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Abstract
To generate synthetic medical data incorporating image-tabular hybrid data by merging an image encoding/decoding model 
with a table-compatible generative model and assess their utility. We used 1342 cases from the Stony Brook University 
Covid-19-positive cases, comprising chest X-ray radiographs (CXRs) and tabular clinical data as a private dataset (pDS). 
We generated a synthetic dataset (sDS) through the following steps: (I) dimensionally reducing CXRs in the pDS using a 
pretrained encoder of the auto-encoding generative adversarial networks (αGAN) and integrating them with the correspond-
ent tabular clinical data; (II) training the conditional tabular GAN (CTGAN) on this combined data to generate synthetic 
records, encompassing encoded image features and clinical data; and (III) reconstructing synthetic images from these encoded 
image features in the sDS using a pretrained decoder of the αGAN. The utility of sDS was assessed by the performance of the 
prediction models for patient outcomes (deceased or discharged). For the pDS test set, the area under the receiver operating 
characteristic (AUC) curve was calculated to compare the performance of prediction models trained separately with pDS, 
sDS, or a combination of both. We created an sDS comprising CXRs with a resolution of 256 × 256 pixels and tabular data 
containing 13 variables. The AUC for the outcome was 0.83 when the model was trained with the pDS, 0.74 with the sDS, 
and 0.87 when combining pDS and sDS for training. Our method is effective for generating synthetic records consisting of 
both images and tabular clinical data.
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Introduction

With the advancement of deep-learning technology, its 
application in the field of radiology is being increasingly 
recognized [1, 2]. Deep-learning technologies have emerged 
as essential partners for radiologists, offering significant 

improvements in both diagnostic accuracy and efficiency 
[3]. Developing, validating, and maintaining such sophisti-
cated deep-learning models requires a considerable volume 
of medical data. Therefore, acquiring and managing a large 
amount of better-quality data is crucial. However, this is not 
easy owing to the sensitive nature of medical data.

Synthetic medical image generation has received signifi-
cant attention in response to this challenge. Studies utilizing 
generative adversarial networks (GANs) have been particu-
larly prevalent for this purpose, and prior research has shown 
that the use of synthetic images for data augmentation can 
enhance the performance of algorithms trained on such data 
[4–7]. Recent reports have described the use of denoising dif-
fusion probabilistic models (DDPM) for data augmentation 
in medical imaging [8]. In addition, in real-world scenarios, 
images are often accompanied by descriptive or related infor-
mation rather than existing in isolation. To address this, tech-
nologies for the simultaneous processing and generation of 
both image and non-image data have been developed [9–11].
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Such synthetic data generation technologies are also 
gaining attention from the perspectives of privacy pres-
ervation and data sharing [12]. By effectively mimick-
ing the target data, generative models enable a more 
secure and private sharing of medical information [13]. 
This approach is particularly valuable for sharing actual 
patient data, which is risky because of privacy concerns. 
However, this requires a large amount of data for suc-
cessful synthetic data generation [14]. This presents a 
challenge for small medical researcher groups or single 
facilities that typically have access to only a few hundred 
to thousands of data points. Furthermore, in actual medi-
cal settings, patient information often comprises a hybrid 
of data including images, physical findings, blood tests, 
and other structured data. However, attempts to create 
comprehensive hybrid patient data are limited. Hybrid 
data are extremely important for discovering new insights 
that cannot be obtained with a single modality or for ena-
bling extensive secondary analysis. Therefore, there is 
a pressing need for innovative ideas to generate more 
flexible hybrid data with fewer data points, especially in 
terms of data augmentation and sharing in small studies.

The development of models for generating structured data 
emerged later than that of image generation models [15–17]. 
In the medical field, models based on GANs, such as condi-
tional tabular GAN (CTGAN), are widely used [18–20]. As 
these models deal with inputs of much lower dimensionality 
than images, they are expected to be successfully trained with 

far fewer data points [21]. Based on this understanding, we 
hypothesized that if the dimensionality of images is reduced 
a priori using a dimensionality encoding/decoding model 
trained on an external dataset and integrated with tabular data, 
meaningful synthetic data can be generated using CTGAN, 
even with a limited number of cases. The purpose of this study 
is to evaluate the quality and usefulness of a synthetic hybrid 
dataset generated using the proposed method.

Materials and Methods

Overview of Our Study

We used a public dataset containing 13 structured variables (tab-
ular clinical data) and a chest X-ray (CXR) with a resolution of 
256 × 256 pixels as the private dataset (pDS). Figure 1 provides 
an overview of the proposed method for generating synthetic 
hybrid data, which involves (I) dimensional reduction of CXRs; 
(II) training the CTGAN model, and (III) reconstruct the image 
features into synthetic CXRs. After generating a synthetic dataset 
(sDS), the coherence between images and tabular data was evalu-
ated. Additionally, we assessed sDS by examining the area under 
the receiver operating characteristic curve (AUC) when used to 
train patient outcome prediction models. Statistical analyses 
were conducted using R software (version 4.3.1; R Foundation 
for Statistical Computing, Vienna, Austria). P-values less than 
0.05 were considered as statistically significant.

Fig. 1   Overview of the proposal method. Our approach comprises the 
following three steps: I dimensional reduction of chest X-ray radio-
graphs (CXRs) in a private dataset (pDS) using a pretrained encoder 
and merging with the remaining tabular clinical data; II training the 

CTGAN model on these merged tabular data and generating synthetic 
records that contain encoded image features and tabular clinical data; 
and III reconstructing the image features to synthetic CXRs using a 
pretrained decoder
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Datasets and Preprocessing

In this study, we used the Stony Brook University Covid-19-pos-
itive cases, a publicly available hybrid dataset containing CXRs 
and non-image clinical data [22, 23]. This hybrid database com-
prises 1384 COVID–19-positive cases. It features diverse imaging 
modalities and comprehensive non-image clinical tabular data. 
Originally, there were 130 variables per case in the non-imaging 
data. After excluding cases in which the initial CXR was not avail-
able, as well as variables with more than 5% missing values and 
similar items, we obtained data on 1343 cases along with 13 clini-
cal variables (Supplementary file 1). We randomly split the pDS 
into training, validation, and test datasets at a ratio of 6:2:2. The 
detailed demographics of each subset of pDS are presented in the 
“Results” section. For the categorical variables, missing values 
were replaced with a new category representing the absence of 
data. For the numerical variables, missing values were imputed 
using the mean values from the training and validation sets. All 
images in the pDS were resized to 256 × 256 pixel.

The Radiological Society of North America (RSNA) 
Pneumonia Detection Challenge dataset [24], hereafter 
referred to as the RSNA dataset, was used to pretrain the 
encoding/decoding model. This publicly available dataset 
contains approximately 30,000 frontal view CXRs, each 
classified by one to three board-certified radiologists into 
the following categories: “Normal,” “No Opacity/Not Nor-
mal,” or “Opacity.” The “Opacity” category includes images 
indicative of opacities suggestive of pneumonia, while the 
“No Opacity/Not Normal” category comprises images show-
ing abnormalities other than pneumonia. The diversity of 
pathologies included in the RSNA dataset makes it a suitable 
choice for pretraining, as it is expected to encompass the 
range of image findings present in the pDS. For our study, 
1000 cases from the RSNA dataset were designated as the 
test set, with the remaining data split in an 8:2 ratio to form 
the training and validation sets. All the images in the RSNA 
dataset were resized to 256 × 256 pixels.

Preliminary Study of Dimensional Encoding–
Decoding for CXRs

Pretraining of Encoding–Decoding Models on RSNA Dataset

The methods for dimensional encoding of images range from 
classical machine learning models (such as principal com-
ponent analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE)) to modern deep-learning technologies 
(including convolutional neural networks (CNN), autoen-
coder (AE), and auto-encoding GAN (αGAN)) [25, 26]. In 
the proposed method, it is necessary to employ models that 
are capable of decoding. Therefore, we selected PCA [27] as 
the baseline, AE [28], and αGAN [29]. Using these models, 

we validated the 128-dimensional code transformation of a 
256 × 256-pixel CXR and its inverse transformation. PCA 
was trained using a combined training and validation set of 
the RSNA dataset, while AE and αGAN were trained using 
the training set, with the validation set used for monitoring 
the learning process. Descriptions and structures of the mod-
els used in our study are provided in Supplementary file 1.

Selection of Encode/Decode Models

To determine the most effective dimensional encoding/
decoding model, two radiologists reviewed 10 original 
images from the test set alongside the reconstructed images 
produced by each model. A consensus was reached on which 
model generated the “most authentic-like image set.” Addi-
tionally, the peak signal-to-noise ratio (PSNR) [30], struc-
tural similarity (SSIM) [31], and mean squared error (MSE) 
[32] were calculated and tested using paired t-tests. P-values 
were adjusted using the Holm method.

Synthetic Data Generation and Evaluation

Synthetic Hybrid Data Generation

Figure 1 presents an overview of this study. We adopted 
CTGAN [18] as the network for synthetic data genera-
tion. CTGAN is a GAN-based model for modeling the 
distribution of tabular data. It performs normalization on 
each column of complex data distributions with respect to 
categorical variables and trains the model using a condi-
tional generator and discriminator. We used the stand-alone 
library, CTGAN (version 0.7.4; https://​github.​com/​sdv–dev/​
CTGAN). After obtaining the encoded pDS by passing the 
CXRs to the pretrained encoder of the αGAN model, we 
trained the CTGAN model using training and validation set 
of the encoded pDS, and a number of synthetic records cor-
responding to the training and validation sets of the pDS 
were generated. These synthetic records encompassed both 
image features and tabular clinical data (encoded sDS). The 
CXRs were reconstructed by passing the synthetic image 
features in encoded sDS to the pretrained generator of the 
αGAN model. The detailed demographics of the patients 
with sDS are presented in the “Results” section.

Consistency Evaluation of Images and Tabular Data Via 
Contrastive Learning

To evaluate the correspondence between image and tabular  
data  for the proposed method, contrastive learning was 
implemented as follows: after encoding CXRs and tabular 
clinical data into an 18-dimensional latent code using other 
encoders (Supplementary file 1), the training was directed 

https://github.com/sdv–dev/CTGAN
https://github.com/sdv–dev/CTGAN


1220	 Journal of Imaging Informatics in Medicine (2024) 37:1217–1227

such that positive pairs (pairs of image and tabular data from 
the same patients) moved closer together, whereas negative 
pairs (pairs of image and tabular data from different patients) 
diverged. The networks were trained on pDS and sDS inde-
pendently, and we evaluated the correspondence between the 
image and tabular data through the following steps using the 
test set of pDS: (I) calculating the cosine similarity between 
the encoded results of an image and the corresponding tabu-
lar data using the trained encoders, (II) computing the cosine 
similarity of this image with all the other tabular records, 
(III) determining the rank of the value from Step I among the 
values from Step 2, and (IV) repeating this procedure for all 
images in the test set. The aggregate results were displayed 
as histograms, and the difference in results when encoders 

were trained with pDS and when they were trained with sDS 
was examined using the Wilcoxon signed-rank test.

Evaluating the Utility of sDS Through Predictive Modeling

To evaluate the utility and quality of sDS for pDS, we trained 
and tested a predictive model with Last Status as an independent  
variable. The original purpose of pDS is described as “building  
AI systems for diagnostic and prognostic modeling” (https://​
wiki.​cance​rimag​ingar​chive.​net/​pages/​viewp​age.​action?​pageId=​
89096​912), and the Last Status, indicating that patients are 
deceased/discharged, was considered the most critical variable. 
We constructed a network using both image and tabular data as 
inputs, with the output being the prediction of the Last Status 

Table 1   Summary of the 
contents of the dataset used as 
private dataset

* This dataset is a subset of the Stony Brook University Covid-19 Positive Cases. The description for each 
variable is provided in Supplementary file 1. Please also refer to the information provided in the original 
dataset: https://​wiki.​cance​rimag​ingar​chive.​net/​pages/​viewp​age.​action?​pageId=​89096​912

Non-image items Training set
n = 800

Validation set
n = 272

Test set
n = 271

Categorical variables (number of patients)
 Last status

     Discharged 692 237 235
     Deceased 108 35 36
 Age splits

     [18,59] 428 168 149
     (59, 74] 218 53 72
     (74, 90] 154 51 50
 Gender concept name

     Male 439 152 153
     Female 343 110 114
     NA 18 10 4
 Visit concept name

     Inpatient visit 588 204 203
     Outpatient visit 2 0 0
     Emergency room visit 210 68 68
 Is ICU

     True 144 57 57
     False 656 215 214
 Was ventilated

     Yes 120 47 46
     No 680 225 225
 Acute kidney injury

     Yes 147 51 50
    No 653 221 221

Numeric variables (mean ± standard deviation)
 Length of stay (day) 10.0 ± 12.7 8.9 ± 9.6 10.1 ± 13.2
 Oral temperature (°C) 37.5 ± 0.9 37.5 ± 0.8 37.6 ± 0.9
 Oxygen saturation (%) 93.8 ± 5.5 93.5 ± 6.5 93.8 ± 5.6
 Respiratory rate (/min) 21.7 ± 7.5 22.2 ± 7.6 21.1 ± 6.7
 Heart rate (/min) 97.9 ± 19.4 100.6 ± 19.4 98.8 ± 22.0
 Systolic blood pressure (mmHg) 129.4 ± 23.1 128.7 ± 22.1 129.0 ± 22.4

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912
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(Supplementary file 1). The model was trained multiple times 
using different data combinations. For each training session,  
we systematically replaced the records in pDS with those in  
sDS. This replacement was performed in increments of 25%, 
progressively shifting the composition from 100% pDS (1:0) to 
100% sDS (0:1). The records that were replaced in each training 
session were chosen randomly. In addition, we trained the model 
using all the training and validation sets of pDS and sDS. We 
then compared the AUC results from different training scenarios. 
We used the DeLong test and adjusted P-values using the Holm 
method. The results of the classification and regression for items 
other than the Last Status using the same model are presented in 
Supplementary file 1.

Results

Table 1 summarizes the preprocessed pDS used in this study. 
The training, validation, and test sets comprised 800, 272, 
and 271 patients, respectively.

Figure 2 presents the samples of the encode–decode pro-
cess using the actual test set of the RSNA dataset. During 
the stage of selecting the encoder/decoder model to be used, 
a consensus was reached by two radiologists that the recon-
structed images from the αGAN were closest to the actual 
images. Consequently, the αGAN was employed in subse-
quent implementations. The SSIM, PSNR, and MSE values 
of each model tested on the test set of the RSNA datasets 
are summarized in Table 2. Although quantitative metrics 
indicated that the AE delivered the best results, visual evalu-
ation by radiologists was prioritized during model selection.

Table 3 presents the demographic information of the syn-
thetic data generated during implementation. The number of 
synthesized records was matched to that of the training and 
validation sets of the pDS. Figure 3 displays three examples 
of synthetic hybrid records.

Figure 4 illustrates the results of contrastive learning 
conducted independently on the pDS and sDS and evalu-
ated using the pDS test set, showing histograms of similarity 
rankings for positive pairs. The histograms display higher 

Fig. 2   Samples of encode/
decode results using three 
models. From left to right, the 
original image, reconstructed 
image using PCA, the AE, and 
the αGAN

Table 2   Aggregated results of 
PSNR, SSIM, and MSE for the 
three models

PCA principal component analysis, AE autoencoder, αGAN auto-encoding generative adversarial networks, 
PSNR peak signal-to-noise ratio, SSIM structural similarity, MSE mean squared error
P-values were adjusted using the Holm method

PCA AE αGAN P-value

PSNR 26.51 ± 1.83 29.16 ± 1.40 25.36 ± 1.68 PCA–AE: p < 0.001
AE–αGAN: p < 0.001
PCA–αGAN: p < 0.001

SSIM 0.73 ± 0.05 0.80 ± 0.04 0.74 ± 0.04 PCA–AE: p < 0.001
AE–αGAN: p < 0.001
PCA–αGAN: p = 0.052

MSE 158.44 ± 69.60 83.05 ± 28.13 204.27 ± 86.12 PCA–AE: p < 0.001
AE–αGAN: p < 0.001
PCA–αGAN: p < 0.001
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plots on the left side for training on both pDS and sDS, 
suggesting that contrastive learning was successful and that 
the consistency between the images and tabular data was 
preserved, even in the sDS. However, the slope of the histo-
gram resulting from training on the sDS was less steep than 
that on the pDS. The Wilcoxon signed-rank test revealed a 

statistically significant difference in the median ranks, which 
were higher (indicating poorer performance) when learning 
on the sDS (p = 0.041), as shown in Table 4.

Table 3   Summary of the 
contents of the synthetic dataset

The description for each variable is provided in Supplementary file 1

Non-image items Synthetic training set
n = 800

Synthetic validation 
set
n = 272

Categorical variables (number of patients)
  Last status

     Discharged 663 224
     Deceased 137 48
  Age splits

     [18,59] 414 135
     (59, 74] 236 84
     (74, 90] 150 53
  Gender concept name

     Male 441 147
     Female 323 105
     NA 36 20
  Visit concept name

     Inpatient visit 595 210
     Outpatient visit 6 3
     Emergency room visit 199 59
  Is ICU

     True 207 75
     False 593 197
  Was ventilated

     Yes 134 46
     No 666 566
  Acute kidney injury

     Yes 201 94
     No 599 178
Numeric variables (mean ± standard deviation)
  Length of stay (day) 15.3 ± 18.7 16.1 ± 18.8
  Oral temperature (°C) 37.7 ± 0.9 37.7 ± 0.9
  Oxygen saturation (%) 92.3 ± 8.1 92.8 ± 7.1
  Respiratory rate (/min) 21.6 ± 8.0 22.0 ± 8.1
  Heart rate (/min) 106.8 ± 25.87 105.9 ± 23.6
  Systolic blood pressure (mmHg) 121.6 ± 27.0 121.0 ± 24.9

Table 4   Aggregated results of similarity rank for positive pairs post-
metric learning

Values represent the median [interquartile range]

Trained on pDS Trained on sDS P-value

Rank 92 [38 − 163] 96 [43 − 186] 0.041

Table 5   AUC values and results of DeLong’s test

P-values were adjusted using the Holm method

Dataset (pDS:sDS) AUC​ P-value  
(compared with 
pDS:sDS = 1:0)

0:1 0.74 0.143
0.25:0.75 0.74 0.092
0.5:0.5 0.75 0.149
0.75:0.75 0.81 0.576
1:0 0.83 Reference
pDS + sDS 0.87 0.346
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Figure 5 and Table 5 show the receiver operating characteristic 
curves and AUCs for predicting Last Status with varying ratios 
of pDS and sDS in the training and validation sets. An increase 
in the proportion of the sDS corresponded with a decrease in the 
AUC (from 0.83 to 0.74). However, when comparing combina-
tions using the DeLong test with pDS:sDS = 1:0 as reference, 

no significant differences were observed. Additionally, the AUC 
for the model trained with both pDS and sDS was 0.87, which 
was higher than that for the model trained with only the pDS 
(AUC = 0.83), although this difference was not statistically sig-
nificant (p = 0.346). Supplementary file 1 presents the classifica-
tion and regression results for items other than Last Status.

Fig. 3   Three samples of syn-
thetic hybrid records

Fig. 4   Evaluation of metric 
learning using the pDS test set. 
Red represents the training and 
validation performed on the 
pDS, whereas blue represents 
the training performed on the 
sDS and validation conducted 
on the pDS
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Discussion

This study illustrated the practicality of generating hybrid 
image-tabular records by merging encoded image features 
from the pretrained encoder of αGAN with tabular clinical 
data, which were then input into the CTGAN. Pretraining the 
encoding/decoding model for dimensionality compression 
using external large-scale datasets can circumvent the require-
ment for a large pDS. As a result, we successfully generated 
records comprising CXRs with a resolution of 256 × 256 pixels 
and tabular data with 13 variables derived from 1072 cases in 
the training and validation sets. In the downstream prediction 
task, the decrease resulting from replacing the pDS with the 
sDS was slight, further suggesting the possibility of using the 
sDS for data augmentation.

In addition to the αGAN used herein, various advanced 
deep-learning models have been developed in the field of 
image encoding and decoding. This includes a range of 
evolutions and integrations of architectures such as the AE, 
the GAN, and transformer-based architectures [33–35]. In 
this study, we adopted the αGAN, based on implementa-
tions from previous research that successfully reconstructed 
images with a similar dataset and image modality using a 
relatively small number of latent codes [36]. For compara-
tive analysis, we conducted preliminary investigations with 
models of simpler structures and mechanisms, specifically, 
simple AE and PCA. When the encoded dimensionality was 
set to 128, the AE exhibited superior performance in quanti-
tative metrics, including SSIM, PSNR, and MSE. However, 

the αGAN was clearly superior in reconstructing images 
that were vivid and closer to the actual CXRs, leading to 
its adoption in subsequent processes. Consequently, it was 
confirmed that the synthetic CXRs in the sDS were also well 
reconstructed, as presented in Fig. 3. Table 3 summarizes 
the geometric properties of the tabular clinical data from the 
sDS (800 and 272 records from the training and validation 
sets, respectively). The distribution order of categorical vari-
ables in the sDS was unchanged from that in the pDS, and 
continuous variables did not show unrealistic mean values. 
An evaluation of the sDS by contrastive learning suggested 
that the sDS may be a slightly degraded dataset compared 
to the pDS in terms of consistency between the image and 
tabular data.

In medicine, deep generative models are primarily used 
for data augmentation and data sharing purposes [14, 
37–39]. However, the simultaneous generation of both image 
and non-image data in small-scale databases, as demon-
strated herein, remains limited. We believe that it is impor-
tant to address such scenarios considering the actual clini-
cal situation wherein imaging and non-imaging information 
always coexist. Furthermore, there has been an increase in 
medical research that incorporates simultaneous analysis 
of images and tabular data to obtain new clinical insights 
[40–42]. Consequently, hybrid datasets have garnered atten-
tion as valuable research sources. Our technique for generat-
ing hybrid records can enhance integrated analyses in terms 
of data augmentation and sharing. In our experiments, the 
AUC for the Last Status task was 0.83 when employing only 
the pDS and 0.74 when using only the sDS. When the pDS 
and sDS were combined, the AUC was 0.87. In addition to 
the variations in their ratios, the changes in the AUCs were 
not statistically significant according to DeLong’s test. How-
ever, considering the results presented in Supplementary file 
1, when the sDS completely replaced the pDS, the classifica-
tion and regression performance deteriorated in 7 out of 13 
items, indicating that a perfect sDS had not been achieved 
at this point. However, replacing up to 25% of the pDS with 
the sDS did not degrade performance in any of the tasks. 
Furthermore, in 2 out of 14 tasks, data augmentation with 
the sDS was found to be significantly successful.

The potential for generalization of our method likely 
hinges on the availability of large external image datasets 
(not hybrid datasets) with the same imaging modalities and 
imaged regions for training encoder/decoder models. In 
our scenario, the availability of the RSNA dataset, which is 
large and considered to encompass the radiographic findings 
present in the pDS dataset, contributed to the good results. 
Recently, the availability of large-scale medical image data-
sets has increased. As the number of these datasets increases, 
the potential to generalize the proposed methods may also 
increase. Furthermore, the scale of the datasets used herein 
(~ 30,000 images in the external dataset and ~ 1343 records 

Fig. 5   Receiver operating characteristic curves and AUCs for predict-
ing Last Status. The models were evaluated on the test set or pDS for 
six different pDS and sDS ratios
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in the pDS), image resolution (256 × 256 pixels), and number 
of data items (seven categorical and six continuous variables) 
could provide a baseline of information for future research.

A significant potential competitor to our research is the 
language learning model (LLM). Recent advances in LLMs 
have enabled them to handle multimodal inputs [43, 44]. To a 
certain extent, the capacity to manage and manipulate abstract 
information within latent space overlaps with the objectives 
of our current methodology. However, our approach distinctly 
focuses on the generation of synthesized data that closely align 
with the characteristics of the original data. This outcome dis-
tinguishes the proposed method. Although both LLMs and 
our technique share a common underpinning in the form of 
advanced learning mechanisms, their roles remain diver-
gent because of their different goals. As this field continues 
to evolve, we anticipate that the functionalities of these two 
methodologies will retain their individuality and serve com-
plementary roles in various applications.

In future studies, we will consider extending to three-dimensional  
medical images. Modalities such as CT and MRI provide  
rich three-dimensional information and have a more significant  
impact on diagnosis [45]. If this method can be adapted to three-
dimensional images, such as CT scans, it can provide even  
greater utility. Another potential application of our method is  
the introduction of a more rigorous notion of privacy. Although 
generative models are often used to protect privacy, they are not 
entirely free from the risk of privacy leakage [13]. Recently, the 
concept of differential privacy (DP) has been applied to deep 
learning to guarantee strict privacy protection [46, 47]. There is 
research in which a CTGAN was implemented as a DP-CTGAN 
[48], and the fusion of this technology with ours is an important 
future theme.

There are several limitations in this study. First, we used 
αGAN and CTGAN models in our main implementation, 
which can be replaced with other networks. Our study uti-
lized the αGAN and CTGAN based on their proven capabili-
ties in specific medical contexts [20, 36]. However, recent 
advancements in transformer-based methods, diffusion mod-
els, and other GAN alternatives may enhance performance. 
We acknowledge that exploring these newer models could 
further optimize our approach. This consideration is particu-
larly important because our current synthetic dataset did not 
achieve the best possible results or quality, suggesting room for 
improvement in future iterations. Secondly, the limits regard-
ing the pDS, such as the minimum number of records or the 
upper limit of column numbers that enable meaningful syn-
thetic data generation, is unknown. Our experimental results 
serve as indicators for future research. Third, in this study, one 
of the primary limitations is the lack of well-established met-
rics for evaluating consistency between tabular data and cor-
responding images. While we have utilized existing methods 
such as contrastive learning approaches to assess this consist-
ency, these metrics are still in nascent stages, particularly in the 

context of hybrid datasets that combine radiographic images 
and clinical records. The development of more refined and 
specialized metrics that can accurately measure the alignment 
and representational accuracy between different data modali-
ties remains an area for future research.

Conclusion

Using αGAN and CTGAN models, we generated synthetic 
hybrid records consisting of CXRs with a size of 256 × 256 
pixels and tabular data with 13 variables. When another 
large image dataset was available, the proposed method 
enabled the creation of synthetic hybrid data from approxi-
mately 1000 records.
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