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Background: Stomach adenocarcinoma (STAD), a frequently occurring gastrointestinal tumour, is often 
detected late and has a poor prognosis. Long non-coding RNAs (lncRNAs) significantly affect tumour 
development. Recent studies have identified disulfidptosis as a previously unexplained form of cell death. 
Herein, we aimed to examine the predictive value of disulfidptosis-related lncRNA models for the clinical 
prognosis and immunotherapy of STAD.
Methods: STAD-related transcriptomic data were obtained from The Cancer Genome Atlas (TCGA), 
whereas genes associated with disulfidptosis were identified from previously published papers. A risk 
prediction model for disulfidptosis-related lncRNAs was developed using the Cox regression and least 
absolute shrinkage selection algorithm methods. The accuracy of the model was confirmed using calibration 
curves, and the biological functions were analysed using Gene Ontology (GO) and Gene Set Enrichment 
Analysis (GSEA). Finally, the tumour mutation burden (TMB) and tumour immune dysfunction and 
exclusion (TIDE) algorithms were used to screen drugs that are sensitive to STAD.
Results: The risk prediction models were constructed using seven disulfidptosis-related lncRNAs. The 
validated results were consistent with the predicted ones, with significant survival differences. When 
combined with clinical data, the risk scores were used as independent prognostic markers. Based on the 
tumour mutation load, the high-risk patient group had a poorer survival rate as compared with the low-risk 
patient group. Further studies were conducted to understand the different groups’ inconsistent responses to 
immune status; subsequently, relatively sensitive drugs were identified.
Conclusions: Overall, seven markers of disulfidptosis-related lncRNAs associated with STAD were found 
to facilitate prognostic prediction, suggesting new ideas for immunotherapy and clinical applications.
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Introduction

Stomach cancer is prevalent worldwide, with a higher 
incidence reported in Eastern Asia and Europe (1). 
Stomach adenocarcinoma (STAD), a common type of 
gastric cancer, is associated with age, dietary structure and 
Helicobacter pylori infection (2). Surgical resection is the 
preferred treatment for patients with early STAD, whereas 
a combination of chemotherapy, radiotherapy and surgical 
resection improves survival rates, although the prognosis 
remains poor, among patients with advanced STAD (3). 
Currently, biomarker-based methods such as tumour risk 
score prediction signatures are used to predict patient 
prognosis, and this is being gradually applied in clinical 
practice. Therefore, it is essential to establish prognostic 
markers to forecast the long-term survival of patients with 
STAD.

The protein solute carrier family seven member 
(SLC7A11) is responsible for transporting extracellular 
cystine into the cell and glutamate from the cell to the 
extracellular environment. Additionally, it plays a crucial 
role in regulating oxidative stress (4). Unlike healthy 
cells, cancer cells are highly dependent on cystine intake. 
SLC7A11 is highly expressed in many cancers, such as 
breast (5) and lung (6) cancers; this helps cancer cells escape 
oxidative stress and regulates their metabolism (7). Recently, 
a new mode of cell death known as disulfidptosis has been 
identified. This occurs when a large accumulation of 
disulphide molecules in glucose-deficient cancer cells with 
high SLC7A11 expression leads to abnormal disulphide 
bonding between actin cytoskeletal proteins, disrupting 
their organization and ultimately causing actin network 

collapse and cell death (8). This indicates that glucose 
transporter (GLUT) inhibitor-induced disulfidptosis may 
be exploited in cancer therapy.

Long non-coding RNAs (lncRNAs) control gene 
expression through chromatin adaptation, transcription and 
post-transcriptional processing (9). lncRNAs are closely 
linked to the development of many cancers and can be 
used as biomarkers or targeted therapeutics for cancers 
(10-12). To explore novel therapeutic targets and improve 
patient prognosis, it is crucial to investigate the relationship 
between disulfidptosis-related lncRNAs and STAD.

The impact of disulfidptosis-related lncRNAs on 
the existing treatment modalities for STAD warrants 
investigation. Herein, we used The Cancer Genome Atlas 
(TCGA) database to assess the biological significance of 
disulfidptosis-related lncRNAs and their potential for 
prognostic prediction in patients with STAD. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-2067/rc).

Methods

Data collection and analysis

Using the TCGA database, we obtained clinical and RNA 
sequencing data from gastric adenocarcinoma patients. 
After excluding those with incomplete clinical data, our 
dataset included 407 tissue samples (375 STAD and 32 
normal tissues). These samples were randomly split into 
a training set (n=204) and a test set (n=203). The clinical 
characteristics between the two sets exhibited no significant 
differences, as shown in Table 1. Ten genes associated with 
disulfidptosis were collected by reviewing the available 
literature (13). Finally, the STAD mutation data were 
extracted from TCGA database. The study was carried out 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Identification of disulfidptosis-related lncRNAs

We analyzed expression data for disulfidptosis-related genes 
and lncRNAs using Pearson correlations via the ‘limma’ 
package in R (14). Significant correlations were defined 
as those with |Cor| >0.4 and P<0.001. Data management 
was conducted with ‘dplyr’ (15), while ‘ggalluvial’ (16) and 
‘ggplot2’ (17) facilitated the creation and visualization of 
Sankey diagrams to highlight key co-expression links.

Highlight box

Key findings
•	 Our study develops a risk score system based on seven 

disulfidptosis-related long non-coding RNAs (lncRNAs) 
to enhance prognosis and treatment guidance for stomach 
adenocarcinoma.

What is known and what is new?
•	 Disulfidptosis plays a critical role in tumor development.
•	 Our research extends this by employing disulfidptosis-related 

lncRNAs to accurately predict stomach adenocarcinoma outcomes.

What is the implication, and what should change now? 
•	 This risk score system introduces a novel approach for stomach 

adenocarcinoma treatment, highlighting the need for further 
research on these lncRNAs to improve patient care.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2067/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2067/rc
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Table 1 Demographics of 407 patients

Variables Total cohort (n=407), n (%) Training cohort (n=204), n (%) Validation cohort (n=203), n (%) P value

Age (years) 0.36

≤65 183 (44.96) 97 (47.55) 86 (42.36)

>65 221 (54.3) 106 (51.96) 115 (56.65)

Unknown 3 (0.74) 1 (0.49) 2 (0.99)

Gender 0.02

Female 144 (35.38) 61 (29.9) 83 (40.89)

Male 263 (64.62) 143 (70.1) 120 (59.11)

Grade 0.83

G1 12 (2.95) 7 (3.43) 5 (2.46)

G2 144 (35.38) 73 (35.78) 71 (34.98)

G3 242 (59.46) 120 (58.82) 122 (60.1)

Unknown 9 (2.21) 4 (1.96) 5 (2.46)

Stage 0.34

Stage I 55 (13.51) 33 (16.18) 22 (10.84)

Stage II 122 (29.98) 59 (28.92) 63 (31.03)

Stage III 167 (41.03) 78 (38.24) 89 (43.84)

Stage IV 39 (9.58) 21 (10.29) 18 (8.87)

Unknown 24 (5.9) 13 (6.37) 11 (5.42)

T stage 0.32

T1 21 (5.16) 14 (6.86) 7 (3.45)

T2 86 (21.13) 46 (22.55) 40 (19.7)

T3 179 (43.98) 89 (43.63) 90 (44.33)

T4 113 (27.76) 52 (25.49) 61 (30.05)

Unknown 8 (1.97) 3 (1.47) 5 (2.46)

N stage 0.90

N0 121 (29.73) 64 (31.37) 57 (28.08)

N1 108 (26.54) 52 (25.49) 56 (27.59)

N2 77 (18.92) 38 (18.63) 39 (19.21)

N3 82 (20.15) 42 (20.59) 40 (19.7)

Unknown 19 (4.67) 8 (3.92) 11 (5.42)

M stage 0.54

M0 362 (88.94) 183 (89.71) 179 (88.18)

M1 26 (6.39) 11 (5.39) 15 (7.39)

Unknown 19 (4.67) 10 (4.9) 9 (4.43)

Tumor staging (Stage) is based on the TNM classification, including stages I, II, III, and IV. T, N, M stages represent the tumor, lymph node, 
and metastasis status, respectively. Data not reported or available are marked as “unknown”. Statistical significance levels are indicated 
by P values.



Xing et al. Disulfidptosis signature in stomach cancer prognosis2360

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(5):2357-2371 | https://dx.doi.org/10.21037/tcr-23-2067

Construction of the predictive models and analysis

First, the TCGA STAD prognostic lncRNAs were 
identified using univariate Cox regression analysis. The 
‘glmnet’ package in R was utilized to apply the least 
absolute shrinkage and selection operator (LASSO) method 
for selecting the most predictive lncRNAs, with 10-fold 
cross-validation determining the optimal regularization 
parameter (18). A survival was assigned to each patient 
based on their disulfidptosis-related lncRNA expression 
levels and their regression coefficients [risk score = (coef 
LncRNA1 expr LncRNA1) + (coef LncRNA2 expr 
LncRNA2)… + (coef LncRNAn × expr LncRNAn)]. The 
risk score midpoint was used to categorise the specimens. 
The training set used Kaplan-Meier plots to assess the 
overall survival (OS) of the high- and low-risk groups (19).  
The ‘pROC’ package facilitated receiver operating 
characteristic receiver operating characteristic (ROC) curve 
analysis to evaluate the model’s predictive accuracy (20),  
while ‘pheatmap’ provided visual insights into the 
association between lncRNA expression and patient 
survival (21). Finally, the test and the full set validated the 
model’s accuracy.

Independent prognostic factor analysis

Univariate and multifactorial Cox regression analyses were 
performed using the clinical data from TCGA database 
to evaluate the role of the risk score as an independent 
predictor. The accuracy of this feature in predicting patient 
survival was confirmed using ROC curve analysis and 
concordance index (C-index) curves.

Analysis of the clinical value of the prognostic prediction 
models

To accurately predict the OS of the patients and provide 
valid prognostic information for physicians to develop 
appropriate treatment plans, we constructed a nomogram 
model based on risk categories, age and clinicopathological 
variables using the ‘RMS’ package. The model accuracy was 
evaluated by plotting calibration curves.

Principal component analysis (PCA), Gene Ontology (GO) 
and Gene Set Enrichment Analysis (GSEA) analysis

PCA and 3D PCA analyses were conducted using the 
’scatterplot3d’ package for visualization.3D scatter plots 

illustrated the sample distribution across different risk 
scores. Differential genes between the high- and low-
risk groups were identified using ‘limma’, with criteria of 
|log2FC| ≥1 and false discovery rate (FDR) <0.05. The 
‘clusterProfiler’ package was used for differential gene 
analysis in the GO and GSEA enrichment studies, and 
P values <0.05 and FDR values <0.05 were considered 
statistically significant.

Immune function analysis and tumour mutation burden 
(TMB)

The ‘limma’ and ‘GSA’ packages were used to analyse the 
immune-related differences between the high- and low-risk 
groups, including the tumour microenvironment scores and 
correlations between risk scores and the tumour immune 
microenvironment, as demonstrated using the ‘Pheatmap’ 
package. The ‘Maftools’ package correlates risk scores with 
the TMB. The survival package compares TMB and patient 
survival at P<0.05.

Tumour immune dysfunction and exclusion (TIDE) and 
drug sensitivity

The TIDE score was used to assess the immune checkpoint 
blockade (ICB) response; this ICB response was used to 
predict the effectiveness of immunotherapeutic agents in 
the high- and low-risk patient populations. The therapeutic 
agents were screened and evaluated for drug sensitivity 
using P<0.001 as the filtering criterion. The analyses were 
based on the ‘limma’, ‘pRRophetic’ and ‘ggpubr’ software 
packages.

Statistical analyses 

We conducted Pearson correlation analysis to investigate 
associations with disulf idptosis-related lncRNAs. 
Subsequently, we built risk models using univariate 
Cox regression, Lasso regression, and multivariate 
Cox regression. Model performance was assessed using 
timeROC curves and the C-index. All analyses were 
conducted in R version 4.3.0.

Results

Identification of disulfidptosis-related lncRNAs in STAD

Figure 1A illustrates the schematic diagram of the research 
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Figure 1 Flow gram and Sankey diagram. (A) Analysis process of lncRNA related to disulfidptosis. (B) Sankey diagram demonstrating 
the co-expression of the cuproptosis gene and disulfidptosis-related lncRNAs. TCGA, The Cancer Genome Atlas; STAD, stomach 
adenocarcinoma; RNA-Seq, RNA sequencing; lncRNAs, long non-coding RNAs; GO, Gene Ontology; GSEA, Gene Set Enrichment 
Analysis; TMB, tumor mutational burden.

Access TCGA-STAD RNA-Seq data

Acquire data of lncRNAs associated with 
disulfidptosis

Establish a prognostic signature with 7 
lncRNAs

Validation of the risk signature

Retrieve expression levels of IncRNAs Retrieve expression levels of IncRNAs

Functional analysis Survival analysis

GO and GSEA TMBImmune infiltration Drug sensitivity

GYS1 
LRPPRC 
NCKAP1 
NDUFA11 
NDUFS1 
NUBPL 
OXSM 
RPN1 
SLC3A2 
SLC7A11

Disulfidptosis
Disulfidptosis 

lncRNA

A

B

process. Based on previously published literature (13), we 
identified disulfidptosis genes. The transcriptome data of 
407 (375 STAD and 32 normal) tissues were retrieved using 
TCGA database, and STAD-associated lncRNAs were 
extracted. A total of 694 disulfidptosis-related lncRNAs 
were screened using the Pearson’s correlation algorithm. 
Sankey diagrams were used to illustrate the relationship 

between the disulfidptosis genes and disulfidptosis-related 
lncRNAs (Figure 1B).

Risk model construction and validation

Fourteen lncRNAs were initially obtained using the uni-
Cox regression approach. Subsequently, a risk score model 
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Figure 2 Determination of the prognostic disulfidptosis-related lncRNAs in STAD. (A) Cross-validation of LASSO. (B) LASSO coefficient 
distribution of the survival-related lncRNAs. The numbers on the left side of the figure correspond to different lncRNAs as follows: 1 for 
AC016394.2, 2 for AL365181.3, 3 for AL590617.2, 4 for DEPDC1-AS1, 5 for IGFL2-AS1, 6 for LINC00511, 7 for LINC00571, 8 for 
AC244102.3, 9 for AC015813.1, 10 for AC090970.2, 11 for AL031058.1, 12 for FAM160A1-DT, 13 for AL592546.2, and 14 for EXOC3-
AS1. (C) Univariate Cox regression-extracted prognosis-related lncRNAs. (D) Correlation between the disulfidptosis-related genes and 
lncRNAs in the risk model. CI, confidence interval; lncRNA, long non-coding RNA; STAD, stomach adenocarcinoma; LASSO, least 
absolute shrinkage and selection operator.

SLC7A11 

SLC3A2 

RPN1 

OXSM 

NUBPL 

NDUFS1 

NDUFA11 

NCKAP1 

LRPPRC 

GYS1

AL590617.2 
AC016394.2 
AL365181.3 
AC244102.3 
AC015813.1 
LINC00511 
AC090970.2 
DEPDC1-AS1 
IGFL2-AS1 
AL031058.1 
FAM160A1-DT 
AL592546.2 
EXOC3-AS1 
LINC00571

0.009 
0.02 
0.009 
0.01 
0.008 
0.02 
0.02 
0.03 
0.01 
0.02 
0.01 
0.01 
0.03 
0.03

P value Hazard ratio (95% Cl)

1.910 (1.176–3.102) 
0.695 (0.507–0.952) 
0.838 (0.734–0.957) 
1.254 (1.042–1.510) 
0.699 (0.537–0.909) 
0.691 (0.498–0.958) 
1.439 (1.058–1.957) 
2.031 (1.059–3.892) 
1.185 (1.034–1.359) 
1.318 (1.043–1.666) 
0.703 (0.529–0.933) 
0.551 (0.343–0.885) 
1.344 (1.024–1.766) 
0.505 (0.270–0.945)

0.1	 1	 10
Hazard ratio

A
C

01
63

94
.2

 

A
L3

65
18

1.
3 

A
L5

90
61

7.
2 

D
E

P
D

C
1-

A
S

1 

IG
FL

2-
A

S
1 

LI
N

C
00

51
1 

LI
N

C
00

57
1

Correlation

0.4
0.3
0.2
0.1
0.0

***	P<0.001 
	**	P<0.01 
	 *	P<0.05

***

***

***

***

***

***

***

***

***

***

***

***

*

*

**

***

***

**

***

***

*****

***

***

***

**

***

***

***

**

****

***

***

*

**

***

**

**

***

***

***

***

**

*

***

	 −6	 −5	 −4	 −3	 −2
Log(λ)

	 −6	 −5	 −4	 −3	 −2
Log Lambda

	14	14	14	14	14	13	13	12	12	12	12	12	12	11	11	 2 	 14	 13	 12	 12	 0

8

1

9
10
13

4
3

11
7
5

12
2

6

14

11.4

11.2

11.0

10.8

10.6

10.4

1.0

0.5

0.0

−0.5

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

C
oe

ffi
ci

en
ts

B

D

A

C

was developed using seven prognosis-related lncRNAs 
identified using LASSO analysis (Figure 2A-2C). Each line 
in Figure 2B is color-coded to represent each lncRNA, 
illustrating the impact of their respective coefficients on the 
model’s predictive accuracy. The risk score was calculated as 
follows: risk score = AC016394.2 × (−0.3963) + AL365181.3 
× (−0.1314) + AL590617.2 × (0.7516) + DEPDC1-AS1 × 
(0.8785) + IGFL2-AS1 × (0.1361) + LINC00511 × (−0.4765) 
+ LINC00571 × (−0.7027). The correlation heat map 
highlighted the relationship between the disulfidptosis-
related genes and the seven lncRNAs (Figure 2D).

In the present study, the patients in the high-risk group 

exhibited significantly shorter OS and disease-free survival 
rates as compared to those in the low-risk group. The 
heat map analysis revealed a concentrated distribution 
of seven lncRNAs in the two risk groups. Specifically, 
AL590617.2, DEPDC1-AS1 and IGFL2-AS1 were 
predominantly expressed in the high-risk group, whereas 
AC016394.2, AL365181.3, LINC00511 and LINC00571 
were predominantly expressed in the low-risk group  
(Figure 3A-3M). To investigate the correlation between 
the risk scores and survival outcomes in the patients with 
STAD, we compared the high- and low-risk groups during 
different periods. Our findings revealed that the survival 
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Figure 3 Prognosis of the risk model across the various sets. (A-C) Train, test and complete set risk model demonstrations. (D-F) 
Relationship between the risk score and survival status for the train, test and complete set. (G-I) Heatmap of the train, test and complete 
lncRNA expressions. (J-L) The K-M survival graphs for the patients in the high- and low-risk groups in the train, test and complete sets. (M) 
PFS in the complete set. (N,O) Complete set of the K-M survival curves for the different tumour stages. LncRNA, long non-coding RNA; 
K-M, Kaplan-Meier; PFS, progression-free survival.
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rate was significantly lower in the high-risk group than in 
the low-risk group (Figure 3N,3O).

The accuracy of the predictive model risk score was 
evaluated using ROC curves and the C-index. The areas 
under the curve (AUCs) for the 1-, 3- and 5-year predictions 
were 0.669, 0.664 and 0.705, respectively (Figure 4A). The 

AUC values of the risk scores were more significant than the 
other clinicopathological variables. The C-index curves also 
demonstrated that the risk model was more accurate than the 
other variables (Figure 4B,4C). Furthermore, the hazard ratios 
(HRs) for the risk scores were 1.323 and 1.361 (P<0.001) in 
the single and multiple Cox regression analyses, respectively, 
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Figure 4 Risk model assessment. (A) Complete set of ROC curves for years 1, 3 and 5. (B) ROC curves for risk scores and 
clinicopathological characteristics. (C) C-index curves of the risk model. (D,E) Clinicopathological and risk scores obtained using uni- and 
multi-Cox analyses. AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic; C-index, concordance 
index; uni-Cox analysis, univariate Cox proportional hazards analysis; multi-Cox analysis, multivariate Cox proportional hazards analysis.
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indicating that risk characteristics are an independent 
prognostic factor for patients with STAD (Figure 4D,4E).

Nomogram construction

A nomogram was constructed to estimate the likelihood 
of OS at 1, 3 and 5 years using the risk score, age and 
clinicopathological factors (Figure 5A). The calibration 
curves demonstrated a strong correlation between the 
predicted and actual values (Figure 5B).

PCA and biological pathway analysis

Three-dimensional scatter plots demonstrated that PCA 
in the high- and low-risk groups exhibited significant 
aggregation characteristics, indicating that these lncRNAs 
were persuasive for model construction (Figure 6A-6C). 
According to the GO analysis, the disulfidptosis-related 
lncRNA were enriched in muscle system processes, muscle 
contraction, blood circulation regulation and cardiac 
contraction regulation (Figure 6D,6E). The GSEA analysis 
showed that biological functions such as cardiac muscle 

traction, complement and coagulation cascades, neural 
activity-receptor interactions, ribosomes and vascular 
smooth muscle traction differed between the low- and high-
risk patient groups (Figure 6F,6G). 

Immunoassay

A notable dissimilarity in the infiltration of immune 
cells was found between the two groups. Furthermore, 
significant differences were observed in the co-inhibition of 
the APC cells and antigen presentation mediated by MHC I  
(Figure 7A,7B). Moreover, high-risk patients had higher 
TME scores than low-risk patients (Figure 7C).

TMB and drug sensitivity analysis

Waterfall plots were used to demonstrate somatic mutations 
in both the high- and low-risk groups. The frequency of 
mutations was found to be higher in the low-risk group 
than in the high-risk group (Figure 8A,8B). To determine 
the impact of risk categories on immunotherapy for STAD, 
we examined the association between the TMB and risk 
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Figure 5 Nomogram and model calibration curves. (A) OS prediction nomogram. (B) OS calibration curves at 1, 3 and 5 years. *, *** 
represent P<0.05, and P<0.001, respectively. Pr, probability; T, tumor; N, node; M, metastasis; OS, overall survival; CI, confidence interval; 
C-index, concordance index.

Points 

M 

Grade 

Gender* 

Stage

N 

Age*** (years)

T 

Risk*** 

Total points

Pr(futime >5) 

Pr(futime >3) 

Pr(futime >1)

	0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
Nomogram-predicted OS

1-year 

3-year 

5-year

C-index: 
0.711 (95% CI: 0.668–0.755)

1.0

0.8

0.6

0.4

0.2

0.0

O
bs

er
ve

d 
O

S

BA

categories. The TMB counts were higher in the low-risk 
group (Figure 8C), and high TMB was associated with better 
OS as compared with low TMB (Figure 8D). Moreover, the 
low-risk group was more susceptible to immune checkpoint 
inhibitors than the high-risk group (Figure 8E). Using 
the TIDE algorithm, the response to immunotherapy 
was predicted in both groups, and the patients in the low-
risk group were found to respond better (Figure 9A). 
Furthermore, analysis of drug sensitivity in high-risk STAD 
patients identified increased susceptibility to NUAK kinase 
inhibitor WZ4003, dasatinib, and entinostat (Figure 9B-9D).

Discussion

STAD, a malignant tumour, is highly prevalent worldwide 
and has a poor prognosis (22). Research has demonstrated 
that lncRNA plays a regulatory role in the progression 
of gastric cancer, making it a promising target for 
the  treatment of cancers (23,24). Lin et al. identified 
lncRNA BC002811 as a promoter of gastric cancer 
metastasis through decoying SOX2 and inhibiting PTEN 
transcription (25). Gong et al. showed that LINC01094 
promotes gastric cancer by inhibiting AZGP1, lowering 
PTEN, and activating AKT (26). Moreover, Wang et al. 
revealed that TUBA1C, targeted by lncRNA EGFR-
AS1, promotes gastric cancer progression by enhancing 
cell proliferation, migration, and invasion (27). Although 
lncRNAs are important in STAD, the mechanism of its 

interrelationship is not fully understood.
Disulfidptosis, a new and unique programmed cell 

death mode, can inhibit GLUT proteins and thus induce 
disulfidptosis in cancer cells without affecting normal cells. 
In recent years, researchers have made significant progress 
in developing models assessing lncRNA risk in various types 
of cancer (e.g., constructing predictive models of lncRNAs 
associated with pyroptosis in STAD for clinical treatment) 
(28,29). However, the mechanism of disulfidptosis-related 
lncRNAs in STAD is still under investigation.

In this study, seven lncRNAs (AC016394.2, AL365181.3, 
AL590617.2, DEPDC1-AS1, IGFL2-AS1, LINC00511 and 
LINC00571) were chosen for building a prediction model 
of disulfidptosis-related lncRNAs. In previous studies, 
AC016394.2, AL365181.3 and LINC00571 were used as 
cuproptosis, ferroptosis and cellular senescence-related 
lncRNAs, respectively, in bioinformatic analyses for the 
construction of a predictive model for gastric cancer (30-32).  
Additionally, DEPDC1-AS1 promoted the expansion 
and spread of human gastric cancer cells using the human 
antigen R-F27R pathway (33). Research suggests that 
IGFL2-AS1 facilitates the advancement and spread of 
gastric cancer through the miR-802/ARPP19 pathway (34).  
LINC00511 targets miR-625-5p/STAT3 to increase 
gastric tumour cell growth and mobility (35). AL590617.2 
was analysed for the first time in a gastric cancer study. 
Subsequently, the patients with STAD were randomly 
allocated into the training and validation cohorts in a 1:1 
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Figure 6 PCA and functional analysis. (A-C) PCA analysis detected sample distribution by the risk of disulfidptosis-related lncRNAs, 
disulfidptosis-related lncRNAs and disulfidptosis-related genes. (D,E) GO analysis in the low- and high-risk patient groups. (F,G) GSEA 
analysis in the low- and high-risk patient groups. PC1, 2, 3 represent the first to the third principal components of the matrix. BP, biological 
process; CC, cellular compartment; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
PCA, principal component analysis; lncRNA, long non-coding RNA; GSEA, Gene Set Enrichment Analysis.
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ratio to assess the reliability of the risk prediction model. 
The survival curves indicated that the low-risk group had 
a more favourable prognosis across the training, validation 
and full groups. The accuracy of the established risk 
prediction model was confirmed using the ROC analysis and 
C-index curves. Accordingly, a nomogram was developed 

to predict the patients with STAD. The calibration curves 
demonstrated agreement with the anticipated outcomes. 
Owing to the complexity of cancer, the molecular pathways 
driving gastric cancer need to be understood to accordingly 
develop new therapeutic targets. Therefore, functional 
enrichment analysis was performed, and novel signalling 
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Figure 7 Immune characteristics of the different risk groups. (A) Expression of immune cells in the different risk groups. (B) Relationship 
between immune-related functions and risk scores. (C) TME scores in the different risk groups. *, **, *** represent P<0.05, P<0.01, 
and P<0.001, respectively. APC, antigen-presenting cells; CCR, chemokine receptor; HLA, human leukocyte antigen; MHC, major 
histocompatibility complex; NK, natural killer; IFN, interferon; TME, tumor microenvironment.
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pathways were identified in this study, which helped identify 
the disulfidptosis-related genes involved in the aetiology 
and development of STAD.

Next, we investigated the relationship among the 
tumour immune microenvironment, TMB and risk score 
of the patients with STAD. We used the CIBERSORT and 
ESTIMATE techniques for immunological analysis. The 
results revealed that the risk score was positively correlated 
with CD8 cell  expression. The ESTIMATE score 

represents the ratio of the immune and stromal components 
in the tumour tissue (36), and the ESTIMATE score was 
found to be particularly high in the high-risk group. In 
the context of malignancy, TMB serves as a prognostic 
biomarker for ICB and is associated with the effectiveness 
of immunotherapy (37-39). This study revealed that 
the low-risk group had higher TMB levels, suggesting 
a potential for better response to immunotherapy. 
Additionally, the TIDE score accurately predicted the 
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Figure 8 Association of gene mutations and TMB analysis. (A,B) Mutations in somatic cells found in the various risk groups. (C) TMB level 
in the different groups. (D) Different degrees of TMB survival curves. (E) K-M survival profiles with varying TMB concentrations in the 
different risk categories. TMB, tumor mutation burden; H, high; L, low; K-M, Kaplan-Meier.
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response to ICB therapy, with a higher TIDE score 
indicating a weaker response to ICB (40). Thus, high-risk 
patients with high TIDE scores are less likely to respond 
to immunotherapy. Ultimately, the half-maximal inhibitory 
concentration (IC50) values of WZ4003, entinostat, and 
dasatinib were determined, showing increased effectiveness 
in high-risk group patients.

In summary, this study developed a prognostic model for 
STAD based on seven disulfidptosis-related lncRNAs. The 
model demonstrated outstanding performance in predicting 
STAD patients’ survival outcomes. Additionally, it has the 
potential to assess patients’ immune function, immune 
checkpoint marker expression, and chemotherapy drug 
sensitivity. This work lays a strong foundation for future 
anti-tumor drug development.

Our study has some limitations. First, our data were 

collected from TCGA database, and the results may be 
biased. We could have obtained different results if we 
combined the data from other sources. Second, we did 
not test the molecular transcription and expression levels, 
reducing the reliability of the results. In addition, this 
study is still in its preliminary stages, and the information 
collected so far may not be sufficient to justify the 
investigation; future studies are therefore warranted.

Conclusions

Taken together, disulfidptosis-related lncRNAs can act as 
specific biomarkers for predicting the progression of STAD 
and provide new insights into targeted therapy for the same. 
These findings are significant and hold promise for future 
research in this field.
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Figure 9 TIDE scores with survival prediction and drug sensitivity analysis. (A) TIDE scores for the different risk groups. (B-D) The drug 
sensitivities of WZ4003, dasatinib, and entinostat were observed. ***, P<0.001. TIDE, tumor immune dysfunction and exclusion.
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