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Enhancing the diagnosis of functionally
relevant coronary artery disease with
machine learning

Christian Bock 1,2,8, Joan Elias Walter3,4,5,8, Bastian Rieck 1,2,6,8, Ivo Strebel3,4,
Klara Rumora3,4, Ibrahim Schaefer3,4, Michael J. Zellweger3,4,
Karsten Borgwardt 1,2,7,9 & Christian Müller 3,4,9

Functionally relevant coronary artery disease (fCAD) can result in premature
death or nonfatal acute myocardial infarction. Its early detection is a funda-
mentally important task in medicine. Classical detection approaches suffer
from limited diagnostic accuracy or expose patients to possibly harmful
radiation. Here we show how machine learning (ML) can outperform cardiol-
ogists in predicting the presence of stress-induced fCAD in termsof area under
the receiver operating characteristic (AUROC: 0.71 vs. 0.64, p = 4.0E-13). We
present two ML approaches, the first using eight static clinical variables,
whereas the second leverages electrocardiogram signals from exercise stress
testing. At a target post-test probability for fCAD of <15%, ML facilitates a
potential reduction of imaging procedures by 15–17% compared to the cardi-
ologist’s judgement. Predictive performance is validated on an internal tem-
poral data split as well as externally. We also show that combining clinical
judgement with conventional ML and deep learning using logistic regression
results in a mean AUROC of 0.74.

Coronary artery disease (CAD) is the leading cause of death
worldwide1–3. High mortality and morbidity rates, paired with the
availability of highly effective and cost-efficient prevention and treat-
ment measures, underline the importance of early risk stratification of
patients with suspected CAD. CADmay be clinically silent for decades
or become functionally relevant (fCAD) by causing symptoms of
myocardial ischaemia that impact the quality of life and potentially
result in significant or adverse cardiac events such as premature death
or nonfatal acute myocardial infarction (AMI) in the further course.
Therefore, detection strategies should focus on fCAD to maximise
patient benefit. Unfortunately, rapid, easy, and safe rule-out of fCAD

remains a major unmet clinical need. The practical utility of current
screening techniques is limited by either unfavourable diagnostic
accuracy, as in the case of exercise electrocardiography stress testing,
or by their obtrusive nature and high costs, as in the case of functional
non-invasive imaging such as myocardial perfusion imaging (MPI) or
anatomical non-invasive evaluation such as coronary computed
tomography angiography4–9. While these dedicated cardiac imaging
techniques can benefit many patients, they appear to be increasingly
employed improperly in patients with a low pre-test probability of
fCAD5–7. Considering the large population at risk, as well as the avail-
able prevention and treatment options, a clinical tool that enables
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effective, efficient, and safe detection of fCAD can improve patient
outcomes while reducing the burden on patients as well as health
care costs.

The automated detection of cardiac events has a long history10,11,
and traditionally employed methods rely on quantifying ECG changes
such as ST-segment elevation/depression, T-wave abnormalities, or
other morphological anomalies of the QRS complex. However, a sig-
nificant drawback of these methods is their reliance on ECG delinea-
tion algorithms that locate the segments a heartbeat is composed of.
Delineation results can be inaccurate10 for abnormal heartbeats, thus
substantially limiting their utility for at-risk patients. Over the last few
years, deep learning (DL) emerged as a powerful tool to build classi-
fication systems from ECG signals that do not require engineering QRS
complex features12,13. Particularly in detecting different cardiac
arrhythmias, the classification performance of DL systems reached the
point of cardiologist-level accuracy14,15. While the potential of DL has
been investigated in the context of cardiac stress testing16–20, previous
work has the following drawbacks: (1) usage of a large number of
variables which exacerbates model transferability, (2) reliance on
summary statistics computed from automated ECG delineation or
automated and less accurate outcome definitions, (3) lack of com-
prehensive performance evaluations on diverse subcohorts, and (4)
lack of external validation. Lastly, ours is the first study investigating
the benefit of collaborative machine learning in predicting abnormal
myocardial perfusion.

Recent cardiology clinical practice guidelines8,21 discouraged the
sole use of stress ECG testing due to low diagnostic accuracy and
unacceptable false negative and positive rates. However, given its wide
availability, ease of use, and low cost, stress ECG testing remains
commonly performed, which demands methods to use data acquired
during stress testing more effectively. In addition, a stress ECG con-
tains a plethora of information that cannot be included in routine
clinical assessment (such as subtle morphological changes over time)
but can serve as clinically relevant input for a DL system. At the same
time, conventional machine learning based on static clinical variables
alone has been shown to be at least as powerful asmore complex deep
neural networks in the healthcare setting22–24.

Thus, our aim is to derive and validate two different machine
learning models in a heterogeneous patient population with a wide
range of pre-test probabilities, namely (1) an ensemble learningmodel
based on basic available clinical information, and (2) a deep learning
model based on the aforementioned non-sequential variables as well
as the ECG signals obtained during stress testing. We compare these
models to the clinical assessment of cardiologists after stress testing.
Furthermore, to extend their possible scope, the models were also
trained and evaluated in patients who are usually excluded from stress
ECGs and compared with the cardiologist’s clinical assessment after
pharmacological testing.

Results
Data collection, label generation, and robustness
Panel a of Fig. 1 illustrates our data generation workflow. We collected
stress test ECG data from 3522 consecutive adult patients who
underwent a standard25 rest/stressmyocardial perfusion single-photon
emission computed tomography (SPECT) protocol at a tertiary hos-
pital as part of the BASEL VIII study (NCT01838148). Patients were
referred with symptoms possibly related to inducible myocardial
ischaemia and clinical suspicion of stable coronary heart disease. If a
patient was not able to reach their target heart rate, a pharmacological
protocol with either adenosine or dobutamine was initiated by the
treating clinician. Individuals for whom stress test by bicycle ergo-
metry was not possible were put on a pharmacological protocol from
the start. To compare the algorithmic approaches with expert judge-
ment, the treating cardiologist performed a clinical assessment before
and after stress testing: considering all available medical information

such as (cardiac) history, relevant symptoms, risk factors, (stress) ECG,
prior imaging andmore, they indicated the probability of the presence
of fCAD on a visual analogue scale (VAS) from 0% to 100%26–29.
Representing clinical practice, adjudication of functionally relevant
CAD was not formally blinded for stress ECG results or demographics
andwas performed centrally by an expert team composed of a nuclear
medicine physician and a cardiologist assessing myocardial perfusion
scans. Furthermore, whenever available, adjudication was refined with
coronary angiography and fractional flow reserve assessment. Of the
3522 eligible patients who provided written informed consent, 701
(20%) patients underwent coronary angiographywithin 3months,with
30 (0.9%) patients being reclassified to the fCAD group and 74 (2.1%)
being reclassified to the non-ischaemic group. The VAS score the
treating cardiologist provides after the stress test but before they get
access to the imaging results represents the cardiologist baseline in
our study. In practice, this can be interpreted as an indicator as to
whether the cardiologist would recommend a follow-up examination
with advanced imaging.

Thedata setwas split into a development (75%) and a held-out test
set (25%).All patients in thedevelopment set enrolled in the study from
Jan. 2010 through Dec. 2014; the held-out test set contains patients
who enrolled from Dec. 2014 through May 2016. It was only released
and used once the models’ parameters were fixed. Thus, high pre-
dictive performance on the held-out test set indicates the robustness
of our system’s generalisation capability with respect to a temporal
shift of the data30, paving the path towards subsequent real-world
applications. Lastly, we use external data from two Israeli medical
centres to validate our systemon 916 consecutive patients referred for
SPECT MPI testing, whose ECG signals were obtained by treadmill
stress test. This evaluation scenario is designed to exemplify the ability
of both computational approaches to generalise to patients from
unseen institutions, new modalities, and highlight their behaviour
under distributional shifts. Given an fCAD prevalence of 7.5% in the
external data set, our approach based on clinical data alone (AUROC:
0.75 ± 0.004, AUPRC: 0.19 ± 0.01) is outperformed by our deep neural
net using ECG time series and clinical variables (AUROC: 0.80 ±0.01,
AUPRC: 0.28 ± 0.01). Please refer to the Method section for more
details on data splitting and distributional shifts in the external vali-
dation data.

Development of an ensemble predictor and a multi-task neural
network for functionally relevant CAD prediction
The ability to learn from raw sequential data (i.e., time series) makes
neural networks a popular approach for healthcare applications.
However, conventional machine learning (ML) has shown to be at least
as powerful as deep learning in the clinical context22,23, thus creating
opportunities for low-cost deployments that do not require specia-
lised hardware. Therefore, we will also compare their performance to
deep learning models. To this end, we select a small set of eight non-
sequential, easy-to-access variables on which we train four conven-
tional ML methods (i.e., decision trees, random forests31, logistic
regression, support vector machines32). These variables include age,
weight, biological sex, height, heart rate at rest, systolic and diastolic
blood pressure, and presence of a previous CAD. The best-performing
approach (a random forest) was selected via 5-fold cross-validation.
We refer to all developed predictors as Coronary ARtery disease PrE-
dictor (CARPE). Based exclusively on clinical data, we refer to the
random forest model as CARPEClin.. Additionally, we develop a neural
network approach, CARPEECG, that uses the aforementioned non-
sequential variables and the ECG signal, as illustrated in panel c of
Fig. 1. We trained CARPEECG via a multi-task learning33 (MTL) archi-
tecture with residual layers15,34 at its core using the torchmtl35 package.
MTL uses so-called auxiliary tasks (i.e., prediction targets) related to a
main task (e.g., fCAD prediction). These domain-specific inductive
biases ensure improved and robust predictive performance on the
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main task36. As shown in Fig. 1, we train CARPEECG on three auxiliary
tasks (blue boxes), two of which (MPSSS and MPSRS) quantify the
heart’s perfusion capabilities without and under stress, respectively.
The third auxiliary task is to predict whether a patient received any
pharmacological support to perform the stress test. Each auxiliary task
impacts performance on the main task differently. Their respective
importance weights were selected in a grid search on the three best-
performing leads (see Supplementary Fig. 5 and Supplementary
Table 5). To gain insights into the importance of static features and
ECG segments, we used SHAP (SHapley37 Additive exPlanation)
values38.

Finally, we combine predictions from the ensemble model and
deep learning approach with the cardiologist’s post-test judgement by
training a new logistic regression model on all three scores from the
training set. This way, we leverage the experience and domain
knowledge of the cardiologist while adding the potential to benefit
from supervised learning techniques.We believe that, in practice, such
a collaborative approach has the highest chances of being accepted in
a clinical setting not only because it reaches the highest diagnostic
performance (see Supplementary Table 6) but also because the car-
diologist is an integral part of the score generation (in fact they are
required to provide a VAS score after stress testing). Nevertheless, the
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use of logistic regression to enhance diagnostic accuracy does not
ensure or directly translate to clinical utility. The precise impact on
patient risk stratification needs to be assessed separately.

Machine learning can be used to reduce unnecessary perfusion
imaging
The prevalence of centrally adjudicated fCADwas 32.9% in the full study
cohort and 28% in the held-out test split. Figure 2 depicts the diagnostic
performance of our machine learning approaches, the cardiologist’s
assessment after stress testing, and a computational approach that uses
the ECG’s ST-segment depression39,40 as an indication of the presence of
fCAD (see Methods for a detailed description) on the held-out data set.
We show receiver operating characteristic (ROC) and precision-recall
curves in the first row. Standard deviations shown as envelopes were
obtained using bootstrapping, as detailed in the Methods section.
Regarding the mean area under the ROC curve, we observe that
CARPEECG (0.71) and CARPEClin. (0.70) outperform both the ST-
depression algorithm (0.58) and the cardiologist (0.64). In regions of
high specificity, CARPEClin. drops below the sensitivity of the cardiolo-
gist, while CARPEECG reaches comparable predictive performance (see
inline plot). At the other extreme of the ROC curve, i.e., at high sensi-
tivity values, both machine learning approaches consistently lead to a
higher specificity than the cardiologist’s judgement (see inline plot).

Decision curves41 (rows two and three in Fig. 2) overcome the
drawbacks of conventional performance evaluations and calibration
analyses42 by focusing on a predictor’s clinical value. The concept of
net benefit quantifies the trade-off between diagnosing sick patients
andpreventinghealthypatients frombeing exposed toharmful testing
procedures43. For a specific decision threshold probability of a diag-
nostic tool, a larger net benefit indicates a greater number of true
positive predictions without an increase in the rate of false positives
and, conversely, a greater number of true negativepredictionswithout
an increase in false negatives. Figure 2 shows a decision curve analysis
in the second and third row with pre-test rule-out cutoffs (dotted red)
as advocated for in European and US-American guidelines8,21, which
consider probability thresholds between 5-15% for further non-invasive
imaging. The European guideline, for instance, considers non-invasive
testing in patients with a probability >15% as most beneficial and
testing in patients with 5–15% as potentially beneficial. Our machine
learning models lead to a higher net benefit than the cardiologist’s
assessment at all thresholds. Notably, at the threshold of 15%, relying
on the cardiologist’s judgement is worse (in terms of net benefit) than
performing myocardial perfusion imaging on all patients demon-
strating the value of an ML-based method.

Table 1 offers a detailed decision curve analysis, showing sensi-
tivity, negative predictive value (NPV), and percentage of avoided
myocardial perfusion imaging compared to the cardiologist’s judge-
ment at three probability cut-off values. We also show the percentage
of patients who received a score below the cutoff threshold to enable a
meaningful interpretation of sensitivity values. The highest fraction of

MPIs, i.e., almost 25 per 100 patients, could be avoided at a decision
threshold of 10% by usingCARPEColl. as a risk stratificationmethoddue
to risk-overestimation by the cardiologist. That being said, cutoff
thresholds should not be chosen to optimise diagnostic performance,
but they represent the cardiologist’sminimumprobability ofdisease at
which an intervention would be warranted42. In other words, if a car-
diologist holds the belief that missing a patient who suffers from fCAD
is nine times worse than performing an unnecessary MPI, a model’s
performance should be assessed at the 10% cutoff.

Evaluating CARPEECG as a predictive model on all patients of the
held-out test set (at the 15% decision threshold) shows the potential to
reduce perfusion imaging by 15.3% (see Table 1) without increasing the
rate of false negatives. This number increases to 17.3% when using
CARPEColl.. We observe similar behaviour in patients without a CAD
history. At the 5% threshold (i.e., if a physician considers it 19 times
worse tomiss an fCADdiagnosis than to performanunwarrantedMPI),
ML can be used to avoid 10.8% of the imaging ordered by a cardiolo-
gist. For patients with CAD history, the decision thresholds of 5% and
10% lead to a particularly small number (<1% or none) of patients for
which fCAD can be ruled out, which inflates sensitivity and NPV of
CARPEECG and CARPEColl.. This inflation is particularly pronounced in
CARPEClin. (see Supplementary Fig. 6) which is therefore not shown
here. Overall, these results demonstrate the potential clinical utility of
the proposed methods to reduce potentially unwarranted MPIs.

Subcohort analysis:machine learning performsparticularlywell
on younger patients
Trustworthiness and interpretability are of fundamental importance in
the development of risk stratification models in cardiology44. Identi-
fying (sub)cohorts of the population for which the model performs
particularly well or poorly is crucial. To address the issue of trust, we
evaluate our models’ performances on a variety of subcohorts that are
important in the context of exercise stress testing. Regarding inter-
pretability, we perform an analysis of SHAP values38 on the population
level, and a case study to better understand the impact feature values
and ECG segments have on the predicted scores.

Clinically significant subgroups include patients who underwent
exercise stress testing versus patients who required pharmacological
testing as well as patients without a prior history of CAD versus
patients with a known history of CAD; the odds of suffering from fCAD
are significantly increased (p = 2.26E-40, two-sided Fisher’s exact test,
test statistic = 2.64) for patients with previous CAD (OR: 2.64, 95% CI:
2.28–3.05) over the whole cohort. To obtain a more detailed perfor-
mance breakdown, we also stratify the data by sex and age. Diagnostic
performances of all approaches and subcohorts of the held-out test set
are shown in Fig. 3 and Supplementary Table 6. For comparison, the
performance of the CAD consortium model45 and the currently used
ESC pre-test probabilities for obstructive coronary artery disease8,9,
both based on age, sex, and the nature of symptoms, is shown in
patients without known coronary artery disease. First, we assess the

Fig. 1 | Protocol overview. a Data acquisition: We highlight the three primary
subgroups of exercise stress testing: ① patients who complete the bicycle exercise
stress test, ② patients not able to exercise on the bicycle, and for whom a phar-
maceutical protocol is used at the beginning of the stress test, and ③ patients
starting on the bicycle but need pharmacological support to reach their target
heart rate. Doctors perform myocardial perfusion scans at rest (rest MPS), and at
the target heart rate (stress MPS). Myocardial perfusion is quantified by the myo-
cardial perfusion scan summed rest score (MPSSR score), and the MPS summed
stress score (MPSSS score). The cardiologist estimates the probability of a func-
tionally relevant CAD (fCAD) before and after the stress test (Pre/Post-Test CAD
Probability in the figure). The binary label indicating the presence of fCAD (yellow
box) is adjudicated by considering the stress test results and additional relevant
clinical parameters. b Data Preprocessing: Following smoothing and outlier
removal, time series that serve as input to the neural network are constructed by

joining short subsequences from different phases of the stress test. For this, 2 s
from the pre-stress phase, 6 s from the stress phase, and 2 s from the recovery
phase are sampled and concatenated multiple times for a single patient (green,
orange, and purple sequences). x-axes represent time in seconds. c Machine
Learning: For our neural network approach (CARPEECG), these 2-6-2 sequences are
fed into a residual neural network (ResNet). In parallel, the patient’s static clinical
data are processed by a 2-layer feedforward network. Four subnetworks are trained
on three auxiliary tasks (i.e.,MPSSR&MPSSS score aswell as stress typeprediction)
and onemain task (fCADprediction). We average predictions of themain task over
all 2-6-2 sequences per patient. Purple arrows in front of each task indicate the
direction of the learning signal. The sameclinical variables as for CARPEECG are used
to train a random forest classifier (CARPEClin.); nodes are coloured to enhance
legibility. We combine both predictions with the cardiologist’s judgement in a
logistic regression model (CARPEColl.).
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performance of individual machine learning methods before discuss-
ing their combinationwith the cardiologist’s judgement. Deep learning
outperforms the cardiologist in terms of both AUROC (significant
performance increase in 6/10 subcohorts) and AUPRC (significant
performance increase in 4/10 subcohorts), while CARPEClin. exceeds
the human baseline in 5/10 strata in terms of AUROC and 2/10 sub-
cohorts in terms of AUPRC. The central plot in panel a of Fig. 4 helps
explain this performance discrepancy: The conventional ML model
relies more than the neural network on the CAD history and sex vari-
able as visually observable by the large gap between the highest
negative and the lowest positive SHAP value for each variable. Strong
reliance on a given variable pushes the predictor too strongly in one

direction such that other features cannot compensate for this influ-
ence on the final score. This SHAP analysis confirms the importance of
the “CAD history”, “sex”, and “age” variables as observed in other
studies19,20.

Overall, the discriminative performance was highest (excluding
CARPEColl.) in younger patients (CARPEECG AUROC: 0.78 ±0.04) in
general and in younger patients who did not require pharmacological
support specifically (CARPEECG AUROC: 0.79 ± 0.04). The former
cohort also represents the stratum in which the increase over the
cardiologist is the highest, namely 0.19 in AUROC and 0.15 in AUPRC.
We hypothesise that similar to the conventional ML model (i.e., a
random forest), a cardiologist might be more biassed towards a

Fig. 2 | Diagnostic performance overview. ROC and PR-curve. Predictive perfor-
mance of our deep learning-based approach (CARPEECG), a random forest based on
clinical data (CARPEClin.), the cardiologist, and ST depression in terms of mean
performance± standard deviation (envelopes) over n = 25 bootstrap draws. The
upper plots show that both machine learning approaches outperform the cardi-
ologist in terms of area under the receiver operating characteristic and precision-
recall curve. In regions of high specificity (inline plot), the neural network is on par
with the cardiologist while CARPEClin. exhibits worse performance. Both machine
learning methods outperform the cardiologist’s judgement in regions of high
sensitivity (inline plot). Decision Curve: First row: Net benefit43 plot for CARPEECG
(green), CARPEClin. (orange), the cardiologist (purple), a myocardial perfusion scan
(MPS) for no patient (black), and MPS for all patients (dashed grey). CARPEColl. is

not shown as it is visually indistinguishable from CARPEECG. Net benefit puts both
benefit and harmon the same scale. In our case, we consider harm to be inflicted by
performing an unnecessaryMPS. At a decision threshold of 5%, all approaches lead
to a similar net benefit. At the second threshold of 15%, CARPEClin. and the cardi-
ologist demonstrate a net benefit similar to performing MPS on all patients, with
CARPEECG leading to a higher net benefit. Second row: Potential MPSs avoided
compared to the cardiologist’s strategy: While the conventional ML model and
deep learning avoid the approximately same number of MPSs at the decision
threshold of 5% (11.5% and 12.8%, respectively), the gap increases at the pre-MPS
threshold of 15% (15.3% and 5.3%, respectively). Envelopes in both rows show 95%
confidence intervals around themean over n = 25 bootstrap draws. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-49390-y

Nature Communications |         (2024) 15:5034 5



negative diagnosis in younger patients. In contrast, the DL model is
more robust to such a behaviour (as shownby the SHAPdistribution of
the age variable in Fig. 4). We show a more detailed assessment of
diagnostic performance in different age groups in Fig. 5.

On the male subpopulation, CARPEClin. is outperformed by the
cardiologist, indicating that the conventional ML model relies too
strongly on the sex feature as an indicator for the presence of fCAD,
whereas the DL model and the cardiologist use this feature more
effectively. This is underlined by the observation that the performance
gap betweenCARPEECG and CARPEClin. is highest in themale subgroup.
In female patients, both CARPEClin. and CARPEECG perform comparably
and better than the cardiologist in terms of AUROC.

In patients of at least 65 years of age, it becomes apparent that
human judgement and ML might benefit from each other: while indi-
vidually, both CARPEClin. and CARPEECG perform equally or worse than
the cardiologist, combining all predictions in CARPEColl. results in a
statistically significant performance increase over the DL model. It
appears that the ML models’ biases are mitigated by the cardiologist’s
expertise and vice versa. Augmenting the machine and deep learning
output by the cardiologist’s judgement also increases diagnostic per-
formance significantly in the full population. While CARPEColl. obtains
itsmaximalmeanAUROC in the samecohorts asCARPEECG, the highest
mean increase over CARPEECG can be observed in patients with a CAD

history, making it the group in which ML and cardiologists could
complement each other most effectively.

Conventional machine learning relies on age, and ST-segment
depressions contribute to high risk scores
For the cardiologist who interacts with a risk-stratification tool, it is
critical to understand the model’s operations46 and whether it is con-
sistent with the clinical knowledge about the phenotype. To develop
such an understanding, post-hoc explanations47 can be used to make
predictions more interpretable. We use SHAP38 values, a game-
theoretic approach, to explain the outputs of machine learning mod-
els. SHAP values provide a score that quantifies the impact an indivi-
dual feature value hason themodel’s prediction. A positive SHAP value
is associated with the prediction of the positive class/the presence of
fCAD. Conversely, a feature with a negative SHAP value influences the
model towards predicting the negative class/the absence of fCAD.

Panel a of Fig. 4 showsmeanabsolute SHAPvalues and SHAPvalue
distributions for all clinical variables for CARPEECG and CARPEClin. on
the left-hand side. On the right-hand side, we show the SHAP values for
the “age” feature. For both classifiers, “CAD history” and “sex” are the
most influential predictive features (i.e., highest mean absolute value).
However, CAD history is only significantly more relevant than the
patient’s “sex” in the random forest (p = 7.9E-05, test statistic = 7.36

Table 1 | Detailed Decision Curve Analysis

Threshold <5% for rule-out

Method % below cutoff ± STD Sensitivity ± STD NPV ± STD Myocardial perfusion imaging avoided %
(95% CI)

All patients (n = 803) CARPEECG 10.3 ± 1.5 0.98 ±0.01 0.96 ±0.02 12.8 (0.4–25.1)

CARPEColl. 5.1 ± 0.9 0.99 ±0.01 0.95 ±0.03 11.7 (0.1–23.4)

Cardiologist 4.3 ± 0.8 0.98 ±0.01 0.88 ±0.05 baseline

No prior CAD (n = 446) CARPEECG 18.3 ± 2.8 0.96 ± 0.02 0.96 ±0.02 12.4 (-9.6–34.5)

CARPEColl. 9.1 ± 1.6 0.98 ±0.02 0.95 ±0.03 10.8 (-6.8–28.3)

Cardiologist 4.7 ± 1.1 0.98 ±0.01 0.91 ± 0.05 baseline

Prior CAD (n = 357) CARPEECG 0.07 ± 0.1* 1.0 ±0.0 1.0 ±0.0 13.1 (-1.3–27.5)

CARPEColl. None 1.0 ±0.0 - 13.0 (-1.2–27.3)

Cardiologist 3.8 ± 1.3 0.98 ±0.01 0.83 ±0.12 baseline

Threshold <10% for rule-out

All patients (n = 803) CARPEECG 21.5 ± 1.3 0.94 ± 0.01 0.92 ± 0.02 20.6 (5.4–35.7)

CARPEColl. 20.3 ± 1.5 0.96 ± 0.01 0.94 ±0.02 24.6 (11.1–38.1)

Cardiologist 5.7 ± 0.9 0.97 ±0.01 0.85 ± 0.04 baseline

No prior CAD (n = 446) CARPEECG 37.4 ± 2.0 0.86 ±0.04 0.92 ± 0.02 12.0 (-7.3–31.3)

CARPEColl. 35.5 ± 3.0 0.90 ±0.03 0.94 ±0.02 18.1 (3.2–33.0)

Cardiologist 5.9 ± 1.1 0.96 ±0.02 0.86 ±0.06 baseline

Prior CAD (n = 357) CARPEECG 1.0 ± 0.7 1.0 ±0.01 0.85 ±0.23 31.4 (11.7–51.1)

CARPEColl. 0.8 ± 0.6* 1.0 ± 0.0 1.0 ± 0.0 32.9 (14.7–51.0)

Cardiologist 5.5 ± 1.3 0.98 ±0.01 0.83 ±0.06 baseline

Threshold <15% for rule-out

All patients (n = 803) CARPEECG 31.1 ± 1.6 0.89 ±0.02 0.90 ±0.01 15.3 (5.4–25.3)

CARPEColl. 32.6 ± 1.8 0.89 ±0.02 0.91 ±0.01 17.3 (7.4–27.1)

Cardiologist 21.5 ± 1.2 0.87 ± 0.03 0.83 ±0.03 baseline

No prior CAD (n = 446) CARPEECG 51.8 ± 2.6 0.75 ± 0.05 0.90 ±0.02 13.8 (-1.9–29.4)

CARPEColl. 54.9 ± 2.5 0.75 ± 0.05 0.91 ±0.01 16.7 (3.1–30.4)

Cardiologist 23.3 ± 2.0 0.87 ±0.03 0.89 ±0.03 baseline

Prior CAD (n = 357) CARPEECG 4.6 ± 1.3 0.98 ±0.01 0.86 ±0.11 17.3 (3.9–30.6)

CARPEColl. 4.0 ± 1.5 0.99 ±0.01 0.89 ±0.10 17.8 (5.2–30.4)

Cardiologist 19.1 ± 2.0 0.86 ±0.03 0.73 ± 0.05 baseline

Clinically relevant performance indicators for the pre-test probability thresholds of 5%, 10%, and 15%, stratified by presence/absence of CAD history. The column “Myocardial perfusion imaging
avoided”uses thecardiologist as thebaseline. An asterisk annotates settingswithanextremely lownumber ofpatients (<1%)who fall belowthe threshold, leading toan inflationof sensitivity andNPV.
BothCARPEECG andCARPEColl. performparticularlywell onpatientswith a history of CADat the 15% threshold.On average,wecan expect a reduction of unnecessary imaging by 17.8% (CARPEColl.) in
this cohort at an average sensitivity of 0.99 and a negative predictive value of 0.89. Highest mean values are highlighted in bold.
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(CARPEClin.)) and not in CARPEECG (p =0.055, Welch’s t-test for inde-
pendent samples, test statistic = 2.24). Furthermore, the SHAP dis-
tribution of these variables around the value of zero is strikingly
different.While CARPEECG exhibitsmany values comparatively close to
zero (i.e., there are patients for which the respective features have no
significant impact on the model’s final prediction), both CAD history
and “sex” have a large impact on the model’s prediction in all patients
for the conventional ML model (i.e., the distance to zero for both
positive and negative SHAP values is substantial). Additionally, both
features show a distinctive separation: each variable instance always
leads to either a positive (male and presence of CAD history) or
negative (female and absence of CAD history) SHAP value. We observe
another distinctively different behaviour in the distribution of SHAP
values for the “age” feature. The conventional ML model has learnt an
age threshold of 70 years, which, when exceeded, leads to mostly

positive SHAP values (i.e., it contributes to predicting the presence of
fCAD) and vice versa. CARPEECG, on the other hand, exhibits a dis-
tinctive bell shape around zero, indicating the reduced impact of this
variable.While this bias is likely due to the reduced fCADprevalenceof
younger patients, the DL model exhibits a more stable behaviour with
respect to this variable. The conventional ML model’s reliance on
young age as a strong indicator of the absence of fCAD turns out to be
detrimental when evaluated on external data, which consists of sig-
nificantly more young patients (see Fig. 5). This underscores the need
for explainability and trustworthiness in assessing ML models; if
unaddressed, these aspects may preclude clinical applicability.

In addition to performing a population-wide feature relevance
analysis, SHAP values allow for sample-specific analyses. In panel b of
Fig. 4, we show a case study of an 83 year-old male patient with no
previous CAD. We envision that in a future clinical implementation of

Fig. 3 | Diagnostic performance subcohort analysis. Performance breakdown
over different subcohorts and n = 25 bootstrap draws. The dashed black line indi-
cates the AUROC of a random classifier. Over the full cohort (All Patients), both
CARPEClin. and CARPEECG reach a statistically significantly higher AUROC than the
cardiologist. Additionally, the collaborative approach (CARPEColl.) significantly
increases predictive performance over CARPEECG. Please refer to Supplementary

Table 6 and Supplementary Fig. 4 for more details. Box plots indicate median
(middle line), 25th, and 75th percentile (box). Whiskers extend to points that lie
within 1.5 IQRs of the lower and upper quartile. Diamonds are outliers. Error bars in
the bar plots indicate 95% confidence intervals. Source data are provided as a
Source Data file.
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Fig. 4 | SHAP value analysis. a Bar plots show themean absolute SHAP value for all
clinical variables used by our predictors. Purple scatter plots show individual data
points. CAD history and sex are the most important clinical features for both
classifiers. The central scatter plots show the impact individual feature values have
on the prediction score. High feature values are depicted in a dark blue, low values
in a light green. SHAP values for an existing CAD history are always positive.
Similarly, SHAP values of the “sex” feature are always positive for male patients. We
depict SHAP value distributions over all ages in the scatter plots on the right-hand
side. b SHAP values for clinical variables and one 2-6-2 sequence of a patient. The
first row shows the feature distribution of the development data set (n = 2648) in
green. The blue cross marks where in the distribution the patient lies. Second row:
SHAPvalues for the specific patient for each featureovern = 5 splits. The absenceof

a CAD history and the resting heart rate of 67 BPM result in negative SHAP values.
The patient’s sex (male), his age, and systolic blood pressure at rest are associated
with higher SHAP values. Last row: One of the patient’s 2-6-2 sequence (black) with
the SHAP values of each individual measurement in the background. We show
negative SHAP values in dark purple and positive ones in yellow. Dashed black lines
mark the borders of pre-stress, stress, and recovery samples. The largest areas of
high SHAP values concentrate in the stress phase around the ST-segment. Error
bars in all plots indicate 95% confidence intervals over allmodels from all five splits.
Box plots indicate median (middle line), 25th, and 75th percentile (box). Whiskers
extend to points that lie within 1.5 IQRs of the lower and upper quartile. Diamonds
are outliers. Bar plots show themean over n = 5 test splits with error bars indicating
95% confidence intervals. Source data are provided as a Source Data file.
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our risk assessment tool, such a dashboard will support the cardiolo-
gist to understand better on which basis the model arrived at its pre-
diction (e.g., whether the ECG signal is disturbed or noisy) and the
influence of each feature (e.g., SHAP values).

The first row of panel b depicts the distributions of the values of
all clinical features from the training population. Blue crosses indicate
where the patient lies in that distribution. The centre row shows the
distribution of SHAP values overfive iterations.Moreover,we show the
SHAP values of individual measurements in the background of the
input ECG in the last row. The mean risk-score CARPEECG provides for
this patient, who was later diagnosed with the presence of fCAD, is
0.77. We show positive SHAP values in yellow, negative ones in dark
purple.

Notwithstanding their opposing signs, among the clinical vari-
ables, both the absence of a previous CAD and the patient’s age con-
tribute most to the model’s prediction (-0.1 and 0.1, respectively). The
normal resting heart rate of 67 is associated with a lower risk score
(mean SHAP value: 0.07). While weight, height, and diastolic blood
pressure influence the model only marginally, the fact that the patient
is male contributes most towards a higher risk score. Similarly, the
patient’s age lies above the upper quartile of the training distribution,
pushing the model toward predicting a higher score. Lastly, the sys-
tolic blood pressure (129mmHg) also contributes to the prediction of
the positive class. The largest contribution that increases the model’s
output comes from the ECG. The SHAP values attributed to certain
measurements and segments in the ECGmight change throughout the
different phases of stress testing. In sum, the mean SHAP value for the

whole signal is 2.31. The highest SHAP values can be observed in the
part of the input signal that comes from the stress phase of the
examination. Measurements around the R-peak during rest and, more
strikingly, around the ST-segment in the stress and partially in the
recovery phase are associated with higher SHAP values than other
segments of the ECG. The latter observation is a data-driven and a
priori domain-agnostic confirmation of the relevance of ST-segment
depression in the diagnosis of fCAD. This is underlined by the fact that
in the pre-stress phase, where almost no ST-segment depression is
visible, SHAP values around the ST-segment are close to zero. Con-
versely, negative SHAP values, in line with conventional medical
understanding, are observed in the T-wave region during rest, the PR
interval during stress, and prominently at the ventricular activation or
R-wave peak time. This case study and the relevance of ST-segment
depression for the prediction of higher risk scores is supported by a
population-wide SHAP analysis in Supplementary Figs. 7 and 8.

CARPEECG generalises to unseen data across countries and
modalities
To validate our neural network’s generalisation capabilities, we com-
pute its predictive performance on an external validation data set
containing 916 consecutive patients referred for exercise myocardial
perfusion single photon computed tomography. Referral reasons
included non-anginal chest pain, atypical angina, presence of risk
factors, or shortness of breath. This data set was retrieved through the
THEW data repository48 (SUI: E-OTH-12-0927-015); it differs from the
development data in several key characteristics: First, instead of

Fig. 5 | Diagnostic performance over age groups. On the x-axes, we show dif-
ferent age groups in the held-out test and external validation set. Left y-axes: area
under the receiver operator characteristic (AUROC). Error bars indicate 95% con-
fidence intervals around the mean. Right y-axes: percentage of patients who
comprise the respective subgroup of the x-axis. No cardiologist’s judgement is
available in the external validation set, hence CARPEColl. cannot be evaluated. The

performance difference between random forest and CARPEECG is strongest in the
external validation set due to the conventionalMLmodel relying (too) strongly on
the “age” variable. Error bars indicate 95% confidence intervals over all models of
all five splits. The number of individuals in each bin are 53, 143, 219, 248, 140 for the
held-out test set and 281, 341, 208, 86, respectively. Source data are provided as a
Source Data file.
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recording the stress test ECG using bicycle ergometry, it was captured
by a treadmill exercise test. Therefore, the resulting signal is subject to
noise from walking movements rather than the cycling activity. Sec-
ond, with a mean age of 55 years, the population in the external data
set is significantly younger (p = 1.5E-121, one-sided Welch’s t-test, test
statistic = 25.39) than the internal study cohort (held-out test set)
whose patients are on average 68 years old (see Supplementary Fig. 9
for a complete comparison of all clinical variables). Lastly, the pre-
valence of ischaemia in the internal cohort is significantly higher
compared to the external validation set (7.5%).

As shown in Supplementary Table 7, both approaches reach a
good overall diagnostic performance and perform better on the
external data set than on the internal held-out test set. CARPEECG
outperforms the conventional MLmodel in both AUROC (0.80 ± 0.01
vs. 0.75 ± 0.004) and AUPRC (0.28 ± 0.02 vs. 0.19 ± 0.01). We
attribute thehigher predictive performanceof theDLmodel to the fact
that despite coming from a different modality, ECG signals are not
fundamentally different among different populations, making it a
robust and reliable input signal.

In Fig. 5, we contrast predictive performance on different age
groups in both internal and external validation data. In patients who
are younger than 70, both computational approaches consistently
outperform the cardiologist in terms of diagnostic accuracy. However,
for the stratum thatmakes up themajority of thedata set (ages 70–79),
pure computational prediction and human judgement individually
perform comparably. However, their combination (CARPEColl.) sig-
nificantly (p = 8.1e-4, one-sided Welch’s t-test, test statistic = 7.58)
increases diagnostic performance over the cardiologist’s judgement
and over CARPEECG (p =0.001, test statistic = 4.73). The two extremes
of the age distribution exemplify how the random forest’s cutoff of
70 years (see SHAP analysis) leads to detrimental performance: The
further away a patient group lies from the cutoff, the bigger the per-
formance difference between CARPEECG and CARPEClin. becomes. This
is even more pronounced in the external validation cohort, where the
differences in mean AUROCs (i.e., 10.3 percentage points) are the lar-
gest in patients between 26 and 49 years of age.

Discussion
Wederived and validated twoMLmodels for the safe risk-stratification
of patients with suspected fCAD. The models were developed using
basic clinical information and raw stress test ECG signals. Their per-
formance was compared to a numerical risk estimate by the treating
cardiologist after stress testing. Justified by their good predictive
performance, we find both models to potentially be useful risk-
stratification tools for (a) the primary care setting where cardiac stress
testing is not always performed but there is access to the relevant
clinical information and (b) the secondary and tertiary setting where
stress testing is performed and relevant clinical information is avail-
able. Both ensemble learning based on basic clinical information and
deep learning based on clinical information and stress ECG signals
outperformed the cardiologist’s numerical risk assessment after stress
testing as well as currently employed risk scores in predicting the
presenceof fCAD. At a rule-out probability threshold of <15%asused in
current clinical practice guidelines8,21, compared to the cardiologist,
the use of the deep learning model enabled a potential average
reduction of myocardial perfusion imaging of 15% without increasing
the rate of false negatives at 89% sensitivity and 90% NPV (vs. cardi-
ologist 87% sensitivity and 83% NPV). This was partly due to a con-
sistent risk over- and underestimation at the tails by the cardiologist
and a lower diagnostic accuracy in comparison (see Supplementary
Fig. 6). This shows that calibration is not only a challengewhen training
ML models but also that the numerical probability estimates from
expertsmust be interpretedwith caution. As observed in other studies
in ML for healthcare20,22–24,49, we show that conventional ML models
based on clinical data alone canbe effective predictors and onparwith

deep learning models when considering the whole data set at once.
However, in the context of fCAD prediction, we observe that when
stratified into clinically relevant patient subgroups or validated
externally, deep learning models consistently yield increased diag-
nostic performance in most strata. This is likely a direct consequence
of phrasing the prediction task as a multi-task problem, thereby pre-
venting overfitting, and the additional data source (ECG signal)
allowing the network to learn nuances a conventional ML model can-
not capture. For instance, our SHAPanalysis revealed that compared to
the deep learning model, the ensemble model heavily relied on the
“sex” and the “age” feature, with the latter rendering it less gen-
eralisable in external validation. A post-hoc interpretability study of
the neural network confirmed the relevance of ST-segment depression
when predicting fCAD and highlighted the usage of feature attribution
methods (such as SHAP values) as potential biomarker discovery tools.
In line with previous work50, we therefore recommend that any pre-
dictive model in cardiology should be assessed internally and exter-
nally in terms of (1) its general predictive performance, (2) its
effectiveness in clinically relevant subgroups, (3) the relevance of its
features, and, if possible, (4) in the context of a human baseline or
common clinical practice. In particular, evaluating the degree to which
presenting feature attribution values to clinicians may impact their
decision-making will be the subject of future prospective studies. Our
study showed that combining both computational approaches with
the cardiologist’s assessment using logistic regression analysis further
increased predictive performance by potentially cancelling out each
other’s weaknesses, such as algorithmic or cognitive biases. This
combined approach led to amean AUROC increase of four percentage
points over the DL model in patients with a CAD history and an
increase of 17 percentage points over the cardiologist numerical pre-
diction in patients below the age of 65 who possessed the capacity to
undergo the stress test unaided by pharmacological support. Several
limitations should be considered when interpreting our findings.
Although we have used a stringent methodology to adjudicate the
presence or absence of fCAD, we still may have misclassified a small
number of patients. Reflecting clinical practice, the expert inter-
pretation of fCAD was not blinded to clinical and stress ECG data,
which could have led to an overestimation of these features. Never-
theless, the model’s discriminative performance remained consistent
across patients, regardless of whether they received invasive coronary
artery assessment or not (Supplementary Figs. 2 and 3), indicating a
minimal impact of this non-blinded approach. The model was devel-
oped in symptomatic patients referred to a tertiary hospital. During
study enrolment, MPI-SPECT/CT was the standard non-invasive ima-
gingmodality andwas applied to patients with a wide range of pre-test
probability for CAD. Based on the pre-test probabilities employed in
the current ESC guidelines for the diagnosis and management of
chronic coronary syndromes21, 29% of the patients included in the
derivation and internal validation cohortwouldbe classified as low risk
(<15% probability). As in most other cohorts enroling consecutive
patients with suspected CAD, women were underrepresented in the
overall cohort. Accordingly, some of the subgroup analyses may have
been underpowered in female patients. Similarly, patients of Africanor
Asian descent were underrepresented in this study, and potential dif-
ferences between these groups cannot be addressed. In the derivation
cohort, 26% of patients were below 60, and 7.6%were below the age of
50. Therefore, the results of this study might not apply to very young
patients. While the value of more advanced neural network archi-
tectures (e.g., attention-based) and ensemble methods (e.g., gradient-
boosted trees) may also be explored in the future, prospective clinical
studies must be prioritised to establish the clinical value of the CARPE
models, interpretability dashboards, and collaborative machine
learning.

We integrated the clinical judgement of physicians into our
machine learning model using logistic regression, which further

Article https://doi.org/10.1038/s41467-024-49390-y

Nature Communications |         (2024) 15:5034 10



increased its accuracy. However, it is important to acknowledge the
limitations of logistic regression analysis and that in real-world clinical
practice physicians are unaware of the influence their numerical pre-
dictions have on the model’s score. The extent to which this knowl-
edge gap influences subsequent risk assessments and thus themodel’s
performance in real-world clinical practice remains an open question.
Moreover, clinical utility and the generalisation capabilities of our
method are affected by distribution shifts in the input data. In parti-
cular, the dependency of clinical judgement on the practitioner’s level
of experience and their intuitive understanding of the patient’s medi-
cal history warrants a recalibration of both the ensemble model and
the logistic regression before deployment in novel clinical environ-
ments. Thus, the observed improvement in performance through
logistic regression analysismay not directly reflect the clinical utility or
practical applicability of its predictions in healthcare settings. For our
collaborative approach to achieve this, careful model recalibration,
score interpretation, as well as continuous monitoring of clinical out-
comes will be required. As a leading cause of mortality and morbidity
worldwide, fCAD is affecting an ever-increasing patient population.
With the concurrent demographic ageing in most high- and middle-
income countries, there is a major clinical need for safe, accessible,
effective, and cost-efficient risk stratification tools to identify patients.
Our research underscores the potential clinical utility of ML in redu-
cing potentially unwarranted examinations to support clinicians in
providing the best possible care for their patients. Ultimately, max-
imising predictive performance and clinical acceptance most likely
necessitates integrating human judgement with ML predictions in
some way.

Methods
The BASEL VIII study was approved by the local ethics committee
(swissethics, BASEC, Ethikkommission Nordwest- und Zentralschweiz)
under the number EKBB 100/04 and carried out according to the
principles of the Declaration of Helsinki.

Study population
This analysis is part of a large prospective diagnostic study
(NCT01838148, clinicaltrials.gov) designed to advance the early
detection of inducible myocardial ischaemia51,52. Consecutive adult
patients referred to the University Hospital Basel, Switzerland for rest/
stress myocardial perfusion single-photon emission tomography/
computer tomography (MPI-SPECT/CT) with symptoms possibly due
to inducible myocardial ischaemia were enrolled between January
2010 toMay2016. During that periodMPI-SPECT/CTwas the preferred
imagingmodality in patients with awide range of pre-test probabilities
for functionally relevant CAD29,52. All patients provided written
informed consent. Participants did not receive any form of financial
compensation or equivalent benefits for their participation in this
study. Clinical information, including patient characteristics, medica-
tions, symptoms, and prior cardiovascular history were documented
by physicians using standardised questionnaires and all medical files
available. Based on all clinical information prior to testing, the treating
physician recorded a subjective clinical assessment regarding the
presence of inducible myocardial ischaemia due to CAD on a visual
analogue scale with values between 0% and 100%. Supplementary
Table 9 shows demographic and clinical characteristics of patients in
development and held-out test set. The sex of the patientwasbased on
the medical files of the University Hospital Basel which represent the
Swiss civil status register (i.e., “Geschlecht/Sex” as listed on the pass-
port). We only disaggregated data by sex not by gender, as the latter
has not been collected.

ECG preprocessing and feature extraction
To prepare the 12-lead ECG signals as input to our deep learning
approach, we first performed a small number of signal preprocessing

steps including downsampling, smoothing, and outlier removal.
However, as the choice of preprocessing can affect the ECG’s
morphology53, preprocessing parameters were determined by a grid
search (see Supplementary Fig. 5). Simultaneously, we evaluated the
predictive performance of individuals leads and their combination and
selected the best performing combination for evaluation on the held-
out test set. Secondly, scalability limitations imposed by the neural
network architecture require a significant reduction of the length of
the ECG input signal from ~500,000 time points (i.e. 15min) to 5000.
For this, we sample 2 s from the beginning of the examination, 6 s from
the last 2min of the stress phase, and 2 s from the last 3min of the
recoveryphase andmerge them into a single time series (see panel b in
Fig. 1) whose information content is dominated by the stress phase.
This time series, which we refer to as the 2-6-2 sequence, was con-
structed up to twenty times per patient by sampling the subsequences
at different time points. Such summary sequences represent a com-
promise between expressivity (each sequence contains information
from the warm-up, stress, and recovery phase) and computational
scalability.

Exercise stress testing protocol and ECG raw data acquisition
Resting heart rate, blood pressure, and 12-lead resting ECG were
recorded before exercise. A standardised, stepwise, and symptom-
limited upright bicycle exercise test was performed54,55. Beta-blockers
and antianginal medication were paused for at least 48 h and nitrates
for at least 24 h before testing. Exercise stress testing was considered
conclusive if 85% of the age predicted maximum heart rate was
reached. If this was not feasible, physical exercise was stopped and
patients were switched to an adenosine or dobutamine pharmacologic
stress testing protocol51,55,56. In patients in whomphysical stress testing
was contraindicated or the target exercise performance was not
reached, pharmacological testing was performed. After testing and
blinded to theMPI-SPECT/CT results, the treating physicianoncemore
recorded a clinical post-test probability regarding the presence of
fCAD on a visual analogue scale (0–100%). The 12-lead ECG signals
were recorded with two different devices (Schiller AT-110 and Schiller
CS-200 Excellence) at 500Hz and 1000Hz with a minimal resolution
of 5μV/bit and a minimal diagnostic signal bandwidth of 0.05Hz
to 150Hz.

Adjudication of fCAD
Adjudication of fCAD was based on expert interpretation of MPI-
SPECT/CT images combined with information obtained from invasive
coronary angiography and fractional flow reserve measurements,
whenever available. All patients underwent a routine standard rest/
stress dual isotope (201Tl for rest, 99mTc sestamibi for stress) or a single
isotope (99mTc sestamibi for stress and rest) MPI-SPECT/CT protocol.
MPI-SPECT/CT images were scored semi-quantitatively using a 17-
segment model with a 5-point scale (0 = normal, 1 =mildly reduced
tracer uptake, 2 =moderately reduced uptake, 3 = severely reduced
uptake and 4 = no uptake). Summed stress score and summed rest
score were calculated by adding the scores of the 17 segments in the
stress and rest images. Summed difference score was the difference
between summed stress score and summed rest score. A summed
difference score of at least 2 or positive transient ischaemic dilation
ratio (≥1.22 for the dual isotope protocol and 1.12 for the single isotope
protocol) was considered as fCAD27–29. Summed stress score and
summed rest score were derived by visual assessment of two expert
readers and compared with the software result. Differences in the
visual assessment were resolved by finding consensus. In case of
equivocal findings from MPI-SPECT/CT and coronary angiography, an
adjudication committee of two independent cardiologists (one inter-
ventional cardiologist, one general cardiologist) that were blinded to
study biomarker results reviewed the case using all clinically available
data. A positive perfusion scan was overruled when coronary
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angiography showed normal coronary arteries, while a negative per-
fusion scan was overruled if coronary angiography (within 3months)
either revealed a high-grade coronary lesion (>75%) or if there was
fractionalflow reserve below0.80. In total the adjudication committee
reviewed 147 cases or 21% of the 701 patients that underwent coronary
angiography within 90 days.

Neural network architecture
Supplementary Fig. 10 provides an overview of the multi-task learning
neural network architecture. While the patient’s static data Xclin is
embedded by a neural network, the ECG data (Xecg) is fed into a resi-
dual neural network akin to the one used by Ribeiro et al.15. The con-
catenation of the output of the embedding layer for the clinical
variables and the output of the residual network serves as input to four
subnetworks, each of which is responsible for the prediction of one of
the four tasks. Each task has its own loss function. More details about
the exact layer definitions can be found in Supplementary Fig. 3.

ST-segment depression
The human baseline is complemented by an automated determination
of ST-segment depression. While this morphological feature is com-
monly linked to ischaemia39,40, the exact time points in the ECG at
which ST-amplitude is measured varies4. We compute ST-segment
depression as follows. First, we perform a QRS-delineation using the
neurokit2 software package4,57 on the complete stress test ECG. Then,
we determine themean isoelectric line for each stress phase of a given
2-6-2 sequence. For this, we take the mean of the last lPR milliseconds
preceding the Q-wave over all heartbeats in a specific stress phase.
Similarly, we determine the mean ST-amplitude for each 2-6-2 stress
phase by using the ECG measurement 60ms after the J-point. The
mean ST-segment depression (difference between mean isoelectric
line and ST-amplitude) is determined for each stress phase (STPre,
STStress, STRec). The differences between STStress/STRec and baseline ST-
depression (STPre) are then aggregated over all 2-6-2 sequences of a
patient by using either their mean, median, minimum, or maximum.
Importantly, the physiological response to stressmay differ among the
patients subject to different stress types. Therefore, the parameter
grid shown in Supplementary Table 10 is evaluated separately for all
three cohorts and all leads.

Data splits and bootstrapping
We split the data set 3:1 into a development and held-out test set
containing 2648 and 874 patients, respectively (see Supplementary
Fig. 11). During the development of themodel, we had no access to the
held-out test set. Access was provided once we fixed all model para-
meters. The development set was further divided into 5 stratified splits
of training, validation, and calibration set, where the latter makes up
10% of the training set. The ratio of training to validation set size is 4:1.
Each of five splits of the development set contained on average 36977,
9254, and 5129 train, validation, and calibration 2-6-2 sequences from
1882, 471, and 260 patients, respectively. If not specified otherwise,
bootstrapping has been performed to obtain distributions for statis-
tical testing. Thiswasdoneby pooling all predictions fromallfive splits
and sampling 80% in 25 different draws. Since the cardiologist only
scores each patient once, we sampled the same patients for the car-
diologist that have been selected for the computational methods in
each draw. This way each draw contains predictions for the same
patients from the different predictors to be compared.

Statistics and reproducibility
All p-values for the comparison of performance metrics (i.e., AUROC,
AUPRC) were computed on the distributions obtained by the boot-
strapping procedure described in the previous section. For this, a one-
sided Kolmogorov-Smirnov test was used. Multiple hypotheses are
corrected for using Bonferroni correction. When comparing the age

distribution of our data set with the external data set, a one-sided
Welch’s t-test was used. To compare the odds of obtaining a positive
fCAD label with/without a history of CAD, we used a two-sided Fisher’s
exact test. The comparison of SHAP values was performed over the
distributions of five data splits as described above; we used Welch’s t-
test for independent samples. The development set was split into
training/validation/calibration in a stratified manner (n = 5), meaning
the fCAD prevalence remains the same in all splits. From the original
data set, 697 patients were excluded because no digital ECG data was
available (see Supplementary Fig. 11). Reflecting clinical practice, the
expert interpretation of fCAD was not blinded to clinical and stress
ECG data. However, the treating physician was blinded to the MPI-
SPECT/CT results when submitting the post-test probability score.
With access to the THEW data set (SUI: E-OTH-12-0927-015), all results
pertaining to this data set can be reproduced using the publicly
available code at https://github.com/BorgwardtLab/CARPE58.

Preprocessing, lead selection, and auxiliary task regularisation
All 1000Hz signals were downsampled to 500Hz. ECG signals from
exercise stress testing are subject to high noise levels from various
sources. To assess the influence of noiseonclassificationperformance,
we consider the following preprocessing schemes: 1. No preproces-
sing, 2. minimal preprocessing with a high-pass Butterworth filter of
order five, and a cutoff frequency of 0.5 Hz followed by moving aver-
age smoothing, and 3. a thorough preprocessing pipeline consisting of
a wider bandpass filter (0.05Hz–150Hz), moving-median subtraction
to remove baseline wandering, a Savitzky–Golay filter59 for smoothing,
and winsorizing to deal with spurious outliers.

To evaluate the impact that individual ECG leads, preprocessing,
and auxiliary tasks have on predictive performance, we proceeded as
follows: First, we used thefirst development split to determine themost
promising leads (in terms of area under the precision-recall curve
(AUPRC) on the validation set) by performing a grid search over (a)
three preprocessing schemes described above, and (b) learning rate
parametersη 2 f0:01, 0:001, 0:001g for all twelve leads individually and
in combination. More specifically, we trained 13 × 3 × 3= 117 neural
networks to determine the three best performing leads. The first
number accounts for the 12 individual ECG leads plus one configuration
that combines all leads. The second number represents three pre-
processing schemes and is followed by the number of learning rates
that were analysed. Subsequently, we picked the three best-performing
leads and their respective preprocessing/learning rate combination to
assess the impact of all auxiliary tasks. In order to do so, the perfor-
mance on the validation set was averaged over all splits on a
5 × 5 × 5 × 3 parameter grid as shown in Supplementary Table 4. Finally,
the best-performing model was enriched with clinical variables to
receive thefinalmodel, whichwe evaluatedon the held-out test set. The
results of this analysis on the validation set of the development data set
are shown in Supplementary Fig. 5 and Supplementary Table 5.

Calibration
Supplementary Fig. 6 depicts the calibration of CARPEECG, CARPEClin.,
and cardiologist on both training and held-out test data. The red
dashed lines indicate the two decision cutoffs (5% and 15%) as advo-
cated in European and US-American guidelines8,21. On the training set,
CARPEECG is almost perfectly calibrated at 5% but slightly over-
estimates fCAD probability at 15%. On the held-out test set, CARPEECG
remains close to the diagonal but now underestimates the presence of
fCAD. The cardiologist underestimates the presence of fCAD at both
thresholds and in both data sets, yet performs similarly to CARPEECG at
the 15% on the held-out test set. The ensemble method significantly
overestimates the presence of fCAD around the relevant decision
thresholds on the training set and reaches best calibration on the held-
out test set at the 5%cutoff. At the 15% threshold, however, it continues
to overestimate the presence of fCAD. Both computational methods
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exhibit a significantly lower Brier score (hence are better calibrated
than the cardiologist) on the held-out test set. More precisely, the
cardiologist reaches a score of 0.23 ± 0.009, the random forest
0.22 ± 0.004 (p = 3.59E-5, one-sided t-test, df = 24, test statistic = -4.78),
and CARPEECG 0.18 ± 0.006 (p = 7.97E-16, one-sided t-test, df = 24, test
statistic = -18.15).

External validation data
The external dataset consists of 927 consecutive patients referred for
exercise myocardial perfusion single photon emission computed
tomography (SPECT) at Assuta Medical Center and Sheba Medical
Center and is a subset of the data presented by Sharir et al.49

Throughout the baseline, exercise, and recovery phases, a high-
resolution 12-lead ECG was continuously recorded using the HyperQ
Stress System from BSP Ltd, Tel Aviv, Israel, at a rate of 1000 samples/
second with 16-bit resolution and an analogue frequency response of
0.05 to 125Hz (measurement sensitivity <0.15 V). Patients with a car-
diac pacemaker, atrial fibrillation at the time of testing, or a QRS
duration equal to or greater than 120millisecondswere excluded from
the study. The exercise procedure was carried out as follows: beta
blockers and calcium channel blockers were discontinued at least 48 h
prior to the test, and a symptom-limited treadmill exercise test was
conducted using the Bruce protocol.

In contrast to our internal training and held-out test set, the
external data set is not annotated with the stress phases (pre, stress,
recovery). We therefore compute the heart rate for eachminute of the
ECG signal and use its maximum as the end of the stress phase. This
allows us to extract 2-6-2 sequences that are equivalent to the training
data. Additionally, we exclude patients for which the required clinical
variables are missing. If the value for a single variable is missing, we
exclude the patient. This is the case for the ground truth label (missing
in nine patients), the weight variable (missing in one patient), and the
height variable (missing in one patient). Supplementary Fig. 9 depicts
the distribution of relevant clinical variables of the internal and
external data sets. The biggest difference between both data sets can
be observed in the age variables (patients from the internal data set are
significantly older) and the fCAD/ischaemia prevalence.

Additional SHAP analysis
To measure the impact ECG segments have on the prediction, we
summarize their SHAP values by summing them to express a segment’s
contribution in a single scalar value. We perform this aggregation for
all ECG segments in all 2-6-2 sequences.We then stratify each segment
by its stress phase to investigate whether the origin of the segment (in
terms of the stress test phase) influences the attributed contribution.
Supplementary Fig. 7 shows the result of this analysis in patients for
which a low and high CAD probability was predicted. Overall, we
observe more segments with SHAP values deviating from zero in the
higher-risk population. In particular, the ST-Segment in the stress
phase is associated with particularly high SHAP values. For the popu-
lation forwhicha low riskwaspredicted, theSHAPvalues fromtheQRS
complex from the stress phase contribute, on average, most to the
prediction signal. We summarize both the QRS complex and the ST-
segment from the respective cohorts in Supplementary Fig. 8.

To investigate whether specific ECG patterns exist that contribute
to a lower/higher predicted CAD score, we perform the following
analysis: If a stress test phase (i.e., Pre/Stress/Recovery) of a 2-6-2
sequence contains an ECG pattern (e.g., P-wave, ST-segment) whose
summed SHAP score exceeds/is lower than a threshold, we extract all
ECG waves (i.e., from P-wave onset to T-wave offset) from this phase.
Each extracted ECG wave contains a representative of the pattern that
has a high influence on the model’s prediction. Motivated by the
results visualized in SupplementaryFig. 7, we choose ECGwaveswhose
QRS-complex has a SHAP score of maximal -0.25 to highlight a pattern
contributing to the prediction of the absence of CAD. Similarly, we

selected ECG waves whose ST-segment has a SHAP score of at least
0.25 as a pattern that contributes to the prediction of the presence of
CAD. Furthermore, we limit this analysis to samples with higher pre-
dictive score and apply the same probability thresholds (15% and 85%)
as in the previous analysis. We align all waves using dynamic time
warping and visualize both the aligned waves (grey) and their mean
wave (red) in Supplementary Fig. 8.

Calibration and performance for patients with and without ICA
Supplementary Figs. 2 and 3 show calibration and predictive perfor-
mance (AUROC and AUPRC) for patients who did and did not undergo
ICA within 90days. The respective prevalence of fCAD in the held-out
test set was 84% and 18%, respectively. In the latter cohort, the shown
predictors are calibrated similarly to the full cohort (viz. Supplemen-
tary Fig. 6). In the subgroup of patients who underwent ICA within
90days (i.e., overall high-risk patients), we observe that all predictors,
including the cardiologist, underestimate the presence of fCAD. Con-
sidering AUROC, CARPEECG exhibits a better mean predictive perfor-
mance in both cohorts. In patients with ICA, the mean performance
gain is 18 percentage points (CARPEECG: 0.72 ± 0.06, Cardiologist:
0.54± 0.06) and 11 percentage points (CARPEECG: 0.72 ± 0.02, Cardi-
ologist: 0.61 ± 0.03). Furthermore, inpatientswhodidnotundergo ICA
within 90days, the combination of cardiologist and deep learning
method, CARPEColl. modestly increases mean predictive performance
from 0.72 to 0.74.

Statistical interaction tests by subgroups
Supplementary Fig. 4 provides a statistical interaction analysis based
on theperformance increase of CARPEECGover the cardiologist. On the
complete held-out test cohort, this increase is, on average, 8 percen-
tage points. The only variable showing a statistically significant
(p = 0.0067, two-sided Z-test) effect is “Age,” where the performance
difference between CARPEECG and the cardiologist is significantly
higher in patients <65 years of age compared to patients who are at
least 65 years old.

Data collection and data analysis software
The 12-leadECG signalswere recordedwith twoECGmachines, namely
a Schiller AT-110 and Schiller CS-200 Excellence. Exported.ful and.xml
files were analysed with the standard xml module of python 3.8 and
numpy at version 1.24.4. ECG preprocessing was performed using the
‘signal’ module of scipy at version 1.10.1. QRS Delineation was per-
formed using the matlab ecg-kit version 1.4.0.0. To train our models
and analyse and visualize the data, we used the following python
libraries and versions ipython version 8.12.3, jupyter version 1.0.0,
matplotlib version 3.7.3, networkx version 2.8.8, notebook version
7.0.4, pandas version 2.0.3, pytorch-lightning version 1.2.1, scikit-learn
version 1.2.2, scipy version 1.10.1 seaborn version 0.13.0, pytorch ver-
sion 1.6.0, torchmtl version 0.1.9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support some of the findings of this study are not openly
available due to reasons of sensitivity of patient data and are available
from the corresponding author (christian.mueller@usb.ch) upon
request. The request should include the name and full contact infor-
mation of the person and institution requesting the data, the specific
identification of the data being requested and the purpose of
requesting the data.Data requests under agreementwill be considered
for purposes of reproducing the data presented herein, subject to
appropriate confidentiality obligations and restrictions. The time-
frame for response to requests is estimated to be four to 8weeks and
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restrictions imposed on data use will be individualized by case-by-case
data use agreements. The data resides in the secured IT infrastructure
of the University Hospital Basel and respective files can be shared after
anonymization upon individual request. Data used for external vali-
dation was provided by the Telemetric and Holter ECG Warehouse of
the University of Rochester (THEW), NY. It cannot be made public by
the authors. To obtain access, interested parties must register with the
THEW project (http://thew-project.org/), submit a research proposal,
and fill out the data usage agreement for the dataset with identifier E-
OTH-12-0927-015. For-profit organisations may also purchase the data
set for an access fee as detailed on the website. The authors declare
that all data supporting the findings of this study which are not pro-
tected by patient privacy considerations, are available within the
paper, its supplementary information files and downloadable files
deposited at figshare (https://doi.org/10.6084/m9.figshare.25514644).

Code availability
Preprocessing scripts, trained neural network model checkpoints and
random forest classifier are publicly available at https://github.com/
BorgwardtLab/CARPE58.
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