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Abstract

Modern artificial intelligence (AI) tools built on high-dimensional patient data are reshaping 

oncology care, helping to improve goal concordant care, decrease cancer mortality rates, and 

increase workflow efficiency and scope of care. However, data related concerns and human biases 

that seep into algorithms during development and post-deployment phases affect performance in 

real world settings, limiting the utility and safety of AI technology in oncology clinics. To this 

end, we review the current potential and limitations of predictive AI for cancer diagnosis and 

prognostication as well as of generative AI, specifically modern chatbots, that interfaces with 

patients and clinicians. We conclude the review with a discussion on ongoing challenges and 

regulatory opportunities in the field.

INTRODUCTION

Innovations in oncology have driven a decline in cancer mortality rates by 33% in the last 

32 years1. The concurrent rise of precision medicine techniques – some of which based on 

artificial intelligence (AI) – has enabled oncology clinicians to better identify previously 

unnoticed patterns in radiological scans, predict disease progression, offer tailored therapies, 

and suggest clinical trial eligibility. Clinical AI technologies have ushered an era of more 

effective screening, optimized treatment regimens, and improved patient outcomes, marking 

a significant leap forward in cancer care delivery.

Artificial intelligence describes the creation of data-driven, self-operating algorithms for 

problem solving. Two key terms central to AI are machine learning (ML) and deep learning 

(DL). Machine learning is a subset of AI and refers to algorithms that automatically learn 

and adapt from data without explicitly being programmed2. Deep learning is a specialized 

group within ML that mimics human brains by using a multi-layered web of algorithms to 

process information from data.

AI algorithms are grouped into two categories: predictive AI and generative AI. Predictive 

AI tools learn patterns from training data to forecast outcomes in new scenarios. 

For example, an image-based classification tool used to diagnose breast cancer from 
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mammogram scans is a predictive tool. Generative AI creates novel outputs that were not 

explicitly in the training data. AI chatbots that interact with patients in conversation are a 

form of generative AI.

Limitless variations of AI algorithms for cancer care management have been published, yet 

only a minority have been clinically implemented. Roadblocks in implementation include 

limited FDA regulatory guidelines, high upfront costs for the integration of AI into clinical 

workflows, noninterpretability of the algorithms, and limited monitoring of algorithms post-

deployment3. Of the 71 AI-associated devices that were approved by the FDA in 2021, 

the majority were cancer diagnostics (>80%) and spanned the fields of cancer radiology 

(54.9%), pathology (19.7%), and radiation oncology (8.5%). These devices were applied 

to solid malignancies, and most frequently to breast cancer (31%) and lung/prostate cancer 

(8.5%)4.

AI tools that have been integrated into clinical workflows in oncology clinics can 

analyze medical records and help doctors make more informed decisions, saving time and 

optimizing care. However, the use of AI tools is limited by their inconsistent performance 

after deployment. Biases associated with algorithm development and implementation can 

lead to inaccurate predictions that burden healthcare systems, care teams, and individual 

patients.

To this end, our review will provide context to three use cases of AI for cancer care delivery: 

diagnosis and classification, prognostication, and chatbots that improve patient care and 

optimize clinical workflows. The first two applications rely on predictive tools while the 

third application relies on generative tools. We choose primary studies in each category 

to illustrate the potential and current use of AI for optimizing cancer care. Each section 

will also highlight relevant biases and limitations as well as strategies to overcome these 

obstacles. We conclude the review with considerations on the regulation of AI in oncology.

DIAGNOSIS

Early-stage cancers and cancers that have relapsed after treatment are difficult to diagnose 

on radiology and pathology reports, a concern that is compounded in patients who 

appear clinically stable. Machine learning algorithms that have been trained on thousands 

to millions of images (i.e., radiological scans, pathology images, mobile photographs) 

of normal and cancerous lesions learn to classify between the two groups, benefitting 

cases where subtle differences are undetectable to the human eye. Commonly used AI 

algorithms for image classification are convolutional neural networks (CNN), deep learning 

architectures that extract identifying features for each group and use the resulting schema 

for a new classification task. The algorithm assigns a probability for each output class, and 

the image is classified into the group assigned the highest probability. The accuracy of the 

AI tool is measured by comparing the algorithm classifications with clinician classifications, 

referred to as “ground truth.”
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Diagnostic AI in oncology can offer early detection with high accuracy, increase efficiency 

of care, and be scalable across health systems. Two cancer types that have benefited from 

automated diagnosis with AI technology are skin and breast cancers.

Early work on automated diagnosis for dermatological cancers laid the groundwork for the 

design and use of AI for cancer diagnosis. Skin lesions are common among adults, however 

some, like melanoma, can be malignant. Melanoma constitutes only 5% of skin cancer 

diagnoses but has a 32% 5-year survival rate if detected at a metastatic stage, compared 

to 99% when detected earlier5. Differentiating between early-stage melanoma and similarly 

appearing benign skin lesions is visually difficult, often leading to misdiagnosis or a delay 

in diagnosis. This clinical setting is a prime example for where AI technology help identify 

fine-grained variability between pathological and benign states, enabling clinicians to make 

more accurate diagnoses and offer therapeutic interventions earlier in patients’ disease 

trajectories.

A 2017 proof-of-concept study of a deep learning algorithm used to classify between 

malignant melanoma, benign nevi, and non-neoplastic lesions was the first major work 

to establish the competence of AI tools for cancer diagnosis. A CNN trained on 129,450 

biopsy-proven photographic images was compared against the performance of 21 board-

certified dermatologists. The overall classification accuracy of the algorithm on a testing set 

was on par with that of two dermatologists (72.1% vs 66.0% and 65.6%, respectively)6. The 

promise of this diagnostic aid lies in its performance and scalability. Melanoma diagnosis is 

standardly obtained with an in-person visual examination of the skin lesion and a procedure 

to obtain a biopsy for histopathological confirmation of the disease. AI tools that match 

the diagnosis accuracy and rate of dermatologists without the requirement for invasive 

procedures or clinic visits can expand the scope of cancer care to areas with limited medical 

resources and/or access to medical care. These algorithms can also classify skin lesions from 

readily available mobile images with equal performance to specialist and novice physicians, 

as shown in a recent multicenter, prospective trial, further eliminating the need for a clinic 

visit for initial screening7.

Breast cancer screening is another clinical context where AI diagnostic aids have been 

beneficial in identifying disease processes earlier. Screening efforts have evolved with 

improvements in radiological equipment and public outreach in the last few decades, helping 

to decrease breast cancer mortality by over 43% since 19898. In most settings, mammogram 

screening undergoes a two-reader evaluation, where two clinicians independently read the 

scans and their results are combined. A third reader is solicited only to settle discordance. 

Despite recent advancements, lack of available screening resources and radiologists can 

constrain breast cancer screening in scan interpretation. In addition, human error and 

variability in diagnostic interpretation of mammogram results by radiologists is a large 

challenge. In a study of 359 radiologists surveying more than 1.6 million mammograms, 

41% inconsistently failed to meet standard recall rates9. AI algorithms reduce the burden of 

screening by alleviating the need for a second reader and increasing efficiency of detecting 

lesions in a scan.
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Computer-aided detection (CAD) algorithms built on deep learning frameworks identify 

a suspicious region of interest on scans for radiologists to review and have assisted 

mammographic interpretation with mixed performance. An external validation study of 

three commercially tested AI CAD algorithms that screen for breast cancer in 8805 women 

found that only one achieved sensitivity and specificity metrics that aligned with the US 

Breast Cancer Surveillance Consortium benchmarks. The accuracy rate of this algorithm 

was 95.6%, surpassing the other two which scored on average 92.1%10. Cancer detection 

by the best algorithm was surpassed by 8% when combined with assessments from a first 

reader. This form of AI and human collaboration exceeded AI alone and a double-reader 

interpretation of mammograms, where the results from the first and second readers are 

combined. Additionally, a retrospective study on 275,000 breast cancer cases reported 

that AI software that matched the performance of human radiologists when acting as the 

second reader of mammography scans can streamline breast cancer diagnoses by cutting 

radiologists workloads by at least 30%11.

Beyond algorithm development and reader studies, validating the performance of an AI 

diagnostic tool in prospective clinical trials is critical for evaluating its effective integration 

and safety in real world settings. The Mammography Screening with Artificial Intelligence 

(MASAI) study in Sweden is the first randomized control trial to assess how AI CAD 

tools can be integrated safely into clinical workflows12. In this prospective, non-inferiority, 

single-blinded study, an AI CAD was used to triage mammogram interpretations to a single 

or double reading setting. Scans with higher CAD classification scores were prioritized 

for a two-reader evaluation. Cancer detection rate increased by 20% and overall workload 

decreased by half, offering an evidence-based framework for integrating AI tools for breast 

cancer screening into clinical workflows.

The benefit of AI algorithms for image classification is apparent for cancer diagnosis. In 

many cases, the technology can detect whether a patient has a cancerous lesion with as good 

of an accuracy as a clinician, reduce physician workload, provide a non-invasive alternative 

for diagnosis, and increase access to care. However, there are important cases where the 

algorithm can break, leading to critical questions in bias, fairness, and robustness.

Underreporting, underrepresentation, and heterogeneity in image acquisition can skew the 

data used to train an AI algorithm13. As a result, the algorithm is not generalizable to patient 

populations that are not well represented in the training dataset. For example, in the case of 

skin cancers, AI algorithms run the risk of worse performance for people with darker skin14. 

Many published AI algorithms are trained on publicly available image datasets that are 

biased. A survey of 21 accessible skin lesion datasets covering more than 100,000 pictures 

revealed that lesions on darker skin were underrepresented15. Of the 2,436 images where 

skin color was indicated, only 11 were of brown or Black skin; and of the 1,585 images 

with attached ethnicity information, none were from people with African, Afro-Caribbean, 

or South Asian backgrounds.

Modifications along the algorithm development pipeline can help mitigate these concerns. 

Training data can be expanded to include representative images from all demographics (e.g. 

skin color, ages, body types). Training sets with image data should include samples taken 
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from different angles, lighting, and equipment; and AI technologies should accommodate 

changes in image acquisition technology by retraining the model with new images. 

Furthermore, additional clinical trials and validation studies investigating the integration 

of developed algorithms into clinical workflows as a potential second or third reader of 

diagnostic scans are needed.

PROGNOSTICATION

Forecasting patient outcomes helps tailor medical plans and optimize resource allocation in 

oncology. However, predicting prognosis is a challenge for oncologists, with an estimated 

63% overestimating and 17% underestimating survival16. One reason is that physicians 

rely on both clinical precedent and nationally published population statistics (e.g., 5-year 

median survival) to assess an individual patient, which leads to overgeneralization and 

inaccurate assessments of risk. The consequences of inaccurate predictions in oncology 

include increased emotional burden on patients and their caregivers, inappropriate allocation 

of resources, decreased trust in the patient-physician relationship, and delay in crucial 

therapeutic or end-of-life interventions17. AI-based risk prediction models that generate 

individualized estimates on prognosis have augmented clinician assessments of risk and 

aided personalized care decisions in oncology.

While diagnostic models evaluate whether a patient has a disease, prognostic models focus 

on whether a patient will develop a disease or an adverse outcome (e.g., hospitalization 

or mortality). Prognostic AI algorithms are built with unstructured data, like clinical notes 

from electronic health records (EHRs), radiology reports, and pathology findings, as well as 

structured data, like patient demographics, lab results, and patient reported outcomes (PROs) 

surveys. Benefits of EHR data include the depth and breadth of information available for 

each patient, the opportunity for frequent, longitudinal collection of data, and the continual 

tracking of outcomes. In oncology, the resulting predictions are commonly used to stratify 

patients along a risk continuum, and “high risk” patients who fall above a threshold of risk 

qualify for additional interventions.

A clinical scenario where prognostic AI models have helped to optimize goal concordant 

care and healthcare spending is for the prioritization of end-of-life care for patients with 

advanced cancers. EHR-based machine learning algorithms that calculated the 180-day 

risk of mortality identified cases with high accuracy (AUC: 0.95–0.96) and provided an 

individualized, data-driven alternative to standard prognostic models and decision-making 

frameworks derived from prior randomized control trials18. The algorithm generalized 

well to real-world settings in a prospective trial where it was paired with a behavioral 

health intervention to prompt serious illness conversations (SICs) for high-risk patients with 

advanced cancer. Implementation prompted an 11% increase19 in patient encounters with 

documented serious illness conversations and decreased end-of-life spending by $75.33 on 

average per day20. The effects of the algorithm on end-of-life care and SIC rates sustained 

outside of trial settings at its continued deployment in a large healthcare system.

We use the mortality prediction algorithm above as a case study to illustrate the potential 

of prognostic AI models to augment risk assessments and clinical decision-making in 

Kolla and Parikh Page 5

Cancer. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oncology. Since the algorithm was trained on data from and applied to patients at a 

single institution, it becomes hard to determine how it could perform at a different health 

system. This idea of heterogeneity in model performance across testing scenarios (e.g., 

patient subpopulations, geographic locations, time) raises necessary inquiries on algorithmic 

fairness and reliability, and the safety in the long-term use of prognostic AI models in 

oncology.

Equal model performance across patient subpopulations (e.g., by race or gender) ensures 

algorithmic fairness and promotes fair allocation of interventions. However, risk prediction 

algorithms can propagate existing social biases, manifesting as less accurate predictions 

for protected patient groups. Two main factors leading to biased models include limited 

training data for medically underrepresented patient populations and the use of improper 

proxy variables in the model that coarsely represent the true mechanism of risk. A prominent 

2019 study showed that a widely used risk prediction algorithm that predicted healthcare 

costs, which are a function of both medical conditions and social determinants of health, 

underserved Black patients who had similar health profiles as White patients. Predicting 

the number of chronic conditions instead increased the percentage of Black patients who 

qualified for additional health interventions by 28.8%21.

Misrepresentation of data calls for careful consideration of model inputs. The inclusion 

of socially defined features, such as race and ethnicity, in risk prediction models has 

been shown to be clinically relevant but socially contentious22. In one study, four risk 

models that predicted postoperative cancer recurrence among patients with colorectal cancer 

showed that the inclusion of race and ethnicity variables decreased racial bias metrics and 

increased algorithmic fairness along several metrics of model performance23. While some 

socially defined variables strongly predict risk in this setting and can promote fair resource 

allocation, the reliance on these predictors masks the true unattainable or unaccounted 

for drivers (e.g., socioeconomic status, biomarkers associated with disease risk). Including 

variables like race can also ossify discriminatory generalizations about protected patient 

subpopulations, widening the gap in access to high-quality cancer care.

Performance drift, the deterioration of model performance with time, affects the reliability 

of risk predictions post-deployment. Most deployed models in oncology settings are 

deterministic in nature, and changes in the data generation process without a paired update 

of the algorithm can lead to unreliable predictions. Two commonly identified reasons for 

drift in clinical risk models include changes to EHR software and documentation practices 

as well as changes in healthcare practice patterns. A recent study of drift in the 6-month 

mortality prediction model discussed above noted a 7% decrease in true positive rate during 

the COVID-19 pandemic period, a drop that was associated with decreases in laboratory 

utilization during quarantine24. Continuous monitoring and intermittent updating of the 

model is crucial to mitigate drift-related negative consequences on care decisions and 

resource allocation.

Quality of data in the training, pre-deployment phase of AI models also affects performance 

of prognostic AI tools in real world settings. Some forms of EHR data are incomplete, 

unstructured, subject to human recording error, and unstandardized across health systems. 
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These concerns are mirrored in other patient data modalities becoming more prevalent for 

risk prediction, like PROs and mobile data, with the additional cost of noisy and imprecise 

measurements in their longitudinal collection. Robust data preprocessing, error correction, 

and standardization procedures as well as data-sharing standards are needed to enhance AI 

performance.

CHATBOTS AND GENERATIVE AI

As we write this review, modern conversational chatbots are making a wave across 

healthcare. Chatbots are computer programs that generate human-like language. The 

underlying learning architecture of modern chatbots evolved from predictive natural 

language processing and speech recognition software to generative large language models 

(LLMs) that process large text-based datasets to translate, predict, and produce content. For 

patients, LLM chatbots offer support to patient education, patient-clinician communication, 

and mental health services. For physicians, LLMs have the potential to encode clinical 

knowledge, automate medical documentation (e.g., informed consent), enhance telemedicine 

interactions, and assist in clinical trial enrollment25.

Recent work on the use of LLMs for cancer care management has revealed that the 

technology is still limited in the quality and accuracy of information provided. One 

retrospective, cross-sectional study evaluated whether the recommendations for breast, 

prostate, and lung cancer treatment generated by OpenAI’s commercial LLM, ChatGPT, 

aligned with the standard-of-care set by the National Comprehensive Cancer Network 

(NCCN)26. The team found that approximately one-third of the chatbot’s treatment 

recommendations did not fully agree with NCCN guidelines. Recommendations varied 

with the phrasing of questions, and discrepancies between the chatbot and guidelines were 

often attributed to uninterpretable responses, suggesting caution is needed when using LLM 

chatbots for treatment information.

In a related study, researchers compared the quality of information generated on the top 

Google search queries of 5 common cancers (i.e., lung, skin, colorectal, breast, prostate) 

provided by ChatGPT v3.5 with those provided by Perplexity, Chatsonic, and Bing AI. 

While quality of the responses was good, with a median DISCERN score of 5, they were 

hard to understand with a college-level readability and were not readily actionable27.

Chatbots and other generative AI technologies are still nascent in medicine with limitations 

in accuracy, readability, and reliability. Commercial chatbots like ChatGPT are trained on a 

wide variety of text data found on the internet, with limited quality checks on the validity 

of the information. In addition, LLMs are a “black-box” and their minimal explainability, 

the ability to understand and interpret how algorithms arrive at their predictions, remains 

a significant challenge28. LLMs are not able to identify the sources or the exact training 

data used to generate their text. As a result, LLMs can propagate misinformation, causing 

confusion and mistrust among users (i.e. patients and physicians). AI hallucinations, the 

generation of inaccurate information from a prompt founded on false information, are 

another source of mistrust29.
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The adoption of chatbots for medicine relies on achieving both understandable language 

and conveying complex medical topics accurately, which current algorithms cannot do 

consistently as readability scores vary by the user’s verbiage of the prompt. And 

while medical knowledge expands each day, algorithms are not continuously updated 

to accommodate this change. As a result, the chatbots that are not trained on updated 

information can become unreliable and more inaccurate with time.

The field of generative AI technology is evolving rapidly, and we expect a parallel expansion 

in its application to oncology. Better regulations of chatbots for medical care are needed to 

prioritize patient safety and privacy30. And while the use of chatbots can be better regulated 

in the clinic, it is more difficult to oversee the private use of chatbots by patients who 

autonomously seek medical knowledge. Oncology clinicians aware of this concern can guide 

their patients through chatbot-derived medical information.

DISCUSSION

Alan Turing’s 1950 question “Can machines think?” posed in his provocative work 

Computer Machinery and Intelligence laid the conceptual groundwork for a new field, 

artificial intelligence31. Turing’s thought experiment led to the creation of early AI robotic 

systems that imitated human decision making, including the prosthetic “Tentacle Arm” and 

robots for industrial assembly lines. At the turn of the 21st century, with refinements in 

AI architectures to make them more amenable for high stake medical environments, the 

reach of AI spread to augment clinician decision-making and as a result has reshaped the 

landscape of cancer care management.

AI offers endless potential to push cancer care to new frontiers by enabling early diagnoses, 

offering more precise estimates of risk, informing effective treatment regimens, and freeing 

clinician time for patient-focused interactions.

This review only touched the surface of the potential for AI systems in oncology. Use cases 

for AI in medicine and epidemiology that we did not cover here but are equally important 

to deliberate on include the application of AI to clinical trial enrollment and for the study of 

disease development and progression; cancer genomics and genetic mutations; digital health 

and mobile monitoring of disease status; and population-level risk factors.

AI algorithms are only as good as the data and assumptions they are fed. Biased 

representation of patient populations and medical scenarios in the training datasets can 

lead to data overfitting and inaccurate generalizations of AI tools in the real world. Dataset 

shift, the stray of real-world distributions of data from the training set, can lead to a drift 

in AI performance over time and decrease the reliability of its output. Ensuring diverse, 

representative data in the training, evaluation, and post-deployment monitoring phases is 

critical.

Beyond biases baked into the training data, human biases can affect how AI algorithms are 

utilized in the clinic. In a 2019 survey of doctors in Korea, 83.4% appreciated the usefulness 

of AI in medicine especially for medical diagnosis, but only 5.9% were familiar with AI 

and 29.3% acknowledged that AI cannot help in unexpected situations owing to inadequate 
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information32. Factors like physician expertise, technological literacy, and age influence the 

adoption of these technologies into practice. Physician hesitation in utilizing AI tools can 

stem from the lack of algorithm explainability in how predictions are generated, unassigned 

medical liability and economic cost of inaccurate predictions, and unfamiliarity with AI 

tools. Current methodological work on decoding explainability involves statistical scores 

ascribed to input variables to determine each model input’s contribution to the generation 

of a prediction33. Decoding variable importance can help gain user confidence in the output 

and enable better integration of these tools into clinical workflows. On the other hand, 

automation bias, the overreliance on AI to make clinical decisions, at the possible cost of 

negating one’s own clinical intuition about a patient, can equally hinder the proper use of 

AI for cancer care delivery34. False negative and false positive cases are overlooked with 

automation bias, which could lead to misinformed medical decisions35.

AI systems cannot perfectly replicate clinician decision-making, with variables like patient 

composure, cognitive status, and clinical status that are not resolutely captured in data but 

nonetheless are critical in assessing patient risk. Expanding prognostic AI models to include 

patient reported outcomes that continuously capture symptoms and functional status outside 

of the clinic walls can improve model accuracy and clinical relevance. One study reported 

a 4% increase in AUC in a mortality prediction model that was trained on PRO and EHR 

data vs EHR data alone36. Interactive AI frameworks like human-in-the-loop models or 

human-machine collaborative models that incorporate real-time feedback and insights from 

clinicians can improve prediction accuracy and confidence, ensuring a more comprehensive 

approach to risk assessment and decision-making in healthcare settings.

As more AI algorithms are developed and implemented into the clinic, readjustments 

to clinical workflows in oncology to accommodate them hinges on defined regulatory 

oversight. Measures to protect patient privacy, standardize data collection, and maintain 

algorithmic reliability will ensure the responsible use of AI. Additional focus on hardware 

requirements, continuous monitoring, and restricted use cases is needed for generative 

technologies like LLM-based chatbots. In today’s converging era of AI and oncology30, a 

balance between innovation and responsibility will raise cancer care delivery to new heights 

to the benefit of patients, physicians, and healthcare systems.
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