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Abstract
Autism spectrum disorder (ASD) is a pervasive brain development disease. Recently, the incidence rate of ASD has increased 
year by year and posed a great threat to the lives and families of individuals with ASD. Therefore, the study of ASD has 
become very important. A suitable feature representation that preserves the data intrinsic information and also reduces data 
complexity is very vital to the performance of established models. Topological data analysis (TDA) is an emerging and 
powerful mathematical tool for characterizing shapes and describing intrinsic information in complex data. In TDA, persis-
tence barcodes or diagrams are usually regarded as visual representations of topological features of data. In this paper, the 
Regional Homogeneity (ReHo) data of subjects obtained from Autism Brain Imaging Data Exchange (ABIDE) database were 
used to extract features by using TDA. The average accuracy of cross validation on ABIDE I database was 95.6% that was 
higher than any other existing methods (the highest accuracy among existing methods was 93.59%). The average accuracy 
for sampling with the same resolutions with the ABIDE I on the ABIDE II database was 96.5% that was also higher than 
any other existing methods (the highest accuracy among existing methods was 75.17%).
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Introduction

Autism is the representative disease of pervasive brain-based 
developmental disorder. The core symptom of typical autism 
is the so-called triad syndrome, which mainly reflects in the 
social communication skills, language ability and ritualized 
rigid behavior. Although autism has been around for thou-
sands of years, it was not identified by Kanner and Asperger 
until 1943 and 1944, respectively [1, 2]. Autism spectrum 
disorder (ASD) is a broad definition of the core symptoms of 
typical autism. It includes both typical and atypical autism, 
as well as suspected autism, autism borderline, autistic ten-
dencies and developmental delays. It has been widely con-
sidered as a neurological disorder caused by abnormalities 
that found in brain coordinated functioning regions [2].

Most individuals with autism begin to exhibit abnormal 
development before the age of 3, and are obvious before the 

age of 5. Generally speaking, the younger the age of onset, 
the more severe the symptoms. A recent statistic from the 
Centers for Disease Control and Prevention has showed that 
1 in 68 children had autism in the United States [3]. The 
National Institutes of Health conservatively estimated the 
prevalence of autism at 5 to 6 per 1000 people in the United 
States. Overall, the rate of autism in males is 3 to 4 times 
higher than that in females, but the symptoms in females are 
more severe than those in males.

The causes of ASD have been an unsolved problem in the 
medicine field. It is generally believed that various develop-
mental disorders exhibited by people with ASD are mainly 
caused by brain biology. Many researches have analyzed the 
causes of brain biological changes from the aspects of ecol-
ogy, neuropsychology and medical biology [4–6].

Children with autism often have abnormal electroenceph-
alogram, suggesting that children may have abnormal brain 
structure or function [7]. Using magnetic resonance imaging 
(MRI), the researchers found that the abnormal white and 
gray matter hyperplasia was the most obvious in the fron-
tal lobe [7]. In addition, the volumes of the amygdala, left 
hippocampus and caudate nucleus were larger than those 
in the control group, but the cerebellar vermis and corpus 
callosum knee decreased significantly. Functional magnetic 
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resonance imaging (fMRI) has been used to detect the cer-
ebral blood supply of autistic children in early stage. And the 
cerebral insufficiency of blood supply mainly appeared in 
the frontal lobe [8, 9], temporal lobe, cerebellum and thala-
mus. Nowadays, fMRI has become a very important and 
effective method for studying human brain function due to 
its non-invasive and high spatial and temporal resolution. 
fMRI is a new neuroimaging method that uses magnetic 
resonance to measure the hemodynamic changes caused by 
neuronal activity. Almost all fMRI detect reactive areas in 
the brain by Blood Oxygen Level Dependent (BOLD) con-
trast mechanism that first was proposed by Ogawa et al. in 
1990 [10]. Rs-fMRI, which maps brain function by look-
ing at brain signals during resting state, is widely used to 
study psychiatric disorders including ASD, bipolar disorder, 
schizophrenia and attention deficit hyperactivity disorder. It 
does not require complex task design and has good operabil-
ity. It can avoid the incomparability of experimental results 
caused by different task designs and execution conditions of 
the subjects in task-based research.

It has pointed out that ASD subjects activate more rele-
vant regions in the right hemisphere of the brain in language 
processing tasks [11]. Thus, it hypothesized that this oppo-
site lateralization of language areas might be the reasons 
for the difficulties in language processing of this population 
[11]. It has also been reported that ASD subjects represent 
decreased frontal lobe activation along with increased left 
temporal lobe activation when the verbal stimuli was added 
[12].

A recent field in ASD research is to distinguish ASD sub-
jects from typical controls based on resting-state fMRI (rs-
fMRI) data combined with machine learning or deep learn-
ing techniques. It has proposed a novel element-wise layer 
for deep neural networks and obtained the highest accuracy 
of 68.7% [13]. Reiter et al. have showed the classification of 
ASD depends on sample heterogeneity. It has been shown 
to produce high accuracy for grouping ASD samples into 
more homogeneous subgroups based on gender and severity 
ranges. The highest accuracy in four validation groups was 
73.75% [14]. The Spatial Feature based detection method 
has been proposed to extract connectivity features, and pro-
vided biologically interpretable results by highlighting the 
major differences in the BOLD signals between the typical 
subjects and ASD subjects [15]. This method achieved the 
classification accuracy of 77.3%. The graph convolutional 
networks have been proposed to extract features of control 
and ASD groups based on functional connectivity graph. 
They achieved the accuracy of 70% to distinguish healthy 
individuals and ASD subjects [16]. Almuqhim et al. devel-
oped a deep learning model called ASD-SAENet, Eslami 
et al. proposed a framework called ASD-DiagNetfor, and 
Heinsfeld et al. applied deep learning algorithms based 
on the patterns of brain activation for classifying subjects 

with ASD from typical controls [3, 17, 18]. Mastafa et al. 
designed ASD diagnostic features based on brain networks. 
They used 264 region based partitioning schemes to con-
struct brain networks from fMRI, and applied feature selec-
tion algorithms to obtain 64 discriminant features. The clas-
sification accuracy of linear discriminant analysis reached 
77.7% [19]. The classification model constructed based on 
the characteristics of transgenic macaque reached 82.14% 
in the distinction accuracy of between autistic individuals 
and healthy people [20]. Using brain dynamic networks and 
feature extraction, machine learning classifiers reached the 
accuracy of 88.8% when considering the temporal dynamics 
of data [21, 22]. A model based on SVM-RFE and stacked 
sparse auto-encoder has been proposed to identify ASD sub-
jects and healthy controls. This model reached the average 
accuracy of 93.59% [23].

A large of data has been produced across various disci-
plines due to the significant advancements in experimental 
tools and techniques. A main objective of data analysis is 
to enable researchers to gain relevant insights into the data, 
including comprehending its overall organization and distri-
bution patterns. Topological data analysis (TDA) refers to 
statistical methods which make use of topological methods 
and provide comprehension to the “shape” of data. These 
techniques can be used in understanding global features of 
data that are not easily obtained using other tools [24–26]. 
Topology and geometry are very natural tools to apply in 
this area, since geometry is regarded as the study of dis-
tance functions, and what we often work with are distance 
functions on large finite sets of data [25]. Topology is a 
study of special geometric properties of an object or space, 
which remains invariant after continuously changing its 
shape. Similar structural properties may exist inside com-
plex data, and they are called the “shape” of data. Topology 
can describe the intrinsic information of data. The use of 
TDA is limited by the difficulty of combining the main tools 
of algebraic topology, machine learning algorithm, and the 
persistence diagrams or persistence barcodes with statistics 
[26]. Compared with common methods such as principal 
component analysis and cluster analysis, TDA can not only 
capture topological information of data effectively, but also 
be good at discovering some small categories that cannot be 
found by traditional methods.

In this paper, our main contributions were:
We established a new model based on persistent homol-

ogy in TDA for classifying ASD individuals and healthy 
people on the ABIDE database. Persistent homology cap-
tured the topological structure of data from different dimen-
sions, such as the number of connected components, loops 
and cavities. Our model achieved the state-of-the-art accu-
racy on both two subdatabases compared with other models.

The good performance of some evaluation indexes 
indicated that there were structural differences in ReHo 
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between the ASD individuals and healthy people. The dif-
ferent dimensional and multi-scale (under different filtra-
tion values) connectivity differences of ReHo between the 
two groups of people were captured by persistent homology. 
ReHo data is effective for studying ASD.

The rest of this paper is organized as follows: In the 
“Materials and Methods” section, we introduce Autism 
Brain Imaging Data Exchange (ABIDE) database infor-
mation, datasets preprocessing, related definitions about 
homology group and persistent homology and the method 
of feature extraction. In the “Experimental Results and 
Comparison with Existing Methods” section, we present 
our experimental results on two databases and compare our 
results with those of some other models used on the two 
datasets. The “Discussions” and “Conclusions” sections are 
devoted to discussions and conclusions, respectively.

Materials and Methods

ABIDE Database and Sampling of Subjects

The ABIDE database is a publicly shared database for ASD 
research, which contains two subdatabases, ABIDE I and 
ABIDE II. The ABIDE I is a collaboration of 17 international 
imaging sites that have combined and shared imaging data 
from 573 typical control subjects and 539 participants with 
ASD. There is the rs-fMRI imaging information of 1112 sub-
jects and an extensive array of phenotypic information. All 
data is anonymized in accordance with HIPAA guidelines, 
with analyses performed in accordance with preapproved 
procedures by the University of Utah Institutional Review 
Board. All images have been obtained with informed con-
sent according to procedures established by human subject 
research boards at each participating institution. Specific 
details are available https:// fcon_ 1000. proje cts. nitrc. org/ indi/ 
abide/ abide_I. html.

We downloaded the ABIDE I dataset by the github script 
https:// github. com/ prepr ocess ed- conne ctomes- proje ct/ 
abide. There were three folders and seven files. The Phe-
notypic_V10b_preprocessed1.csv file recorded the relevant 
information of the data, such as disease, the data number 
medications and genders of all subjects. The Download_
abide_prepro-c_guided.txt gave the specific downloading 
methods and alternative parameters. The download_abide_
preproc.py script allowed any user to download outputs from 
the ABIDE preprocessed data release. We could open the 
command prompt window and then run the related com-
mands written in the file download_abide_preproc_guide.
txt. At a minimum, the script needed a specific derivative, 
pipeline and strategy to search. We chose them as Regional 
Homogeneity (ReHo) [27], Configurable Pipeline for the 
Analysis of Connectomes (C-PAC) and nofilt_noglobal. We 

also got the database by pytorch nilearn downloading. The 
choice of quality_checked affected the number of data, with 
qualit_checked=True downloading 884 data and qualit_
checked=False downloading 1035 data. The ReHo data of 
884 subjects from ABIDE I database could be obtained in 
the above two methods. Some information about the dataset 
is shown in Table 1.

The ABIDE II involves 19 international sites that donated 
1114 rs-fMRI imaging data from 593 typical controls and 
521 participants with ASD (age range: 5–64 years). This 
database has been openly released to the scientific commu-
nity on June 2016. In accordance with HIPAA guidelines 
and 1000 Functional Connectomes Project/INDI protocols, 
all data was anonymous, with no protected health informa-
tion included. An extensive array of phenotypic informa-
tion about subjects of ABIDE II is shown in Table 2. We 
can download the ABIDE II data from https:// fcon_ 1000.  
proje cts. nitrc. org/ indi/ abide/ abide_ II. html. The ReHo 
data of 795 subjects from ABIDE II database can also  
be obtained.

Data Preprocessing

In order to obtain reliable results, it is often necessary to 
preprocess the collected raw data. The functional preproc-
essing of neuroimaging data from ABIDE I has been per-
formed by the Preprocessed Connectomes Project (https:// 
prepr ocess edcon necto mespr oject. org/ abide/ index. html). 
We selected the derivative, pipeline and strategy param-
eter as ReHo, C-PAC and nofilt_noglobal mentioned in 
the “ABIDE Database and Sampling of Subjects” section. 
The data was motion corrected and slice time corrected. 
Nuisance signal removal was performed using 24 motion 
parameters, CompCor with 5 components [28], low- 
frequency drifts (linear and quadratic trends). The voxel 
intensity was normalized.

For ABIDE II database, we preprocessed the original data 
using FSL FEAT, including removing the first six volumes, 
motion correction and spatial normalization to standard MNI 
space. The ReHo could be generated from the preprocessed 
rs-fMRI data with DPABI [29]. And then, we performed 
spatial smoothing (with Full Width at Half Maximum 
(FWHM) of 6 mm) after calculating ReHo.

Topological Data Analysis

TDA is an analysis method that combines topology and data 
analysis, which is used to study the topological properties in 
big data. In recent years, persistent homology was an analyti-
cal approach in TDA which has been considered as a practi-
cal method to represent topological features of objects [30, 
31]. For more details about the TDA, persistent homology 
and its representation, we can refer to [24, 25, 32].

https://fcon1000.projects.nitrc.org/indi/abide/abide_i.html
https://fcon1000.projects.nitrc.org/indi/abide/abide_i.html
https://github.com/preprocessed-connectomes-project/abide
https://github.com/preprocessed-connectomes-project/abide
https://fcon1000.projects.nitrc.org/indi/abide/abide_II.html
https://fcon1000.projects.nitrc.org/indi/abide/abide_II.html
https://preprocessedconnectomesproject.org/abide/index.html
https://preprocessedconnectomesproject.org/abide/index.html
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Homology and Persistent Homology

In order to calculate the homology and persistent homology 
of the data, we introduce the related concept of complexes. 
Cubical complexes can provide a good topological repre-
sentation for image data. A cubical complex is a topological 
space obtained by gluing some elementary cubes. For some 
l ∈ ℤ , a closed interval I = [l, l + 1] or I = [l, l] is an elemen-
tary interval, and the elementary interval I = [l, l] is degener-
ate. For i ∈ [1, 2,⋯ , d] , Ii is an elementary interval, an ele-
mentary cube is a finite product of elementary intervals, that 
is, Q = I1 × I2 ×⋯ × Id ⊆ Rd , for example, see Fig. 1. The 
dimension of Q is the number of its non-degenerate inter-
vals. A boundary of an elementary cube Q = I1 × I2 ×⋯ × Id 
is a chain obtained in the following way:

Homology groups characterize the type and the numbers 
of “holes” of the given topological space and provide a fun-
damental description about its structure. In order to calculate 
homology groups of complexes which are topological rep-
resentations of objects, it needs a series of chain groups and 
linear maps between two adjacent dimensional chain groups 
which are called boundary maps. A k-chain of the cubical 
complex C  is the sum of its some k-dimensional cubes over 
the field ℤ2 . All k-chains of C  form the k-th chain group 
of C  denoted by Ck(C) , which is a free Abelian group. For 
k ≥ 1 , the kernel of the boundary map �k ∶ Ck → Ck−1 is 

�Q = (�I1 × I2 ×⋯ × Id) + (I1 × �I2 ×⋯ × Id)

+⋯ + (I1 × I2 ×⋯ × �Id).

called the cycle group and denoted by Zk(C) . The image of 
the boundary map �k+1 ∶ Ck+1 → Ck is called the boundary 
group and denoted by Bk(C) . It is easy to see �k+1◦�k = 0 
and Bk ⊆ Zk ⊆ Ck , the k-th homology group of C  can be 
calculated by Hk(C) = Zk(C)∕Bk(C).

Persistent homology presents topological information 
from different scales by employing a family of nested com-
plexes through a filtration process. The filtration requires 
that if a new cubical complex is added, each of its proper 
faces should be added before that. A nested subsequence 
of complexes � = K0 ⊂ K1 ⊂ ⋯Kn = K  is a filtration 
of a complex K, for all i ≥ n,Ki = K . At filtration time l, 
the p-persistent k-th homology group can be written as 
H

l,p

k
= Zl

k
∕(Zl

k
∩ B

l+p

k
) . The p-persistent k-th Betti number � l,p

k
 

of Kl is the rank of Hl,p

k
 . Thus, we can calculate and evalu-

ate the intrinsic topological properties of spaces or objects.

Visualization of Persistent Homology

It is noticed that some topological features “live” longer 
in these complexes, whereas others “live” shorter or “die” 
quicker with filtration value changes. Their persistent time 
provides a relative geometric measurement of the associ-
ated topological properties [32–35]. We refer to the living 
longer features as topological invariants and the shorter ones 
as noise.

We can use pairs of birth time and death time to represent 
the results from persistent homology. Specifically, for every 
topological invariant, birth time and death time are the filtra-
tion values at which the generators are born and vanished, 

Table 1  Phenotypic information 
of 884 subjects of ABIDE I (M: 
Male, F: Female)

ASD TC

Site Avg-Age (SD) Sample Size Avg-Age (SD) Sample Size

Caltech 27.44 (10.03) 19 (M:15,F:4) 28.02 (10.58) 18 (M:14, F:4)
CMU 30.33 (6.94) 3 (M:3, F:0) 25.5 (4.5) 2 (M:1, F:1)
KKI 9.56 (1.34) 12 (M:9, F:3) 10.08 (1.10) 27 (M:20, F:7)
Leuven 17.98 (4.98) 27 (M:25, F:2) 18.21 (4.98) 34 (M:29, F:5)
MaxMun 30.44 (13.59) 18 (M:15, F:3) 25.92 (8.14) 24 (M:23, F:1)
NYU 14.92 (7.04) 73 (M:72,F:26) 15.67 (6.14) 98 (M:64, F:9)
OHSU 11.43 (2.09) 12 (M:12, F:0) 10.37 (1.05) 11 (M:11, F:0)
Olin 16.79 (3.63) 14 (M:11, F:3) 17.55 (3.03) 11 (M:9, F:2)
Pitt 19.35 (7.35) 22 (M:18, F:4) 19.13 (6.19) 23 (M:20, F:3)
SBL 35.29 (10.37) 14 (M:14, F:0) 34.42 (5.78) 12 (M:12, F:0)
SDSU 15.05 (1.60) 12 (M:12, F:0) 14.32 (1.84) 21 (M:15, F:6)
Stanford 10.15 (1.60) 17 (M:13, F:4) 9.89 (1.58) 19 (M:15, F:4)
Trinity 17.01 (3.04) 21 (M:21, F:0) 17.48 (3.58) 23 (M:23, F:0)
UCLA 13.34 (2.56) 36 (M:34, F:2) 13.18 (1.76) 39 (M:33, F:6)
UM 13.85 (2.29) 48 (M:39, F:9) 15.03 (3.64) 65 (M:49, F:16)
USM 24.60 (8.46) 38 (M:38, F:0) 22.33 (7.70) 23 (M:23, F:0)
Yale 13.01 (3.03) 22 (M:15, F:7) 12.76 (2.78) 26 (M:19, F:7)
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respectively. And persistent time of every invariant repre-
sents the length of the “lifespan” interval (death time minus 
birth time) [32]. For j-th generator of the k-th persistent 
homology, birth and death time always come in pairs and 
can be denoted as ak

j
 and bk

j
 . We use lk

j
 to represent  

the persistence of j-th generator of the k-th persistent  
homology.

We usually use persistence barcodes or persistence dia-
gram to visualize the topological persistence. Each lk

j
 is con-

sidered as a bar in persistence barcodes and also treated as 
a 2-dimensional point with coordinate (ak

j
, bk

j
) in persistence 

diagram. The persistence diagram consists of these points 
(finite multiplicity) and all points in the main diagonal 
which are considered as infinite multiplicity in ℝ̄2 where 
ℝ̄ = ℝ ∪ {∞} . The total multiplicity of points that are not 
on the diagonal is the size of the persistence diagram. If 
there are multiple bars with the same endpoint and start 
point simultaneously, the point is counted with multiplicity 

in the persistence diagram. For example, persistence bar-
codes and its corresponding persistence diagram generated 
by constructing a filtration are shown in Fig. 2.

Persistent homology provides a very important and 
promising way of structure representation, and is applied to 
various fields. Recently, the machine learning models based 
on persistent homology have been used in various research 
fields, including noise data [36], shape analysis [37], com-
putational biology [38], image analysis [39] and drug design 
[40]. There are various persistent homology softwares, for 
example, GUDHI [41], JavaPlex [42], R-TDA package [43], 
Ripser [44], PHAT [45] and CubicalRipser [46].

Extracting Features

One of the reliable and frequently used fMRI indexes for 
measuring local connectivity is ReHo. The ReHo index 
measures the consistency of time series between voxels and 
their neighboring voxels, and is designed to represent local 
synchronization of spontaneous neural activity on a cen-
timeter scale. The size of the scale depends on the size of 
voxels and the number of neighboring voxels included in 
the calculation.

In this paper, we used persistent homology to extract the 
topological information of ReHo data of each subject. The 
sampling resolution sizes of the three dimensions for each 
subject selected on the ABIDE I and ABIDE II databases 
were 61, 73 and 61, respectively. The ReHo value calculated 
using C-PAC represents the correlation (Kendall coefficient) 

Table 2  Phenotypic information of 795 subjects of ABIDE II (M: 
Male, F: Female)

ASD TC

Site Avg-Age 
(SD)

Sample Size Avg-Age 
(SD)

Sample Size

BNI 37.45 (15.81) 29 
(M:29,F:0)

40.32 (14.56) 28 (M:28, F:0)

EMC 8.74 (1.12) 14 (M:12, 
F:2)

8.02 (0.72) 13 (M:10, F:3)

ETH 21.57 (3.68) 7 (M:7, F:0) 23.94 (4.60) 22 (M:20, F:7)
GU 17.98 (4.98) 27 (M:25, 

F:2)
10.60 (1.72) 41 (M:22, F:0)

IU 25.28 (9.51) 18 (M:14, 
F:4)

24.00 (4.77) 19 (M:14, F:5)

IP 15.99 (5.18) 13 (M:8,F:5) 25.53 (11.18) 20 (M:7, F:13)
KUL 23.76 (5.00) 25 (M:25, 

F:0)
0 (0) 0 (M:0, F:0)

KKI 10.72 (1.51) 25 (M:16, 
F:9)

10.30 (1.19) 123 (M:73, 
F:50)

NYU 9.13 (5.26) 61 (M:55, 
F:6)

9.49 (3.38) 28 (M:26, F:2)

ONRC 21.60 (3.77) 15 (M:14, 
F:1)

24.19 (3.88) 26 (M:16, 
F:10)

OHSU 11.91 (2.21) 33 (M:27, 
F:6)

10.41 (1.66) 51 (M:25, 
F:26)

TCD 15.73 (3.58) 10 (M:10, 
F:0)

16.66 (2.64) 16 (M:16, F:0)

SDSU 13.23 (3.07) 30 (M:24, 
F:6)

13.25 (2.98) 25 (M:23, F:2)

SU 10.78 (1.18) 14 (M:13, 
F:1)

11.06 (1.05) 17 (M:15, F:2)

UCLA 12.02 (2.14) 12 (M:11, 
F:1)

10.07 (2.27) 12 (M:8, F:4)

USM 21.90 (7.32) 9 (M:7, F:2) 26.17 (6.74) 12 (M:10, F:2)

Fig. 1  The 1-dimensional elementary cubes [3, 4] × [0, 0] and 
[0, 0] × [1, 2] ⊂ ℝ

2 , 2-dimensional elementary cube [2, 3] × [2, 3] ⊂ ℝ
2
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of time series between a given voxel and the surrounding 
26 voxels [27]. Thus, we obtained the 3-dimensional ReHo 
matrix for each subject. From the calculation method of 
ReHo, it describes the functional connection relationship 
between a given node and its neighbor nodes, thereby quan-
tifying the degree of connection between the node and its 
neighbors in the brain image [27]. It can be understood as 
a network centrality index to represent the importance of 
nodes in the human brain connectome in their local func-
tional interaction.

For individuals with ASD, local connections are disrupted 
in different ways. It results in differences in the distribution 
and topology of ReHo values across the entire brain region 
between individuals with ASD and healthy people. A region 
with a higher ReHo value indicates higher consistency with 
the time series of surrounding regions. We are concerned 
about the connectivity of human brain regions between ASD 
subjects and healthy people in regions with relatively high 
local consistency. Therefore, it is necessary to characterize 
the topological structure of the time series of adjacent voxels 
in areas greater than or equal to the given correlation value.

We converted every original ReHo value to 1 minus 
original ReHo value. Given a threshold, voxels with ReHo 
values greater than or equal to the threshold before trans-
formation were the same as voxels with the voxel values 
less than or equal to 1 minus the threshold after transfor-
mation. Using all the voxels of each subject from ABIDE 
I and ABIDE II as the regions of interest (ROIs), we used 
the persistent homology to calculate the desired topologi-
cal information. Cubical complexes were used to represent 
voxel data. Given a filtration value of � , if the voxel value 
of a 3-dimensional cube of a subject was less than or equal 
to � , the cube was labeled as A, otherwise, it was labeled 
as B. In this way, we obtained the 0-, 1- and 2-dimensional 
topological generators of all cubes labeled A under this 
filtration value. As the filtration value � increased, the 
number of cubes labeled as A also gradually increased. We 
could obtain birth and death information of the 0-, 1- and 
2-dimensional topological generators throughout the entire 
process. Thus, we obtained the 0-, 1- and 2-dimensional 
persistence barcodes or persistence diagrams of the ROIs 
of every subject.

Due to the rule that if a higher dimensional cube is added 
in the filtering process, each proper face of it should be 
added before this. There are always some 0-dimensional 
features that are generated earlier than the 1- and 2-dimen-
sional features. There are always some 1-dimensional 

features that are generated earlier than the 2-dimensional 
features. The threshold range for each dimension we chose 
was to ensure that the majority of persistence barcodes 
generated from data from different sites were within this 
range as much as possible. For the ABIDE I database, the 
0-dimensional filtration values were increased by 0.01 each 
time from 0.6 to 0.95, for a total of 36 different thresholds. 
For every filtration value of these 36 thresholds, we counted 
the number of 0-dimensional bars whose persistence inter-
vals contained the filtration value. We used the number 
obtained at each threshold as a feature value correspond-
ing to this threshold. Following this method, we obtained 
36 0-dimensional features for every subject. Similarly, the 
numbers of 1-dimensional bars that crossed given filtration 
values were counted, respectively (Filtration values were 
increased by 0.01, ranging from 0.65 to 0.97, resulting in 
a total of 33 thresholds). We obtained 33 1-dimensional 
features for every subject. We also counted the number of 
2-dimensional bars in which every given filtration value 
was located (Filtration values were increased by 0.01, rang-
ing from 0.8 to 0.97, resulting in a total of 18 thresholds). 
We obtained 18 2-dimensional features for every subject. 
Then, we combined all 0-, 1- and 2-dimensional features 
into an 87-dimensional vector for every subject. Figure 3 
shows the process of converting from persistence barcodes 
to a feature vector.

The data we selected came from 17 international sites, 
with an age distribution ranging from 6 to 64 years old, as 
well as differences in genders and DSM-IV-TR diagnos-
tic criteria. ReHo values could be affected and the trans-
formed voxel values could be also affected by these vari-
ables. We performed zero-mean operation for each feature 
of 87 features of all subjects, and removed the influence 
of covariates, such as international sites, genders and diag-
nostic criteria. And then we added 87 mean values back to 
the corresponding features of each subject, respectively. 
Finally, we performed a linear regression between each fea-
ture of all subjects and their age, respectively. The residuals 
before and after regression of each feature of all subjects 
with age were used as the inputs to machine learning clas-
sifiers to classify ASD subjects and typical controls.

For the ABIDE II database, we counted the numbers of 
0-dimensional bars whose persistence intervals contained 
filtration values (The filtration values were increased by 
0.01, ranging from 0.55 to 0.8, resulting in a total of 26 
filtration values). We obtained 26 0-dimensional features 
for every subject. The numbers of 1-dimensional bars 
that crossed given filtration values were counted, respec-
tively (Filtration values were increased by 0.01, ranging 
from 0.6 to 0.85, resulting in a total of 26 thresholds). We 
obtained 26 1-dimensional features for every subject. We 
also counted the number of 2-dimensional bars in which 
each filtration value was located (Filtration values were 

Fig. 2  The illustration of the persistence barcodes and persistence 
diagram generated by an fMRI ReHo data under a suitable filtration. 
a An fMRI ReHo data of a subject. b The 0-, 1- and 2-dimensional 
persistence barcodes generated by the ReHo data in a. c The corre-
sponding persistence diagram

◂
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increased by 0.01, ranging from 0.7 to 0.9, resulting in 
a total of 21 thresholds). We obtained 21 2-dimensional 
features for every subject. Then, we combined all 0-, 1- 
and 2-dimensional features into a 73-dimensional vector 
for every subject. We selected data from 16 international 
sites, the age distribution from 5 to 64 years and the 
genders of subjects could affect the ReHo values and 
thus also affect the transformed voxel values. The follow-
ing operations were the same as those in subjects from 
ABIDE I. The residuals of each feature of all subjects 
before and after regression with age were used as features 
of machine learning classifiers.

We extracted features for learning classifiers and then 
evaluated models and verified how good (or bad) they 
were. For a binary classification model of supervised learn-
ing, accuracy is a very important evaluation index. It is 
the proportion of the number of labels of the classified 
objects that are the same as their original labels under the 
extracted features to the total number of labels. For binary 
classification problems, the combination of accuracy and 
other indexes can evaluate the performance of the model 
more precisely.

The receiver operating characteristic (ROC) curve is also 
known as the sensitivity curve. The ROC curve is a coor-
dinate graph composed of false positive rate (FPR) as hori-
zontal axis and true positive rate (TPR) as vertical axis, and 
the curve drawn by subjects under specific stimulus condi-
tions due to different results obtained by different judgment 
criteria. The area under ROC curve (AUC) can be used to 
evaluate the performance of the binary problem machine 
learning algorithms. Sensitivity and specificity indicate what 
proportion of positive and negative cases are correctly clas-
sified, respectively.

Experimental Results and Comparison 
with Existing Methods

We note that the accuracy, specificity, sensitivity and F1 
score mentioned from the “Experimental Results and Com-
parison with Existing Methods” to “Conclusions” sections 
refer to the average under 10 times 10-fold cross validation.

Experimental Results

The resulting accuracy, specificity, sensitivity and F1 
score of performing 10 times 10-fold cross validation on 
the entire ABIDE I database under the Support Vector 
Machine (SVM) [47], Multilayer Perceptron (MLP) [48], 
Random Forest (RF) [49] and Gradient Boosting Deci-
sion Tree (GBDT) [50] algorithms are shown in Table 3. 
This result indicated that TDA could be a very effective 
feature extraction tool for studying the ReHo data of fMRI. 
Figure 4 shows the two ROC curves with the worst perfor-
mance of 10-fold cross validation using the GBDT algo-
rithm on the ABIDE I database and the AUC correspond-
ing to each fold.

Fig. 3  Persistence barcodes to a feature vector. For given 87 filtration values, we counted separately the numbers of 0-, 1- and 2-dimensional 
bars whose persistence intervals contained these filtration values and then took these numbers to form an 87-dimensional feature vector

Table 3  The resulting of performing on the entire ABIDE I database 
under SVM, MLP, RF and GBDT algorithms

algorithms avg-acc avg-spec avg-sen avg-F1 score

SVM 84.2% 90.4% 76.8% 79.7%
MLP 90.7% 90.7% 90.6% 89.5%
RF 92.5% 97.7% 86.1% 90.0%
GBDT 95.6% 96.7% 94.3% 95.0%
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For the ABIDE I database, we selected the top 30 most 
important features for the GBDT classifier, with contri-
butions ranging from 70% to 80%. We conducted t-tests 
on ASD subjects and typical controls using these fea-
tures that were often in the top 30 under 10 times 10-fold 
cross validation. We chose these with significant differ-
ences (p-value ≤ 0.05) from important features that often 
appeared. We used these important and significantly dif-
ferent features as inputs for the GBDT classifier. The clas-
sification accuracy, specificity, sensitivity and F1 score 
of the model constructed with these features were 92.3%, 
94.3%, 89.8% and 91.1%, respectively.

The accuracy, specificity, sensitivity and F1 score 
obtained through 10 times 10-fold cross validation on 
the ABIDE II database using SVM, MLP, RF and GBDT 
algorithms are shown in Table 4. Figure 5 shows the two 
ROC curves with the worst performance of 10-fold cross 
validation using the GBDT algorithm on this database and 
the AUC corresponding to each fold.

For the ABIDE II database, we also selected the top 30 
most important features for the GBDT classifier, with con-
tributions ranging from 60% to 70% in this database. We 
also conducted t-tests on ASD subjects and typical controls 
from the top 30 features that frequently appeared in cross 
validation. We also chose these with significant differences 
(p-value ≤ 0.05) from important features that often appeared. 
And we used these important and significantly different 
features of subjects as inputs for the GBDT classifier. The 
classification accuracy, specificity, sensitivity and F1 score 
of the model constructed with these features were 96.4%, 
97.6%, 92.5% and 92.0%, respectively.

Comparisons with Existing Methods

To the best of our knowledge, our accuracy based on persis-
tent homology on both subdatabases was the most accurate 
among existing results. The comparisons of all 26 models 
in the ABIDE I were shown in Table 5. The accuracy results 
between all 26 models are shown in Fig. 6. The accuracy 
of other 25 models ranged from 60% to 93.59%, and most 
models had classification accuracy below 80%. The clas-
sification accuracy of our proposed model reached 95.6%, 
which was about 2% higher than the highest one of the other 
25 models. The comparisons of all 12 models in the ABIDE 
II are shown in Table 6. The accuracy results between all 12 
models are shown in Fig. 7. The accuracy of our proposed 
model reached 96.5%, which was much higher than that of 
the other 11 models. This was a very huge improvement on 
this database. These results indicated that features extracted 

Fig. 4  The ROC curves of the worst 2 times 10-fold cross validation and the corresponding AUC of each fold by using the GBDT algorithm on 
ABIDE I

Table 4  The resulting of performing on the entire ABIDE II database 
under SVM, MLP, RF and GBDT algorithms

algorithms avg-acc avg-spec avg-sen avg-F1 score

SVM 86.1% 99.2% 38.2% 52.3%
MLP 94.4% 95.0% 92.6% 86.5%
RF 95.2% 99.7% 79.2% 84.8%
GBDT 96.5% 97.6% 92.6% 92.4%
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using the persistent homology could better represent the data 
from two databases.

Compared to previous methods, we neither directly uti-
lized time series nor ReHo data, but rather used persistent 
homology to obtain the topological features of ReHo val-
ues for all voxels in the whole brain. We extracted features, 
removed covariates and then send them into machine learn-
ing classifiers. Thus, our model had fewer hyperparameters 
than traditional deep learning models. This avoided the 
effect on the classification results due to the selection of 
more parameters. It took lots of time to train deep learning 
models (typically several hours, a day or even a few days). 
Our model chose cubical complexes to represent data and 
then established filtration complexes, which greatly acceler-
ated the running time. The entire process to get the average 
accuracy of cross validation ran for about 20 min. We used 
a 12th Generation Intel Core i9 processor with 14 cores run-
ning at 2.50 GHz and 16 GB of RAM and a RTX 3060 Lap-
top GPU with 6 GB of RAM. This provided time facilitation 
for the diagnostic process.

Discussions

We established a new model that combined persistent 
homology in TDA with some machine learning models to 
classify ASD populations and healthy people. To the best 
of our knowledge, we obtained the highest accuracy on 
both commonly used databases. Other evaluation indexes 

performed well. All results indicated that there were struc-
tural differences in ReHo between two groups of people. 
The different dimensional and multi-scale connectivity dif-
ferences of ReHo between the two groups of people were 
captured by persistent homology. ReHo is very effective 
for studying ASD. The main reasons of very high results 
were as follows: In our model, the data obtained after trans-
forming ReHo data was still volume data, it could be well 
characterized by a series of nested cubical complexes. The 
connectivity information obtained by persistent homology 
were topological invariants that remained unchanged under 
continuous deformation could be used to distinguish differ-
ent topological structures. We chose the proper filtration 
process to establish our model. The filtration values range 
for each dimension we chose was to ensure that the major-
ity of persistence barcodes generated from data were within 
this range as much as possible. Compared to other models, 
we neither considered the correlation between any two ROIs 
nor directly used some ReHo values as features, but rather 
utilized the connectivity information of voxels with high 
homogeneity throughout the brain as features. These fea-
tures not only reflected the intrinsic structural information 
of the complexes, but also maintained multi-scale proper-
ties (under different filtration values). These factors were 
not considered by other models. The method that regarded 
the correlation of regions on time series as features did not 
consider the impact of correlation between three or even 
more regions on ASD prediction. Our model considered the 
relationship among multiple voxels.

Fig. 5  The ROC curves of the worst 2 times 10-fold cross validation and the corresponding AUC of each fold by using the GBDT algorithm on 
ABIDE II
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Rigorous Interpretation of Our Work

The high classification results were reliable and the design 
of the whole work was also rigorous. Firstly, there are abnor-
malities in the structure of certain brain regions for ASD 
and healthy populations. The functional connections and 
degree of connectivity between different brain regions also 
differ from those of healthy individuals. ReHo describes the 
functional connection relationship between a given node and 
its nearest 26 neighbor nodes. In individuals with autism, 
local connections are disrupted in different ways, resulting 
in differences in the distribution and topology of ReHo val-
ues across the entire brain region between ASD and healthy 
populations. Secondly, homology is a tool for characteriz-
ing the structure of objects. The theories of homology and 
persistent homology have clear definitions and are highly 
rigorous and refined in their theoretical derivation. Persis-
tent homology in TDA could capture multi-dimensional 
and multi-scale connectivity information of ReHo data of 
subjects. In recent years, there have been many applications 

of TDA, as mentioned in the “Topological Data Analysis” 
section, which achieved excellent results in many studies 
related to data structure. Thirdly, the data obtained after 
transforming ReHo data was still volume data, we chose 
cubical complexes to represent this data, which provided a 
good topological representation. Finally, the filtration values 
range for each dimension we chose was to ensure that the 
majority of persistence barcodes generated from data from 
different sites were within this range as much as possible. 
These reasons were the prerequisite and key to achieving 
high classification accuracy and various good performance 
indexes. The results obtained by persistent homology can 
be visualized through persistent barcodes or persistent dia-
gram, through which we can easily obtain features under 
some filtration values. This helps us understand the structure 
of objects from different scales.

In this paper, the numbers of ASD subjects on both 
ABIDE I and II databases were in a suitable proportion to 
that of typical control subjects (408:476 and 342:453), and 
all data was randomly grouped under a 10-fold cross valida-
tion. Therefore, AUC could indeed reflect the strength of our 
model. We chose the commonly used 10-fold cross valida-
tion to ensure that our experiment did not overfit or underfit. 
This made the experimental results more credible.

Limitations

The original features extracted by our model were the num-
ber of bars at some certain thresholds, which were the Betti 
numbers corresponding to the complexes at these thresh-
olds. They reflected the number of connected components, 
loops and cavities of the entire ReHo data under these fil-
tration values. Although these features reflected some of 
the structure of the data and we have achieved high clas-
sification accuracy, the medical and biological significance 
represented by these features was not yet clear. The distribu-
tions, sizes and specific locations of connected components, 
loops and cavities in the brain could not be directly reflected 
through these features. It was not sufficient to directly locate 
abnormal brain regions in diagnostic patients. Starting from 
topological features, exploring the biological significance 
of topological features that differ between individuals with 
ASD and healthy people is our future work. This may con-
tribute to medical diagnosis.

Future Directions

Although our proposed method has achieved good accu-
racy results in ASD detection, there is still room for further 
improvement. We can also optimize the extracted topologi-
cal features by combining them with our prior knowledge of 
this disease. In addition, as a topological feature extraction, 

Table 5  The performance of our proposed model with other models 
in the entire ABIDE I database

Models Pub Date Sample Size Data Accuracy

MFC [51] 2013 964 4D fMRI 60%
SVM-169 [52] 2015 878 ReHo 63.03%
DRB [53] 2017 871 4D fMRI 66.8%
CP-DNN [13] 2018 1013 4D fMRI 68.7%
PBL-McRBFN-169 

[52]
2015 878 ReHo 68.9%

SGCN [54] 2017 871 4D fMRI 69.5%
DL algorithm [3] 2018 1035 4D fMRI 70.0%
LSTM networks [55] 2017 1100 4D fMRI 70.1%
ASD-DiagNet [18] 2019 1035 4D fMRI 70.1%
GCN [56] 2018 871 4D fMRI 70.4%
ASD-SAENet [17] 2021 1035 4D fMRI 70.8%
AIM [57] 2018 871 4D fMRI 71.1%
3D-CNN CC400 [58] 2018 774 4D fMRI 71.7%
Ensemble 3D-CNN 

[59]
2018 774 4D fMRI 73.3%

SH-ML [14] 2021 656 4D fMRI 73.75%
CAFN [60] 2021 452 4D fMRI 75%
SFM [15] 2017 1035 4D fMRI 77.3%
EBN [19] 2019 871 4D fMRI 77.7%
MISO-DNN [61] 2021 1038 4D fMRI 78.07%
PTA-DNN [62] 2019 871 4D fMRI 79.2%
ECNN [63] 2022 1112 4D fMRI 80%
Monkey-Derived [20] 2020 336 4D fMRI 82.14%
SSAE [64] 2022 871 4D fMRI 87.2%
BDN [21] 2020 1112 4D fMRI 88.8%
SVM-RFE AE [23] 2019 1054 4D fMRI 93.59%
Our proposed model 884 ReHo 95.6%
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there may be a better choice than using all Reho values of 
every subject as ROIs.

Our proposed model can also be used in ReHo data from 
rs-fMRI of other neurological diseases to classify, such as 
Alzheimer’s disease, attention deficit hyperactivity disor-
der, and so on. Many articles in the medical field indicated 
that ASD is associated with a lot of brain function areas. 
Multiple brain regions as ROIs to extract features is also a 
viable direction.

In addition, there are some related generalizations of 
persistent homology that can also be used as improvements 

on the two databases. Recently, many new mathematical 
theories have been developed, such as hypergraph-based 
persistent embedded homology [67] and super-persistent 
homology theories [68], which allow for topological invari-
ants to be applied to a wider range of problems. These theo-
ries can be used to analyze point cloud data as well as graph 
data, while overcoming the topological noise and constraint 
requirements for data in persistent homology theory. Apply-
ing these theories to fMRI data to characterize the structure 
of data is also a promising method for the ASD classifica-
tion problem.

Fig. 6  Performance comparison of our model with other existing models on the ABIDE I database

Table 6  The performance of 
our proposed model with other 
models in the entire ABIDE II 
database

Models Pub Date Sample Size Data Accuracy

3D-CNN EZ [57] 2018 393 4D fMRI 66.4%
3D-CNN DOS160 [57] 2018 393 4D fMRI 67.0%
SVM HO [57] 2018 393 4D fMRI 68.7%
3D-CNN AAL [57] 2018 393 4D fMRI 69.5%
MCNNE [65] 2019 343 4D fMRI 70.0%
BrainNet CC400 [57] 2018 393 4D fMRI 71.5%
3D-CNN MA-Ensemble [57] 2018 393 4D fMRI 71.7%
3D-CNN SP-Ensemble [57] 2018 393 4D fMRI 72.3%
3D-CNN CC200 [57] 2018 393 4D fMRI 72.8%
FNDA [66] 2021 352 4D fMRI 73.1%
Monkey-Derived [20] 2020 149 4D fMRI 75.17%
Our proposed model 795 ReHo 96.5%
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Conclusions

In this paper, we proposed a new model for extracting top-
ological feature from volume data using persistent homol-
ogy in TDA. We used this model to classify individuals 
with ASD and healthy populations. The classification 
data was a publicly shared ABIDE database commonly 
used by ASD research, which includes two subdatabases, 
ABIDE I and ABIDE II. The different dimensional con-
nectivity information (the number of connected compo-
nents, loops and cavities) of the ReHo data of each subject 
from ABIDE I and ABIDE II were extracted by persistent 
homology as the features. We obtained the higher clas-
sification accuracy than other state-of-the-art results on 
both ABIDE I and ABIDE II, and other evaluation indexes 
performed well, such as specificity, sensitivity, AUC and 
F1 score. The results indicated that there were differences 
in the connectivity of different dimensions and scales of 
ReHo values. Persistent homology captured the spatial 
structure differences of ReHo between two groups of peo-
ple, and thus distinguished ASD individuals and healthy 
people. Our model opened up a new perspective for study-
ing ASD and related types of diseases.
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