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A deep learning‑based automated 
diagnosis system for SPECT 
myocardial perfusion imaging
Dai Kusumoto 1,2,5*, Takumi Akiyama 1,5, Masahiro Hashimoto 3, Yu Iwabuchi 3, 
Toshiomi Katsuki 1, Mai Kimura 1, Yohei Akiba 1, Hiromune Sawada 1, Taku Inohara 1, 
Shinsuke Yuasa 4, Keiichi Fukuda 1, Masahiro Jinzaki 3 & Masaki Ieda 1

Images obtained from single‑photon emission computed tomography for myocardial perfusion 
imaging (MPI SPECT) contain noises and artifacts, making cardiovascular disease diagnosis difficult. 
We developed a deep learning‑based diagnosis support system using MPI SPECT images. Single‑
center datasets of MPI SPECT images (n = 5443) were obtained and labeled as healthy or coronary 
artery disease based on diagnosis reports. Three axes of four‑dimensional datasets, resting, and 
stress conditions of three‑dimensional reconstruction data, were reconstructed, and an AI model was 
trained to classify them. The trained convolutional neural network showed high performance [area 
under the curve (AUC) of the ROC curve: approximately 0.91; area under the recall precision curve: 
0.87]. Additionally, using unsupervised learning and the Grad‑CAM method, diseased lesions were 
successfully visualized. The AI‑based automated diagnosis system had the highest performance (88%), 
followed by cardiologists with AI‑guided diagnosis (80%) and cardiologists alone (65%). Furthermore, 
diagnosis time was shorter for AI‑guided diagnosis (12 min) than for cardiologists alone (31 min). Our 
high‑quality deep learning‑based diagnosis support system may benefit cardiologists by improving 
diagnostic accuracy and reducing working hours.

Cardiovascular diseases are the leading cause of single organ-associated death in numerous countries, with a 
rapidly increasing global incidence. Coronary artery disease (CAD), including myocardial infarction and angina, 
is the main etiology of cardiovascular disease. Single-photon emission computed tomography for myocardial 
perfusion imaging (MPI SPECT) can visualize cardiac blood flow using radioisotopes and is one of the most 
common non-invasive examinations for coronary artery disease (CAD)  diagnosis1–4. MPI SPECT is crucial in 
predicting clinical outcomes and in making clinical decisions, such as the need for coronary  revascularization5–7. 
However, there are unavoidable issues in diagnosing CAD with MPI SPECT, with the primary concern being 
that images obtained from MPI SPECT sometimes contain various type of noises and artifacts, which reduce 
the diagnostic accuracy. One example is artifactual attenuation defect in the inferior wall due to diaphragmatic 
motion, which can be interpreted as a perfusion  abnormality8–15. Through specialized training for medical doc-
tors, in which imaging characteristics of various artifacts are taught, it is possible to determine whether artifacts 
are the cause of decreased uptake in MPI SPECT imaging. However, inadequate interpretation can lead to arti-
facts being diagnosed as CAD, resulting in an increase in false  positives16. Furthermore, although over 220,000 
cardiovascular SPECTs are performed annually in  Japan17, the number of nuclear medicine specialists is only 
about  270018. Thus, especially in local hospitals, it is often difficult to interpret MPI SPECT images due to the 
absence of nuclear medicine specialists.

To overcome this drawback, automated diagnostic systems for MPI SPECT images have been developed 
using machine  learning19–23, which have been further augmented using deep learning techniques in recent 
 years24–28. Although the performance of machine learning has notably been improved through the utilization 
of deep learning, certain limitations remain that hinder diagnostic accuracy. First, the input data often consists 
of two-dimensional (2D) data, such as polar  maps25,28, or only stress loading  images27; therefore, portions of 
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information originally possessed by a SPECT image become lost. Second, CAD lesions should be central to the 
construction of models that enable localization of decreased blood flow. However, they are examined only in a 
limited number of  cases28; therefore, the number of training datasets is insufficient.

To address these issues in the present study, we first created four-dimensional (4D) datasets, which contained 
both the resting and stress images of the three-dimensional (3D) stacked cross-section (Fig. 1A). Then, we 
constructed a 3D convolutional neural network (CNN) based on a deep residual  network29–32, and the 4D-data 
were inputted to the 3D-CNN as two-channel 3D data. The 3D-CNN processed the data from three axes: the 
horizontal long, vertical long, and short axes. The output of the three 3D-CNNs was combined with the age and 
sex information, and the probability of the CAD images was calculated (Fig. 1B). Additionally, we developed an 
algorithm capable of focal diagnosis of CAD  lesions33–36. We used two methods for focal diagnosis, Grad-CAM 
and unsupervised learning. Grad-CAM visualizes parts of an image that are crucial for AI-based  diagnosis37; focal 
diagnosis can be possible using Grad-CAM because a trained-AI may recognize areas of decreased blood flow. 
Furthermore, a more precise focal diagnosis may be achieved by using unsupervised learning, such as principal 
component analysis (PCA)38,39, because PCA may present greater accuracy in grouping from a trained model; 
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Figure 1.  Preparing the dataset of MPI SPECT images for AI training. (A) MPI SPECT image-processing 
protocol for training. Six continuous cross-sections of grey scale processed SPECT images were used for 
training: three axes (horizontal long axis, vertical long axis, and short axis) and two conditions (rest and 
stress) for each axis. Each continuous cross-section was stacked in three dimensions, the resting and stress 
images of the same cross-section were combined, and 4D-data for each axis. (B) Structure of the AI model. We 
constructed a 3D-CNN based on a deep residual network, and 4D-data were input to the 3D-CNN as two-
channel 3D data. The 3D-CNN processed each data from three axes: the horizontal long axis, vertical long axis, 
and short axis. In training step 1, we trained the model using only a single-axis dataset (either horizontal long, 
vertical long, or short), without age and sex information. In training step 2, the top layers before the dense layers 
of the step 1 models were transferred to the model with three branches, including sex and gender information. 
An answer was output based on whether the image indicated healthy or coronary artery disease. MPI SPECT, 
single-photon emission computed tomography for myocardial perfusion imaging; CNN, convolutional neural 
network.
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thus, abnormal CAD images can be classified according to CAD lesions. Finally, we compared the diagnostic 
performance of our model with that of cardiologists and demonstrated the usefulness of the AI-based system.

Results
The performance of classification by our system
Table 1 shows the baseline characteristics of the patients. The trained deep neural network was able to classify 
MPI SPECT images as healthy or CAD with high accuracy in the test data that were not used for training. The 
area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.91, and the area under 
the curve of the precision recall curve (AUPRC) was 0.87 (Fig. 2A, Table S1). The histogram in Fig. 2B shows that 
the probability of CAD images mainly ranges from 90 to 100%, while that of non-CAD images ranges from 0 to 
10%. In total, 14.2% of images included noises or artifacts in our datasets. The performance of the non-artifact 
images (AUC: 0.93, AUPRC: 0.90) was much higher than that of the artifact images (AUC: 0.74, AUPRC: 0.78) 
(Fig. S2A,B, Table S2). Next, we compared the combination of three axis, horizontal long, vertical long, and short 
axes. The AUC and AUPRC were 0.91 and 0.87 for the three-axis model, 0.86 and 0.81 for the horizontal-long-axis 
model, 0.87 and 0.82 for the vertical-long-axis model, and 0.88 and 0.83 for the short-axis model, respectively 
(Fig. 3, Table S3). In addition, the performance of model using both stress and rest images was higher than that 
using only stress images (Table S4).

Detection of diseased area using trained model
Next, we examined whether the trained model could visualize which part of the coronary blood flow reduced. 
First, we utilized a feature map extracted from the second dense layer of the model and performed principal com-
ponent analysis (PCA). PCA showed that images of CAD were heterogeneous, and that they could be detected 
as four clusters (Clusters 2, 3, 4, and 5) by k-means clustering methods (Fig. 4A,B, Fig. S3A). In contrast, the 
images labeled as healthy were relatively uniform and formed a compact cluster (Clusters 0 and 1) (Fig. 4A). 
We annotated CAD images based on diagnostic reports in which major coronary branches were suspected to be 
diseased lesions (Fig. S3B). The lesions of three main branches, including left anterior descending artery (LAD), 
left circumflex artery (LCX), and right coronary artery (RCA), were identified as different clusters based on 
k-means clustering (Fig. 4C). In particular, images of LAD lesions were classified as cluster 2 or 3, whereas RCA 
lesions were almost classified as cluster 4 or 5 (Fig. 4B,C, Fig. S3C). The LAD and RCA images were in opposite 

Table 1.  Patient demographic information.

Healthy CAD

Number of studies 3801 1642

Age (year ± SD) 70.1 ± 11.25 70.36 ± 9.82

Age groups

 ≦20, n (%) 4 (0.1) 1 (0.1)

 20–40, (%) 53 (1.4) 7 (0.4)

 40–60, (%) 529 (13.9) 206 (12.5)

 60–80, (%) 2468 (64.9) 1129 (68.8)

 > 80, (%) 747 (19.7) 299 (18.2)

Sex groups

 Male, n (%) 2553 (67.2) 1396 (85.0)

 Female, n (%) 1248 (32.8) 246 (15.0)
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Figure 2.  Performance of AI model in test dataset. (A) AUC of the ROC curve and AUPRC in the test dataset. 
(B) Histogram showing the frequency of the final output in each image. Blue and red bars show the output 
from the images labeled as healthy and CAD, respectively. AUC, area under the curve; ROC, receiver operating 
characteristic; AUPRC, area under the curve of the precision recall curve; CAD, coronary artery disease.
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locations in the second principal component (PC-2) (Fig. 4C). Hence, the axis of PC-2 represented the site of 
the CAD lesion in the short axis of the heart, while the axis of the first principal component (PC-1) represented 
whether the images indicated CAD or not (Fig. 4A,C). Indeed, the ratio graph showed that the location of the 
disease lesion changed continuously, depending on the value of normalized PC-2 (Fig. 4D). Additionally, we 
attempted to visualize the defect area of blood flow using Grad-CAM  methods30. Grad-CAM can be used to 
visualize parts of an image that are important for AI judgment. We succeeded in visualizing the lesions where 
the coronary blood flow deteriorated on MPI images (Fig. 5).

Comparison with cardiologists not specialized in nuclear medicine
The performance of the AI-based diagnosis system was compared with the diagnostic accuracy of cardiologists 
who were not specialized in nuclear medicine. We determined three cutlines for the AI model and provided the 
reliability for the model based on the probability of CAD, which was provided as an output by the deep neural 
network: over 90% and under 10% probability was a highly reliable zone for the AI model (62% of the total 
images, accuracy: 0.94, PPV: 0.97, NPV: 0.94); from 80 to 90% and from 10 to 20% were a moderately reliable 
zone for AI-judge (22% of the total images, accuracy: 0.88, PPV: 0.86, NPV: 0.88); and from 20 to 80% was a 
low reliability zone for the AI model (16% of the total images, accuracy: 0.62, PPV: 0.55, NPV: 0.7) (Fig. S4A,B, 
Table S5). The accuracy was 0.88 in the AI model, 0.80 in the AI-guided approach, and 0.65 in without-AI 
(Fig. 6A). The time required for diagnosis was shorter for AI-guided diagnosis (11.8 min) than for that without 
AI guidance (30.5 min). Notably, the AI model took only 80 µs for diagnosis (Fig. 6B). We calculated the ratio 
of MPI SPECT images diagnosed as CAD to total images, and found that the ratio was higher in cardiologists 
without AI guidance (0.45) than in the AI-guided diagnosis (0.30) (Fig. 6C), indicating that cardiologists tend 
to over diagnose artifacts as CAD, and that AI can reduce bias in diagnosis.

Discussion
In this study, we succeeded in constructing an automated AI-based system for MPI SPECT images to predict 
CAD with high performance (AUC: 0.91, AUPRC: 0.87) (Fig. 2A), and, as shown by the histogram of output 
probability, the model could clearly separate healthy and CAD images (Fig. 2B). In addition to the improvement 
of diagnostic accuracy, our AI model can also support clinicians by reducing interpretation time. Our deep 
learning-based diagnostic support system offers significant clinical benefits by enhancing diagnostic accuracy 
and efficiency for cardiologists.

Recently, several studies have shown the usefulness of machine learning  technology19–21 and deep learning-
based systems using large datasets of MPI SPECT  images24–28 for cardiovascular disease prediction. Compared 
to those of previous  studies24–28, we successfully constructed the AI model with high performance. The high 
performance of our AI system stemmed from its utilization of three axes within four-dimensional datasets, 
coupled with comprehensive patient biographical information. In previous reports, 2D images such as polar 
maps or stress-only images were often  used24–28. However, these quantitative methods compress original data 
into 2D representations to facilitate the evaluation of perfusion defects. While useful, this compression can lead 
to a decrease in detailed spatial information inherent in the original data. With the improvement in GPU per-
formance, it has become possible to directly input 3D images into deep-learning models. Our approach indeed 
achieved higher classification performance, suggesting that retaining the 3D data provides a more comprehensive 
analysis of myocardial perfusion, leading to better diagnostic outcomes. We believe that we have successfully 
extracted the maximum features of the MPI SPECT images by inputting 3D images and two separate channels 
for the resting and stress states. Moreover, by incorporating three axes of multi-section tomographic images and 
clinical information, such as age and sex, we have successfully constructed a high-performance model. Inter-
estingly, the short-axis model had the highest performance among the three single-axis models (Fig. 3). This 
corresponds to the interpretation of nuclear medicine specialists, which suggests that the performance of the 
model we constructed is comparable to that of the actual interpretation method by a specialist. To achieve high 
accuracy in classification using deep learning, a large number of cases are required. Using radiology reports as 
the teacher data in our study, we were able to incorporate all images of MPI SPECT (7128 images), which were 
obtained from Keio University Hospital between May, 2012 and March, 2021, into the study. We believe that this 
contributed to the improvement of the accuracy and generalization of the system.
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Figure 3.  Comparison of three-axis and single-axis model. Indexes: F1 score, accuracy, AUC, AUPRC 
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Another novel aspect of our study was that we proposed two complementary methods for accurately predict-
ing the spatial localization of coronary artery lesions. In general, it is difficult to obtain physiological informa-
tion beyond that of what is labeled in supervised learning. However, in this study, we succeeded in extracting 
information regarding coronary artery lesions without teacher data. We visualized the diseased area using two 
methods: unsupervised learning and Grad-CAM. Interestingly, PCA showed that we could identify which coro-
nary arteries were diseased, even though that information was not included in the training data label. These data 
indicate that the training model, which only performs binary classification, retains the information of the entire 
MPI SPECT image, therefore suggesting that not only classification can be performed, but also a more detailed 
diagnosis. Moreover, Grad-CAM, which can visualize important regions for decision making by AI, also showed 
that areas of reduced blood flow, which indicated coronary artery lesions, were important for classification. This 
suggests that the trained AI could correctly extract the features of the image. Our method, which applies and 
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links trained AI to a more detailed diagnosis, can be an important representative method for utilizing AI for 
medical images in the future.

We compared the performance of AI with that of cardiologists who were not specialized in cardiac nuclear 
medicine and revealed the usefulness of the AI model. In actual clinical practice, diagnosis is not solely based on 
AI decisions, but is instead a combined result of clinician experience and AI assistance. Moreover, the AI guide 
shortened the time required for diagnosis by the cardiologists without reducing the accuracy. An MPI image 
sheet includes approximately 140 images for a patient, and it can be a mental and physical burden for attending 
physicians. Additionally, it has been reported that faster image reading rates are associated with diagnostic errors 
in radiology. In particular, a rate faster than six cases per hour increases diagnostic errors  significantly40. Given 
the shortage of radiologists, our image-reading system, which reduces physician burden and shortens image 
interpretation time, can be a powerful tool in real-world clinical settings.

Our dataset was collected from a single center, Keio University; thus, it is unclear whether our system can 
be applied to other facilities. However, we included all images that were available at Keio University for 9 years, 
thereby contributing to the high accuracy and robustness of our system. Moreover, we propose the fundamental 
strategy for the diagnosis of CAD using MPI SPECT. Our system can be applied to other facilities by performing 
additional learning and model training on their datasets.

Figure 5.  Visualization of diseased area using Grad-CAM. Representative Grad-CAM images showing lesions 
in MPI SPECT images of coronary artery disease. Short axis image in the stress condition (left), rest condition 
(center), and Grad-CAM merged image in the stress condition (right). MPI SPECT, single-photon emission 
computed tomography for myocardial perfusion imaging.
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In conclusion, we successfully constructed an AI-based automated system for diagnosing CAD using MPI 
SPECT images. This system led to make more effective and accurate diagnoses by clinicians.

Methods
Study population
This retrospective study included a total of 7128 patients who underwent stress/rest MPI SPECT between May 
2012 and March 2021 at Keio Hospital. Demographic data, including age and sex, were retrieved from our 
electronic medical records.

Image labeling and dataset division
We labeled each MPI image by referring to the diagnostic reports of MPI interpretation. The images were visu-
ally interpreted by specialists of cardiac nuclear medicine after incorporating all available data, including stress 
and rest perfusion imaging and clinical information. The datasets included artifacts from tissue attenuation of 
radioactivity, small defects, or defects representing other conditions (e.g., body motion during imaging caus-
ing a significant loss of image quality), which were considered suggestive of no flow-limiting CAD and labeled 
negative for CAD. Among the 7128 images, after excluding 1685 images that were unclassifiable through data 
extraction, we utilized 5443 images, including 3801 healthy images (definite: 3385, artifact: 416) and 1642 CAD 
images (definite: 1284, CAD: 358) for machine learning.

Next, we randomly extracted 10% of the available data for the test dataset; 10% of the remaining data were 
used for validation, and the remaining data were utilized for training. Separation was performed for each label. 
The training dataset included 4356 cases (healthy: 3041, CAD: 1,315), the validation dataset included 542 cases 
(healthy: 379, CAD: 163), and the test dataset included 545 cases (healthy: 381, CAD: 164) (Fig. S1). All programs 
were written in Python 3.

Stress protocol
All patients underwent standard pharmacological or exercise stress Tl-201 MPI. Exercise stress tests were per-
formed using a bicycle ergometer with multi-stage loading, starting at 25 W or 50 W and increasing by 25 W 
every 3 min. When the target heart rate or standard exercise endpoint was reached, 111 MBq of radioisotope 
Tl-201 was administered. Exercise at the same level was continued for another minute post-radiotracer injec-
tion. In the pharmacological stress test, dipyridamole at a dosage of 0.56 mg per kilogram body weight was 
administered slowly intravenously over 4 min, followed by a 2 min-later administration of 111 MBq of the 
radioisotope Tl-201.

SPECT image acquisition and processing
Fifteen minutes and 3–4 h after injection of 111 MBq Tl-201, MPI SPECT images were obtained using a double-
headed gamma camera (Discovery NM/CT 670, GE Healthcare, Milwaukee, WI, USA) equipped with a low-
energy high-resolution collimator with the patient in the supine position. SPECT data were collected in 60 
views in steps of 6°, with each detector rotating 180° (360° acquisition). The scan durations were 10, 12.5, and 
15 min for patients weighing < 60 kg, 60–70 kg, and ≥ 70 kg, respectively. All images were processed with com-
mercially available software on a GEniE-Xeleris workstation (GE Healthcare, Milwaukee, WI, USA). Data were 
reconstructed using the ordered subset expectation maximization method with a Butterworth filter (order, 10; 
cut-off frequency, 0.30–0.34 cycles/cm). The matrix size for the data acquisition and image reconstruction was 
3.4 mm (128 × 128).

Preparation of input data for the model
There were six types of SPECT images for every patient, comprising images of three axes (horizontal long, vertical 
long, short) and two conditions (stress, rest) for each axis. We utilized all six types of SPECT images, including 
both rest and stress SPECT images for each axis, in our study. The images of the horizontal long and short axes 
had 23 slices, and those of the vertical long axis had 17 slices. The image size was 1200 × 1640 or 1080 × 1640 
pixels depending on the imaging equipment. To generate a dataset for machine learning, we cropped the SPECT 
images of each slice from the image sheets. The acquired images were converted to grayscale (0–255). Each slice 
was aligned at the center and cropped with a small image margin. The coordinates for cropping were identified 
using ImageJ software. The size of each image was 79 × 79 pixels, which was determined to maximize the original 
information value of the images and minimize the calculation cost for training. The cropped images were then 
converted into a NumPy array. SPECT images corresponding to each slice were concatenated to generate cubic 
images (79 × 79 × 23 or 79 × 79 × 17 voxels). Next, we concatenated two cubic images of the stress/rest conditions 
to create cubic images with two channels (79 × 79 × 23 × 2 or 79 × 79 × 17 × 2 voxels). The last channel represents 
the stress and rest conditions.

Training of deep CNN model
We designed a 3D-CNN for training, which used three branches with the input of three axes that were taken 
simultaneously (branch 1: horizontal long axis; branch 2: vertical long axis; branch 3: short axis). The proposed 
approach uses deep features of ResNet-34 composed of 3D-CNN. ResNet-34 is a 34-layer CNN that uses skip 
connections and shortcuts to jump over some layers, enabling the avoidance of vanishing gradient and degrada-
tion problems even with deeper models. Each convolutional layer was followed by rectified linear units (ReLU) 
for activation and batch normalization, and the final layer of ResNet 34 was fed to a global average pooling layer.
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The outputs of all branches were concatenated with 256-hidden-units-layer of patient demographic data, 
including age and sex data. These outputs were then connected with six dense layers of 1024, 512, 256, 128, 64, 
and 1 unit. The first two dense layers applied the L2 regularization penalty (L2 = 0.01) to the loss function, the 
batch normalization layer was applied after the first dense layer to avoid overfitting, and the last layer applied 
a sigmoid function to calculate the probability of the classification. We utilized stochastic gradient descent as a 
loss function. The model was trained to minimize the loss function.

The learning procedure was divided into two steps. In the training step 1, we trained the model using only 
a single-axis dataset (horizontal long, vertical long, and short axes), without age and sex information. In the 
training step 2, the top layers before the dense layers of step 1 models were transferred to the model with three 
branches, including sex and gender information. The weights of the transferred top layers were fixed, and only 
those of the dense layers were updated. In the first and second steps, the initial learning rates were 0.1 and 0.03, 
respectively. Both were reduced by a tenth when the value of the validation loss function was not improved for 
10 epochs during training, and the training was stopped when the value was not ameliorated for 20 epochs. 
The reduction in the learning rate and the early stopping method prevented overfitting. The input images were 
normalized as follows:

(Y: value of normalized images; X: value of original images).

Data augmentation
For data augmentation, we simultaneously applied a slight rotation of the original images by a maximum of five 
degrees, a change in brightness by a maximum of 0.1 times for each pixel, zooming 0.8–1.0 times, and shifting, in 
which each slice randomly moves the margin space caused by zooming. The augmented images were concatenated 
to generate new images. In this way, data augmentation enables the dataset to be increased without degrading 
the information and modifying the imbalance between classes, which helps reduce overfitting when training a 
machine learning model. Thus, the training performed better with an augmented balanced dataset than with an 
original imbalanced dataset. The CAD and non-CAD datasets were augmented to 12,000 images each. The same 
procedure was used for images of each axis.

Evaluation of model performance
We obtained 545 images in the test dataset, including 381 healthy images (definite: 339, artifact: 42) and 164 
CAD images (definite: 128, artifact: 36). The probability value of the test dataset was calculated to evaluate the 
performance of the trained model. The test dataset was not utilized for the training; thus, the predicted result of 
the test dataset reflects the model’s versatility and performance. Our dataset included MPI images with artifacts, 
and it is evident that artifact images are far more difficult to correctly interpret than non-artifact images, even 
for cardiologists and radiologists. To confirm the difference in prediction accuracy between artifact and non-
artifact images, we separated the test data into artifact and non-artifact datasets and calculated the evaluation 
score. Further, we trained models using only a single axis without age and sex data to clarify which axis is prone 
to reflect the CAD features the most and to clarify the difference in the predictive performance between the 
three-branch model and single-axis model.

Unsupervised learning for prediction of coronary artery lesion
To examine the internal features learned by the CNN, we visualized the features using  PCA38. We used PC-1 and 
PC-2 to generate scatter plots. Each point represents an MPI image in the test dataset projected into two dimen-
sions from the 512-dimensional output of the second layer after the concatenation layer of the three-axis CNN. 
To determine the PC-2 value, we performed cluster analysis using the PC-1 and PC-2 values with k-means++ 
as a clustering analysis  method39,41,42. We separated the test data into six clusters and confirmed the frequency 
of coronary artery branches that caused CAD in each cluster. The involved branches were identified by referring 
to diagnostic reports of the MPI images from radiologists.

Grad CAM
We used the Grad-CAM method to visually present the predictions from a deep neural  network37. Grad-CAM, 
which stands for gradient-weighted class activation mapping, is a method used to produce a coarse localization 
map highlighting important regions in the image for predicting the concept. Grad-CAM calculates the gradients 
of a target flowing through the network and determines the importance of each neuron in a network.

Cardiologist survey
To compare the diagnostic performance of our CNN model with that of cardiologists, we designed a series of 
surveys for four independent cardiologists. Fifty cases were randomly selected and shown to the cardiologists, 
who were blinding to the model outcomes. They were then asked to determine the cases diagnosed with CAD by 
radiologists. We presented grayscale and colored images that can draw a sharp contrast in nuclear attenuation. In 
addition to the images, we revealed patient characteristics, including age and sex. After the first interpretation, 
we showed the same dataset with the possibility of CAD, which was predicted by our model, and asked them 
to diagnose the MPIs again. Before the second interpretation, we explained the test performance of our model, 
including the accuracy, positive predictive rate, and negative predictive rate. Before completing the second 
interpretation, we did not present the results of the first interpretation. Finally, the results and time taken for 
interpretation were compared using two-tailed paired t-tests.

(1)Y = ((X/255)−0.5)× 2
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GPU server and analysis environment
We used the GPGPU server, which has two CPUs: Xeon Silver 4210R 2.40 GHz, 768 GB CPU memory, and two 
GPUs, Quadro RTX8000 48 GB GDDR6 (NVIDIA, Santa Clara, CA, USA). All scripts were programmed on 
the Nvidia-Docker system with Ubuntu 20.04, CUDA 11.2, cuDNN 8.1, Anaconda 4.11.0, Python 3.7.7, and 
Tensorflow 2.4.0.

Statistical analysis
Network performance was evaluated by the accuracy, precision, recall, F1 score, AUC of the ROC, and AUPRC. 
We determined the threshold value that was utilized for assigning predicted labels by maximizing the F1 score. 
All possible values equal to or greater than the threshold were mapped to the CAD class, and all other values 
were mapped to the healthy class. The threshold was set to 0.30. Accuracy was the ratio of correct predictions to 
all the predictions, while precision was the positive predictive rate of predictions, defined as the number of true 
positives divided by the number of true positives plus false negatives. Recall was the sensitivity of the prediction, 
which was defined as the number of true positives divided by the number of true positives plus false positives.

The F1 score is the harmonic mean of the precision and recall:

The ROC curve is a plot of the true positive rate against the false positive rate for all the possible thresholds. 
The AUPRC is a plot of the precision value against the recall value.

Approval for human experiments
The experiments of the study were approved by the Keio University School of Medicine Ethics Committee (No. 
20170187). Informed consent was obtained from all patients in the form of opt-out for the retrospective analysis 
of patient images. Patients were provided with information about the purpose and content of the study on the 
website and were given the option to refuse participation if they did not wish to be included. The experiments 
were performed in accordance with the declaration of Helsinki and with all guidelines set forth by the approving 
Institutional Ethics Committee. The all data were completely analyzed anonymously.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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