gression Markers Initiative (PPMI). For those with PD, the principal
inclusion criteria were age 30 or greater at diagnosis, disease duration less
than two years, and Hoehn & Yahr stage two or less. Exclusion criteria
included baseline use of dopaminergic or other PD medications and an
alternative Parkinsonian diagnosis. Control participants without PD or
other significant neurologic diseases were age-matched to the PD cohort.

Ethics
The WCGTM Institutional Review Board approved the procedures used in
the study, and there was full compliance with human experimentation
guidelines. All participants provided written informed consent before study
participation.

Data sources/measurement
As described previously8, this study used three devices: research-grade
wearable “Opal” sensors (APDM Wearable Technologies, a Clario Com-
pany), anAppleWatch 4 or 5, and an iPhone 10 or 11 (Apple, Inc.) running
a smartphone application specifically for PD (BrainBaseline™). The smart-
phone application consisted of cognitive, speech, and psychomotor tasks
including Trail Making Test, modified Symbol-Digit Modalities Test,
Visuospatial Working Memory Task, phonation, reading, diadochokinetic
speech tasks, two-timedfinemotor tests, and tremor, gait, and balance tasks.

During in-clinic visits, six research-grade wearable sensors with an
accelerometer, gyroscope, and magnetometer were placed on the sternum,
lower back, and on each wrist and foot. Smartphone application tasks were
conducted at each clinic visit and at-homeevery 2weeks on the smartphone.
The smartphone was worn in a lumbar sport pouch during gait and balance
tests. After each in-person visit, participants wore the smartwatch on their
more-affected side and tracked symptoms on the smartphone daily for at
least 1 week.

Movement data was collected from the wearable sensors using
Mobility Lab software (APDMWearableTechnologies, a ClarioCompany),
and measures were extracted using custom algorithms written in Python
(Wilmington, DE). Gait features were extracted from the smartwatch and
smartphone using na modified version of GaitPy41. The algorithm for
extracting arm swing is a refactored version implemented in python based
on ref. 13. Phonation and reading files were processed using customPython
code with features computed using the Parselmouth interface to Praat and
the Librosa library. Common speech endpoints, such as jitter, shimmer,
pitch statistics, and Mel Frequency Cepstral Coefficients (MFCC), were
computed.

Accelerometry data and tremor scores were collected from the
smartwatch via Apple’s Movement Disorders Application Programming
Interfaceduring thepassivemonitoringperiods42. TheMovementDisorders
API generates tremor classification scores (none, slight, mild, moderate,
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strong, or unknown) for each1-minperiod, and the fraction of time spent in
each category was calculated for each participant2.

Clinical measures
Participants completed traditional rating scales including theMDS-UPDRS
Parts I-III, Montreal Cognitive Assessment, Modified Hoehn and Yahr,
Geriatric Depression Scale, REM Sleep Behavior Disorder Questionnaire,
Epworth Sleepiness Scale, Scale for Outcomes in Parkinson’s Disease for
Autonomic Symptoms, and the Parkinson’s Disease Questionnaire-8.

Study size
The studywas powered to detect amean change over 12months for a digital
endpoint with superior responsiveness toMDS-UPDRS Part III. The mean
change in part III from baseline to year one in individuals with early,
untreated PD in the PPMI study was 6.9 with a standard deviation of 7.0.
Allowing for up to half of participants to begin dopaminergic therapy over
12 months and 15% drop out, the study aimed to recruit at least 75 parti-
cipants with PD to yield 30 participants completing the study off medica-
tion.The studyhadmore than95%power todetect a true changeof 6.9 units
using a one-sample t-test and a two-tailed 5% significance.

Feature extraction
Features (e.g., of gait, speech) were extracted following the samemethods as
described in the baselinemanuscript8 with the exception of step count and a
compositemeasure of speech,whichwerenot previously analyzed. Basedon
a previous study by Rusz and colleagues34, a composite speech score was
formed by normalizing selected individual features using the normative
cohort statistics at baseline (i.e., subtracting off the control baseline mean,
dividing by the control baseline standard deviation). The composite was
formed using the four speech features (log-transformedmean pause time in
the reading task, monopitch features in the reading task, MFCC2 from the
phonation task and cepstral peak prominence from the phonation task) that
differed between individuals with and without PD at baseline8. Step count
statistics were acquired using the Forest Oak package implemented in
Python43,44. To avoid sleep time,onlydata from thewatch between06:00 and
23:59 local time were processed by the Forest Oak package.

Statistical methods
At study start, all participants with PD were drug-naïve, and according to
pre-specified analysis plans, allmeasurements were included up to the point
where participants startedmedications. Measurements from times after the
start of PDmedications were ignored. Statistical analysis was implemented
in R version 4.2.2. P values < 0.05 were considered statistically significant,
and no adjustment for multiple comparisons was made.

For longitudinal modeling, we applied mixed effects modeling to
capture individual-specific differences and allowed for flexible evolution of
patient progression versus time (avoiding strong constraints, for example,
the assumption thatprogressionhas a linear slopeover time).Weconducted
our statistical analysis via GAM, executed using the gam function from the
mgcv package in the R programming environment45. The GAM framework
provided a robust way for measuring complex and non-linear inter-
dependencies among variables. Separatemodelswerefitted for the cohort of
individuals with PD and controls in order to facilitate understanding of
progression in theParkinson’s-only cohort for planning future clinical trials.

We used the relative measure of change from baseline as our response
variable.Once the relativemeasurewas computed, the data point at baseline
was removed so that the model was not forced to pass through origin. For
predictors, our model included variable value at baseline and time as fixed
effects. The time variable is modeled as a smooth function, namely a pchip
spline fit with four basis functions to allow estimation of distinct smooth
functions46. For random effects, we introduced a random intercept and
random smooth time trajectories for each participant. These terms
accounted for participant-specific variations.

For passive smartwatch data (tremor and step count measures), we
weightedmeasurements based onwatchwear time so dayswith longerwear

time received more weight. For model fitting, we employed the Restricted
Maximum Likelihood estimation technique. Model selection was per-
formed using Akaike information criterion (AIC) to allow for comparison
between models, for example allowing us to compare models with and
without participant-level trajectory fitting using AIC, ultimately leading to
our present model.

Test–retest reliability was assessed by comparing the first and second
clinic visits (separated by 6 weeks) under the assumption that Parkinsonian
symptoms would have progressed little over this time frame. For at-home
data,we reported three adjacent pairwise comparisons from thefirst four at-
home measures (1st vs. 2nd, 2nd vs. 3rd, 3rd vs. 4th).

Missing data
In the main analysis, data from participants were considered until they
began taking PD medications. Data from premature withdrawals were
not included. For clinic measurements, each patient must have con-
tributed at least two data points, while for at-home measurements, each
participant had to have at least three data points for inclusion in the
analysis. If a participant had missing data for an outcome or as part of a
necessary algorithm, that data point was excluded for that analysis.
Values of zero (i.e., did not attempt the task) were also excluded.Detailed
reasons for missing data are outlined in Supplementary Table 3 of the
baseline paper8.

For step countdata inclusion,we considered aparticipant’s data if there
were a minimum of 9 h of wear time during the waking period
(06:00–23:59). This 9-h threshold is based on openly available step count
data from the PPMI dataset, where step counts are collected using Verily
Study Watches47. Analysis of the PPMI dataset reveals a Pearson’s corre-
lation exceeding 0.9 between step counts derived from at least nine ran-
domly selected hours within the wake period (6:00 am–23:59 pm) and the
overall step count for the entire waking period.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data are available to members of the Critical Path for Parkinson’s Con-
sortium3DTInitiative Stage 2.For thosewhoarenot a part of 3DTStage 2, a
proposal may be made to the WATCH-PD Steering Committee (via the
corresponding author) for de-identified datasets.

Code availability
Custom Python code used for feature extraction and R code for statistical
analysis is available from the authors upon request.
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