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Abstract

The Lachnospiraceae family holds promise as a source of next‐generation
probiotics, yet a comprehensive delineation of its diversity is lacking,

hampering the identification of suitable strains for future applications. To

address this knowledge gap, we conducted an in‐depth genomic and

functional analysis of 1868 high‐quality genomes, combining data from public

databases with our new isolates. This data set represented 387 colonization‐
selective species‐level clusters, of which eight genera represented multilineage

clusters. Pan‐genome analysis, single‐nucleotide polymorphism (SNP) identi-

fication, and probiotic functional predictions revealed that species taxonomy,

habitats, and geography together shape the functional diversity of Lachnos-

piraceae. Moreover, analyses of associations with atherosclerotic cardiovascu-

lar disease (ACVD) and inflammatory bowel disease (IBD) indicated that

several strains of potentially novel Lachnospiraceae species possess the

capacity to reduce the abundance of opportunistic pathogens, thereby

imparting potential health benefits. Our findings shed light on the untapped

potential of novel species enabling knowledge‐based selection of strains for the

development of next‐generation probiotics holding promise for improving

human health and disease management.
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Highlights

• Comprehensive genome analysis reveals underestimated species diversity

and distinct functions of Lachnospiraceae.

• Cataloging 1.5M genes highlights Lachnospiraceae's significant role in the

human gut microbiota, with potential novel species contributing.

• Lachnospiraceae demonstrates a vast potential for synthesizing short‐chain
fatty acid (SCFA), producing secondary metabolites, and forming spores,

which is promising for future studies and applications.

• The abundance of Lachnospiraceae correlates inversely with diseases like

atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel

disease (IBD), indicating a potential protective role.

INTRODUCTION

Members of Lachnospiraceae, a family within the
Bacillota phylum comprising several strictly anaero-
bic genera, are abundant in the intestines of
mammals, particularly humans and ruminants, and
members of this family also colonize the environment
[1]. Previous studies have revealed a significant
association between members of the Lachnospiraceae
family and several diseases based on metagenomic
data [2–5]. In addition, Roseburia spp. were found to
be significantly reduced in individuals with athero-
sclerotic cardiovascular disease (ACVD) [6, 7]. Many
species within Lachnospiraceae contribute important
functions, such as bile acid conversion, short‐chain
fatty acid production, and antibiotic production in the
human gastrointestinal tract [8–10], and several
members have been reported to be associated with
beneficial effects on human health. Thus, oral intake
of Anaerobutyricum soehngenii has been reported to
improve insulin sensitivity in individuals with meta-
bolic syndrome [11], and Anaerobutyricum hallii has
been reported to improve postprandial blood glucose
control in patients with type 2 diabetes [12]. Accord-
ingly, bacteria of the Lachnospiraceae family seem to
hold promise as interesting next‐generation probiotic
candidates.

However, studies have also indicated that some
strains of Lachnospiraceae may promote disease
development. Catonella morbi ATCC 51271 isolated
from the oral cavity is thought to be associated with
periodontitis [13], Anaerostipes hadrus BPB5 has been
shown to aggravate colitis in dextran sodium sulfate‐
treated mice [14], and Eisenbergiella tayi isolated from

human blood even acts as an opportunistic pathogen
[15]. Therefore, it is extremely important to select the
right species or strain for future preclinical research.
Previous studies analyzing isolated strains of five
genera in the Lachnospiraceae family have revealed
high diversity between human‐derived isolates [9], but
Lachnospiraceae contains at least 58 genera and 122
valid‐and‐correct‐name species in The List of Prokary-
otic names with Standing in Nomenclature (LPSN,
https://lpsn.dsmz.de/, up to July 2021) [16]. Thus,
although a large number of studies have examined the
impact of Lachnospiraceae on host health, most taxa
of interest lack species‐level taxonomy, implying that
there is a large number of potentially new species,
warranting further studies on the genomic diversity of
Lachnospiraceae.

In our previous study expanding the bacterial
collection of the Cultivated Genome Reference
(termed CGR2) [17], we cultured 756 Lachnospira-
ceae strains from the feces of healthy Chinese adults
and released high‐quality genomes. By collecting
available culture‐based genome data from public
databases and combining these data with the genomes
of CGR2, we constructed a collection comprising 1868
high‐quality genomes belonging to Lachnospiraceae.
These genomes revealed a significantly increased
taxonomic diversity in the Lachnospiraceae family,
and the potentially new species greatly expanded
the existing profiles of genes and functions. In
addition, the comprehensive Lachnospiraceae culti-
vated genome collection improved the resolution of
disease‐related markers and provided a basis for
selecting strains with potentially beneficial effects
on human health.
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RESULTS

The expanded Cultivated Genome
Reference increases the taxonomic
diversity of Lachnospiraceae

We obtained 756 high‐quality Lachnospiraceae genomes
from the expanded Cultivated Genome Reference (CGR2)
[17]. To evaluate the novelty of these genomes, we retrieved
58 genera and 122 valid‐named species from LPSN and
downloaded their 16S ribosomal RNA (rRNA) gene
sequences as a reference. We found that 47.88% of the
newly cultured genomes in CGR2 were potentially novel
species, and 22.22% corresponded to potentially novel
genera, using similarities of 98.7% and 94.5% as the species
and genus demarcation [18], respectively. In addition, the
16S rRNA gene sequences of the potentially novel genera
were clustered into 37 genus‐level operational taxonomic
units (OTUs) and 64 species‐level OTUs. Notably, the
genomes from CGR2 not only covered most genera of the
Lachnospiraceae family identified in the human gut
microbiota but also added three potentially new genera
that had not been isolated previously from the human gut
(Figure 1A). Together, these results increased the taxonomic
diversity of Lachnospiraceae, warranting further studies to
fully explore the diversity of Lachnospiraceae.

Next, we collected isolated genomes of Lachnospir-
aceae from the NCBI (939), IMG (5), and the Unified
Human Gastrointestinal Genome (UHGG) collection
(190) (as of August 2021). CheckM quality control
resulted in 1868 high‐quality genomes, including 756
genomes from CGR2. Strains were isolated from multiple
sources, including humans, animals, and the environ-
ment from a total of 32 countries across six continents
(Africa, Asia, Europe, North America, Oceania, and
South America), which highlights the prevalence of
Lachnospiraceae in different regions and countries
(Figure 1B and Table S1). This notion is in accordance
with earlier studies on the prevalence and abundance of
Lachnospiraceae in metagenomic data, indicating that
members of the Lachnospiraceae family are common in
samples of the mammalian gastrointestinal tract and the
environment [1].

Phylogenetic analysis reveals phyletic
diversity and colonization selectivity

Based on the 95% average nucleotide identity (ANI)
threshold, all 1868 genomes were clustered into 387
species‐level clusters, exceeding by a factor of three the
number of previously annotated species (Table S1 and S2).

Digital DNA–DNA hybridization (dDDH) is another
bioinformatics technique used to estimate the genetic
relatedness or similarity between two bacterial genomes.
The dDDH values within clusters and between clusters
support the current delineation of species‐level clusters in
our study (Figure S1). A number of genera, including
Blautia, Copromonas, Butyrivibrio, Coprococcus, and
Pseudobutyrivibrio, harbored a large number of potentially
new species (Figure 1C and Table S1). Among eight
genera, Blautia, Butyrivibrio, Clostridium, Coprococcus,
Dorea, Eubacterium, Lachnoclostridium, and Mediterra-
neibacter, we observed that at least two distinct branches
were evident in the phylogenetic tree (Figure 1C), with
the genetic composition confirming the divergence
between these branches (Figure 1D). Notably, inter-
branches had quite high and more narrowly distributed
Jaccard values, with median values ranging from 93.03%
to 99.86% (Figure 1D). These values were significantly
higher than those observed within intrabranches. This
indicates a greater genetic variability among inter-
branches, suggesting a potential rationale for their
appropriate grouping.

The ANI and 16S rRNA gene sequences similarity are
two commonly used strategies for species demarcation in
prokaryotes, but these two methods may create biases.
Therefore, we investigated differences in species demar-
cation between the two methods. Using 109 sequenced
type strain genomes and 16S rRNA gene downloaded
sequences as references, we found 26 species‐level
clusters with conserved 16S rRNA gene sequences, but
highly diverse genomes, which were annotated as new
species or multiple phyletic lineages by the GTDB
(Figure S2). Conversely, the seven species‐level clusters
exhibited low 16S rRNA gene similarity to the type strain
(Figure S2). Additionally, we blasted the 16S rRNA gene
sequences predicted by the type strain genome against
the downloaded sequences, arriving at the same result.
Therefore, a thorough analysis of the possible contami-
nation of the 16S rRNA gene sequences of the seven
species‐level clusters in GTDB is warranted.

In general, the genomes represented species isolated
from humans, animals, and the environment, corroborat-
ing the findings of previous studies [1]. Based on the
culture method, we can trace the origin at the species or
even the strain level. We found that 30 out of 75 genera
were isolated from different body habitats, mainly from
humans and animals, whereas 93.02% of the species‐level
clusters were isolated from a specific habitat, indicating
the selective colonization of individual members of the
Lachnospiraceae family (Figure S3). Statistical analysis
showed that both genera and species were correlated with
habitat (χ2 test, p< 0.01).
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FIGURE 1 The collection of 1868 Lachnospiraceae cultured genomes. (A) Contribution of 756 newly isolated Lachnospiraceae
genomes to the existing valid name genera. Genera represented by the human gut cultured genomes are marked in black, genera
without human intestinal culture representation but with genomes from other niches are marked in pink, and genera without any
cultured genome are marked in gray. (B) Geographical and niche distribution of the number of genomes retrieved. (C) Phylogenetic
tree of the 1868 isolated genomes. The tree was produced from concatenated protein sequences using PhyloPhlAn 3. The clades are
colored according to the genome source database (The expanded Cultivated Genome Reference [CGR2] or download). Potentially
novel species and type strains are marked in the first layer with red and blue dots, respectively. The second and third layers represent
the niches and continents where the genomes were isolated, respectively. The GTDB genus annotation is marked at the last layer and
text‐labeled for those with multiple lineages. (D) The Jaccard distance distributions of eight multilineage genera within and between
branches. ***p < 0.001 as defined by the Wilcoxon test.
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Sets of genes and proteins in
Lachnospiraceae genomes

To establish functional profiles, we constructed a gene
catalog based on 1868 genomes. The results illustrated
that the new genomes from the cultured species from
CGR2 expanded the Lachnospiraceae gene catalog to
1.5 M (Figure 2A). We investigated the contribution
of potentially novel species to the gene catalog,
which did not surprisingly reveal that these hitherto
unknown species contributed 42.34% of the genes, as
highlighted in red in Figure 2A. Furthermore, genes
encoding methyl‐accepting chemotaxis protein, endo-
glucanase, peptide/nickel transport system substrate‐
binding protein, and flagellin were enriched in the
potentially novel species, indicating that these species
may provide new insights into glucose metabolism,
motility, and other aspects of members of the
Lachnospiraceae family (Figure S4B).

Turning our focus toward protein sequences encoded
by these genes, we set out to construct a protein sequence
catalog. Similar to the gene catalog, we obtained a 1.4M
protein catalog (Figure S4A). It is noticeable that more
than half (55.52%) of the catalog are hypothetical
proteins based on annotations in the Prokka database.

Our quest to determine the influence of Lachnospir-
aceae family members on the functions of the human gut
microbiota led us to extract protein sequences predicted
from genomes sourced from the human gastrointestinal
tract. Subsequently, we analyzed these sequences using the
Unified Human Gastrointestinal Protein (UHGP) catalog,
renowned as the most comprehensive repository of proteins
from the human gut microbiome. The results showed that
members of the Lachnospiraceae family isolated from the
human gastrointestinal tract covered nearly 50% of the
functions of the human intestinal microbiota, including
metabolism, genetic information Processing, and environ-
mental information processing (Figure 2B).

FIGURE 2 New insights into the genes of Lachnospiraceae. (A) The 1.5M isolated Lachnospiraceae gene catalog, with parts unique to
the genomes of potentially new species highlighted in red. (B) The percentage of human gut Lachnospiraceae genes contributing to the
human gut microbiota function. (C) The completeness of each metabolic functional module. A bar represents a module, and all modules can
be divided into 10 categories according to their functions.
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Given the pivotal role played by gut microbes in host
nutrition and metabolism, our analyses focused on the
metabolic functions of Lachnospiraceae family members
originating from the human gut. We demonstrated that
these members not only have a great capacity for
carbohydrate metabolism, fatty acid synthesis, and degrada-
tion but also participate in branched‐chain amino acid
biosynthesis, purine and urea metabolism, and folate
biosynthesis, which are important for the regulation of host
physiology (Figure 2C and Figure S4C). In addition,
members of the human intestinal tract Lachnospiraceae
family contributed 59 unique KEGG Orthologies (KOs)
(Figure S4D), mainly involved in synthetic and metabolic
functions.

Pan‐genome analysis reveals the ecological
diversity of representatives of
Lachnospiraceae

The pan‐genome represents the entire set of genes from
all species/strains within a clade, thereby characterizing
the diversity between genomes and providing important
insights into the evolutionary origin and niche adapta-
tion. Whole‐genome sequencing of isolates has laid
the foundation for identifying core and unique genes
between closely related strains.

First, by constructing a family‐level pan‐genome
using all the genomes of the Lachnospiraceae family,
we surprisingly found that the most prevalent genes were
shared by only 41.54% of the genomes and almost 99.99%
of the genes were distributed in only a few genomes,
which were defined as Cloud Genes [19] (Figure 3A). We
analyzed the pan‐genome and core‐genome sizes of the
genera and species, including at least 10 independent
conspecific genomes. At the genus level, the sizes of the
core and pan‐genomes were positively correlated with
the number of genomes and clusters. The range of pan‐
genomes varied up to 10‐fold, while the range of core‐
genomes varied by more than 1000‐fold (Figure S5A). At
the species level, Hungatella effluvii, Eisenbergiella tayi,
Enterocloster boltteae, and Enterocloster clostridioformis
have a larger number of genes and thus larger core and
pan‐genome sizes. Additionally, the top 10 species with a
large number of genomes have smaller core genomes and
larger pan‐genomes, indicating a more diverse genetic
composition of the genome (Figure 3B).

Blautia wexierae possesses a large pan‐genome and a
relatively small core‐genome; however, it lacks a complete
reference genome necessary for single nucleotide polymor-
phism (SNP) analysis. Therefore, we opted for Agathobacter
rectalis, which has the second‐largest pan‐genome and a

complete reference genome. We further conducted
SNP analysis of 96 genomes isolated from five countries,
using the complete genome GCA_000020605 isolated from
France as the reference. We detected 95173 variants in
intragenic regions, of which 19357 were missense variants.
The SNP phylogenetic tree showed four clades related to
geographic location (Figure 3C). The closest to the
reference is Clade 1, composed of genomes from the
United States, followed by Clade 2, mainly dominated by
UK genomes, clade 3, composed of genomes from multiple
countries, and Clade 4, mainly consisting of Chinese
genomes (Figure 3C). After annotating variants located in
intragenic regions, we focused on bceB, which encodes the
ABC transporter complex BceAB involved in bacitracin
export and harbors a large number of missense variants and
one highly impacting variant (Figure S6A). The four clades
showed different bceB gene variation patterns. Clade 4 had
the highest variation associated with bceB, while Clade 2
had the lowest (Figure S6B). The frequent variations in
Clade 1 were at the rear end of the gene, while variations in
Clade 3 were at the front end of the gene. In addition, all
four clades had one variation that caused premature
termination of translation, especially Clade 3, in which
variation was identified in 82.14% of the genomes
(Figure 3D). The ABC transporter BceAB mediates
resistance to antimicrobial peptides such as lantibiotics,
bacitracin, and β‐lactam antibiotics. This result suggests
that Agathobacter rectalis exhibits varying degrees of
resistance loss.

To investigate the impact of potentially new species
on intragenus diversity, we reconstructed a pan‐genome
cumulative curve for five genera (Figure S5B). The
addition of a large number of potentially new species
provided a larger pan‐genome. Compared with known
species, new species have a broader functional potential.
For example, the pan‐genome of Butyrivibrio was more
than tripled compared with that of previously known
species (Figure S5C).

Investigation of the core and unique genes of
Anaerotignum, a genus present in the gastrointestinal
(GI) tract of humans and animals, and in the environ-
ment, revealed that different niches have evolved to be
populated with different species containing unique and
niche‐related genes (Figure 3E).

The diversity of species taxonomy, body
habitats, and geography shapes the various
functions of Lachnospiraceae

The human gut microbiota ferments carbohydrates into
short‐chain fatty acids (SCFAs), especially butyrate and
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FIGURE 3 (See caption on next page).
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propionate, which are then utilized by the host. SCFAs
provide energy for intestinal epithelial cells, regulate
the immune system, and affect various metabolic
pathways that are essential for maintaining host health.
Members of the Lachnospiraceae family are considered
the main producers of intestinal SCFAs. Two different
pathways contribute to butyrate production from
butyryl‐CoA, one dependent on butyrate kinase and
one dependent on butyryl‐CoA: acetate‐CoA transferase
(Table S3). The conversion of propionyl‐CoA to propio-
nate comprises three different pathways, including one‐
step reactions catalyzed by a CoA‐transferase or a CoA‐
ligase and a pathway involving several intermediate
steps (Table S3) [20]. We found that only 40.80% of the
Lachnospiraceae genomes harbored complete butyrate
pathways, whereas almost all genomes harbored com-
plete propionate pathways that require CoA‐transferase
(Figure 4A). In addition, the complete butyrate pathway
predicted in the genome of Lachnospiraceae generally
depends on either butyrate kinase or butyryl‐CoA:
acetate‐CoA transferase, while one or more complete
propionate pathways are carried on the same genome in
Lachnospiraceae. Coprococcus, a recognized butyrate‐
producing bacteria, harbors not only the complete
butyrate pathway but also different propionate path-
ways, showing its great potential for SCFA production.
We also discovered that a large number of potentially
new species and new genera have the ability to produce
butyrate and propionate.

To define genera that comprise members harboring the
complete butyrate pathway as potential butyrate‐producing
genera, we extracted the distribution of genes related to
butyrate production from 26 genera (Figure 4B). We found
that the integrity of the pathway was not related to the
body habitat but depended on the species. Similarly,
different pedigrees within the same genus exhibited
differences in the completeness of pathways and pathway
types, that is, there was no specificity at the genus level.
For example, Coprococcus catus uses butyryl‐CoA: acetate
CoA transferase to produce butyrate, whereas the other
genomes of Coprococcus use the butyrate kinase pathway
[8]. For Enterocloster, some of the genomes of Enterocloster
clostridioformis use butyryl‐CoA: acetate CoA transferase,
whereas the genome of Enterocloster bolteae harbors genes

encoding enzymes that can produce butyrate through two
pathways, but the rest of the genomes have gene deletions.
This result did not match the phylogeny, indicating that
genes related to butyrate production may be obtained by
horizontal gene transfer.

Members of the Lachnospiraceae family have been
reported in many studies to produce novel secondary
metabolites [10, 21, 22]. We carried out extensive mining
of secondary metabolite biosynthetic gene clusters
(SMBG) using antiSMASH (V6.0.0) and explored 6688
regions (7373 SMBGs) from 1856 genomes, with a total
of 32 types (Table S4). By matching these regions with
the experimentally verified reference biosynthetic gene
clusters (BGCs) in the MiBIG database, we identified 58
known BGCs in the Lachnospiraceae genomes
(Figure 4C). The largest number of BGCs were dipeptide
aldehydes, Ruminococcin A (RumA), and exopolysac-
charide. Dipeptide aldehyde is a highly effective protease
inhibitor that was first characterized in Ruminococcus sp.
[23]. RumA can be used for the clinical treatment of
pathogenic Clostridium spp. infections and has been
previously characterized in Ruminococcus gnavus E1
[24]. We found that Blautia has great potential to
produce dipeptide aldehyde and RumA, which not only
helps them to occupy niches but also serves as an
important candidate source of these biologically active
products. Exopolysaccharide, mainly produced by Anae-
rostipes, can be used as cross‐feeding fermentation
substrates to stimulate the growth of specific beneficial
bacteria, reduce pathogen adhesion, and improve the
protective effect of the intestinal barrier [25]. In addition,
90.7% of the regions exhibited no match in the MiBIG
database, indicating that the structure and function have
not yet been described. These results revealed that
Lachnospiraceae has a great unexplored potential for the
discovery of novel secondary metabolites.

Sporulation‐mediated transmission varies
among different ecological niches

Most Bacillota are known sporulating bacteria [26–28],
which exhibit long‐term survival under harsh environ-
mental conditions such as high or low temperatures,

FIGURE 3 Pan‐genomic diversity of Lachnospiraceae. (A) The number of genes shared between different genomes. The X‐axis is the
proportion of genomes containing common genes in all genomes. (B) Core genome, pan‐genome, genome number, and gene number
statistics for 41 species with more than 10 genomes sorted by the number of genomes. (C) Phylogenetic unrooted tree constructed based on
single‐nucleotide polymorphisms (SNPs). The tree was produced by Parsnp. Nodes are colored according to the isolation country. Clades are
divided based on genetic distance. (D) The density of variations frequency at different genome positions of the four clades. The genomic
position is colored according to the mutation type. (E) The presence or absence of genes in the Anaerotignum genus. Genes that are only
present in the genome of a specific niche are defined as specific genes.
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FIGURE 4 (See caption on next page).
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oligotrophic conditions, and exposure to drugs. In
addition, spores can also promote the spread of bacteria
between hosts, eventually colonizing a variety of habitats
[29]. Most species of Lachnospiraceae are considered to
be spore producers. Spores of Lachnospiraceae have been
shown to survive ethanol treatment and germinate in the
presence of bile acids [30]. Browne et al. used machine‐
learning methods to identify 66 sporulation characteristic
genes and further showed differential losses of these
genes in different lineages of intestinal Bacillota. We
found numerous deletions of characteristic genes in the
genomes of animal rumen origin and the human oral
habitat (Figure 4D and Figure S7). However, even though
the genomes from the human gastrointestinal tract
contained a relatively complete and abundant comple-
ment of these characteristic genes, some of them had lost
spo0A, the master regulator gene essential for sporula-
tion. This difference may indicate adaptation between
different ecological niches.

Investigating associations of the
Lachnospiraceae clusters with
human diseases

Metagenomics‐based approaches can identify disease‐
related markers but rely mainly on database‐based
annotation of reads or de novo binning, which
generally lack species‐level matching, thus limiting
subsequent studies. Since most biomarkers lack cul-
tured strains, metagenomic studies most often identify
disease‐related bacterial species with limited func-
tional information and mechanistic insight. To

circumvent this limitation, we used cultured genome
collection to identify potential associations between
health and disease.

By exploiting our genome collection for analysis of
strains associated with ACVD in a Chinese cohort [7], we
unveiled remarkable disparities in the abundance of
bacterial strains. Specifically, we identified 56 strains
from 13 clusters that were notably more prevalent in the
healthy control group, while 52 strains from 14 clusters
displayed a significant enrichment in the ACVD group
(with an adjusted p value < 0.01 and |log2 FC| > 1,
Figure S8A and Table S5). Consistent with previous
studies [6, 7], we observed a higher abundance of
members of the Roseburia genus in healthy controls,
while Ruminococcus gnavus, considered an opportunistic
pathogen, was significantly enriched in the ACVD group.
Additionally, we discovered that several strains of
Lachnospira eligens, Acetatifactor sp., and Agathobacter
faecis not only played pivotal roles in coabundance
networks but also exhibited negative correlations with
ACVD‐enriched genomes (|r | > 0.3, adjusted p< 0.01,
Figure S8B).

For intestinal inflammatory diseases, we investigated
the distribution of members of the Lachnospiraceae
family in the inflammatory bowel disease (IBD) cohort of
the Human Microbiome Project (HMP), including
Crohn's disease (CD) and ulcerative colitis (UC) patients.
In CD patients, we identified 17 strains from eight
clusters that were enriched, while 122 strains from 35
clusters were reduced in abundance (with an adjusted
p value < 0.01 and |log2 FC| > 1, Figure S9A and Table S6).
In the healthy group, we discovered an enrichment of
potentially novel species such as Acetatifactor sp.,

FIGURE 4 Functional profile of Lachnospiraceae. (A) Distribution of genes associated with short‐chain fatty acid production in each
genome. This phylogenetic tree is consistent with Figure 1C. The two pathways for butyrate production from acetyl‐CoA (the Butyryl‐CoA
transferase pathway and Butyrate kinase pathway) are presented in the first and second layers, respectively. The third to fifth layers
represent the three pathways from propionyl‐CoA to propionate production. The shade of color indicates the type of genes in the pathway,
that is, the integrity of the pathway. The last layer represents the genus, which is consistent with Figure 1C. Thl, thiolase; Hdb,
β‐hydroxybutyryl‐CoA dehydrogenase; Cro, crotonase; Bcd, butyryl‐CoA dehydrogenase; But, butyryl‐CoA:acetate CoA transferase; Ptb,
phosphate butyryltransferase; Buk, butyrate kinase; ACSS1_2, acetyl‐CoA synthetase; ACSS3, propionyl‐CoA synthetase; Pct, propionate
CoA‐transferase; Acd, acetate‐CoA ligase (ADP‐forming); Pta, phosphate acetyltransferase; PduL, phosphate propanoyltransferase; AckA,
acetate kinase; TdcD, propionate kinase. (B) Phylogenetic tree of potentially butyrate‐producing genera. The color of the clade represents the
genus, and the first layer represents the niche of the genomes. The heat map is colored according to the presence or absence of genes,
corresponding to the genes related to the two pathways shown on the left. ACE, Acetatifactor; AGA, Agathobacter; ABU, Anaerobutyricum;
ASA, Anaerosacchriphilus; AST, Anaerostipes; BAR, Bariatricus; BAR, Bariatricus; BUT, Butyrivibrio; BUT_A, Butyrivibrio_A; CAT,
Catenibacillus; CLO, Clostridium; CLO_AP, Clostridium_AP; CLO_Q, Clostridium_Q; COP, Coprococcus; COP_A, Coprococcus_A; EIS,
Eisenbergiella; ENT, Enterocloster; EUB_F, Eubacterium_F; EUB_G, Eubacterium_G; EUB_H, Eubacterium_H; EUB_I, Eubacterium_I;
EUB_Q, Eubacterium_Q; FRI, Frisingicoccus; KIN, Kineothrix; LACA, Lachnoanaerobaculum; LACB, Lachnobacterium; LAC,
Lachnoclostridium; LAC_A, Lachnoclostridium_A; LAC_B, Lachnoclostridium_B; LACR, Lacrimispora; MED, Mediterraneibacter_A; PAR,
Parasporobacterium; PSE, Pseudobutyrivibrio; ROS, Roseburia; SHU, Shuttleworthia; ATO, Stomatobaculum; WEI, Weimeria. (C) Network of
the relationship between genera and known secondary metabolites. Genera are represented by dots of their corresponding colors, secondary
metabolites are represented by black dots, and the size of the dots is related to the number. (D) Heatmap of sporulation gene distribution.
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Choladocola sp., Eubacterium sp., and strains from
unidentified genera. These novel species exhibited
significant negative correlations with Enterocloster bol-
teae (formerly Clostridium bolteae) and Ruminococcus
gnavus (|r | > 0.3, adjusted p< 0.01, Figure S9B). In UC
patients, eight strains from seven clusters were enriched,
while 51 strains from 24 clusters were reduced (with an
adjusted p value < 0.01 and |log2 FC| > 1, Figure S10
and Table S7). Of particular interest were two strains,
GCA_009881395 and GCA_013304625, both belonging to
the Blautia wexlerae, each displaying different patterns;
GCA_009881395 was enriched in the healthy control
group, whereas GCA_013304625 was enriched in the UC
group (Figure S11). This observation suggests that
different strains from the same species may have distinct
roles in health and disease, emphasizing the importance
of considering strain‐level diversity in metagenomic disease
studies.

Comparing the two cohorts, we observed a marked
difference in the number of strains enriched in the
healthy group. While the ACVD cohort displayed a
higher abundance of specific strains, the IBD cohort,
encompassing CD and UC, exhibited a greater number of
enriched strains (Figure S11), including Agathobacter
rectalis, Agathobacter sp., Anaerobutyricum hallii, Butyr-
ibacter intestini, Butyribacter sp., Eisenbergiella sp.,
Mediterraneibacter lactaris, and Wujia chipingensis.
These contrasting findings underscore the importance
of recognizing the distinct microbial signatures associ-
ated with different diseases and reinforce
the significance of conducting strain‐level analyses in
metagenomic studies of diseases.

DISCUSSION

In this study, we compiled a comprehensive genome
collection of Lachnospiraceae for the analysis of taxonomic
and functional diversity. Members of the Lachnospiraceae
family begin to colonize early in life and increase in
abundance with age [31, 32]. The genomes isolated in this
study contributed with a substantial number of potentially
new species, providing a preliminary indication of the
unexplored taxonomic diversity of the Lachnospiriaceae
family, highlighting the importance of culture‐based
studies in uncovering the taxonomic richness and diversity
of Lachnospiraceae. Combined with the publicly available
genomes, we found that the bacteria of the Lachnospir-
aceae family were ubiquitous across various niches, while
species‐level colonization exhibits specificity, offering
valuable insights for transplantation studies using Lach-
nospiraceae members. The isolation of novel bacteria
expanded the number of species by a factor of three

compared with the presently validated 122 species,
indicating that the species diversity of Lachnospiraceae
so far has been underestimated. Notably, eight genera of
Lachnospiraceae exhibited greater diversity, showing
distinct branches in the phylogenetic tree, along with
variations in short‐chain fatty acid (SCFA) synthesis
pathways and disease associations. We propose that
taxonomic studies on potentially new species are war-
ranted to provide valid names, and reclassification of
multi‐lineage genera is necessary to refine the taxonomy.

Regarding functional exploration, we constructed a
1.5M gene and a 1.4M protein catalog, with potentially
novel species playing a major role, shedding new light on
Lachnospiraceae metabolism and biology. Human gut‐
derived Lachnospiraceae strains were found to encom-
pass nearly half of the functions found in the human gut
microbiota, further emphasizing their essential roles
within this ecosystem. We performed pan‐genome
analyses separately for genera and species, enriching
our understanding of well‐studied [33, 34] and poorly
studied members.

The complete biosynthesis pathway of SCFA was
constructed for all genomes, and a large number of
SMBGs were predicted, emphasizing the potential
ecological importance of Lachnospiraceae in the human
gut. Studies have shown that species such as Blautia and
Roseburia, which are usually considered beneficial
species, are major SCFA producers [35]. In this study,
we observed that nearly all Lachnospiraceae members
possess the capacity to produce propionate, while most
strains were butyrate producers with niche‐dependent
specificity.

Although the isolation of microbial secondary metab-
olites has mainly focused on specific organisms present
in the environment, especially Streptomyces, Aspergillus,
and Pseudomonas, host‐associated microbes may also
contribute to the production of interesting secondary
metabolites [36–38]. In the MiBIG database, 10 of 1926
experimentally validated secondary metabolites were
first discovered and extracted from four genera of
Lachnospiraceae. Our study predicted that 7373 gene
clusters from 1856 genomes have the potential to
produce interesting secondary metabolites, indicating
that Lachnospiraceae has a surprising ability to produce
such compounds, most of which remain to be fully
characterized. While we successfully predicted a vast
number of gene clusters with potential for secondary
metabolite production, we did not specifically address the
presence of individual metabolites like RumA or
exopolysaccharides in the bacterial cultures. Our future
studies can indeed build upon the findings and focus on
isolating specific strains within the Lachnospiraceae
family to characterize their secondary metabolites more
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comprehensively. Such efforts might involve culture‐
based methods to confirm the presence of specific
metabolites and investigate their biological roles.

Spores are stress‐resistant structures formed by
Bacillota [27]. Previous research on microbial spores
has not been limited to pathogens [39, 40] but has also
focused on probiotic bacteria [41, 42]. With the develop-
ment of human intestinal microbial culturomics in
recent years, an increasing number of strains and high‐
quality genomes have been established, enabling studies
of spore production by human intestinal microbes [26,
28, 30]. Several studies have suggested using spore
preparations as an alternative to traditional fecal micro-
biota transplantation (FMT) for the treatment of Clos-
tridioides difficile infection and IBD [43–45]. The
purification process of spores selectively eliminates
bacteria, fungi, and viruses by mixing with ethanol,
which is safer than the traditional FMT. In addition,
spore preparations can remain active for germination
and replication in the recipients. Through gene predic-
tion, we found that most members of the human gut
Lachnospiraceae are able to form spores. However,
additional experiments are needed to validate the actual
spore germination potential and safety of Lachnospir-
aceae spores for therapeutic interventions. Our study also
yielded intriguing insights into the absence of
sporulation‐related genes within Lachnospiraceae spe-
cies inhabiting the animal rumens and the human oral
cavity. The observation of this absence is indicative of the
unique ecological niches occupied by these bacteria, and
it likely reflects the selective pressures and specific
requirements they face in their respective environments.
Furthermore, sporulation is closely linked to the disper-
sal strategies of microorganisms. While our findings
suggest a lack of sporulation‐related genes, we acknowl-
edge that additional research is essential to provide
comprehensive validation and a deeper understanding of
its implications.

Our study demonstrated that the cultured genome
collection of Lachnospiraceae enhances the resolution of
disease‐related genomes and provides a basis for selecting
potentially effective strains for intervention. Lachnospir-
aceae, a prominent family of bacteria within the human
gut microbiome, has gained increasing attention due to its
role in maintaining gut homeostasis and its impact on host
health. We found that most of the strains enriched in the
control groups were of unknown species, further empha-
sizing the importance of new species. Furthermore,
compared with the use of existing databases, the use of
cultured genomes as a reference allows the identification
of markers for specific known strains, enabling subsequent
functional validation. The correlation observed between
Lachnospiraceae abundance and the prevalence of

ACVD and IBD suggests that these bacteria may exert a
protective influence in relation to these diseases. While
further research is needed to establish causation and
elucidate the underlying mechanisms, our findings offer
promising insights.

CONCLUSION

Our comprehensive genomic and functional analyses of
Lachnospiraceae strains enable targeted isolation and
functional screening, providing a promising avenue for
the development of novel probiotics and antibiotic alter-
natives. This research significantly contributes to our
understanding of the unexplored potential of Lachnospir-
aceae in improving human health and offers valuable
insights for future probiotic‐related investigations.

METHODS

Evaluation of novelty of CGR2 genomes

We downloaded the 16S rRNA gene sequences of all 122
type strains included in the LPSN with valid and correct
name at the beginning of this study, that is, July 2021.
The 16S rRNA gene sequences of 756 CGR2 genomes
were extracted using Barrnap (version 0.9). Pairwise
BLASTn was performed using BLAST 2.12.0+ with an
identity of 98.7% as a species‐level cut‐off and 94.5% as a
genera cut‐off [18]. The 16S rRNA gene sequences of
potentially new genera in CGR2 were clustered by
usearch (v11.0.667) [46] to obtain the OTU at the species
and genus levels (using options: ‐‐id 0.987 and 0.945,
respectively). Genus‐level representative 16S rRNA gene
sequences were extracted and aligned using MAFFT
v7.310 [47] and trimmed using trimAl v1.4. rev 22 [48]
with the auto option. The phylogenetic tree was
reconstructed using the maximum‐likelihood method
with FastTree Version 2.1.3 SSE3 [49].

Genome collection and quality assessment

To establish a collection of isolated genomes of Lachnos-
piraceae, we downloaded all isolated genomes labeled as
Lachnospiraceae from the NCBI [50] and IMG [51]
databases (July 2021). We performed this collection with
currently established cultured‐based genomes of CGR2 and
UHGG [52]. Traceability investigations were conducted for
all genomes, including host and country information
(animal habitats include cow, sheep, mouse, pig, chicken,
dog, llama, wallaby, and wood turtle). To avoid genome
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duplication caused by synchronization of the database, we
used fastANI (v1.32) [53] to compare the genomes for
different data sets, and only one of the genomes was
retained when the genomes were highly similar (pairwise
ANI was 100%) and shared common strain names. Only
genomes with >90% completeness and <5% contamina-
tion, as estimated by CheckM (v1.1.2, “lineage_wf” work-
flow) [54] were defined as high‐quality genomes and were
retained for further analysis.

Phylogenetic and taxonomic analyses

Genomes that shared ≥95% ANI were considered the same
species [55]. Thus, we employ fastANI (v1.32) [53] to
calculate pairwise ANI values between genomes and
generate a matrix (‐‐matrix). Subsequently, we conducted
a hierarchical clustering analysis using the “hclust”
function from the R package (method= “complete”). The
resulting hierarchical clustering dendrogram was then
divided into clusters based on the 95% ANI threshold using
the “cutree” function (h=0.05). dDDH value was calcu-
lated by GGDC (https://ggdc.dsmz.de/ggdc.php#) [56].

Taxonomic annotation of each genome was per-
formed with GTDB‐Tk [57] (v2.3.2, database release214
[58]) using the “classify_wf” function and default
parameters. Any lineage without a valid name was
considered to represent a potentially new species or
genus. The additional letter suffix of the genus name
indicates high phylogenetic diversity.

PhyloPhlAn 3.0 [59] was used to perform a phyloge-
netic analysis of 1868 genomes. The process involved
several specific steps. Initially, DIAMOND [60] was
utilized to identify marker genes. This was achieved by
mapping the amino acid sequences from the 1868 genomes
with the PhyloPhlAn 3.0 database, which includes a set of
400 universally marker genes present in all bacteria and
archaea. Subsequently, the mapping results were processed
through MAFFT for alignment optimization. Alignments
were further refined using trimAl. Finally, a maximum
likelihood tree was constructed through the application of
IQ‐TREE [61], followed by a refinement step using RAxML
[62]. All phylogenetic trees in this study were visualized
and annotated with the online tool EVOLVIEW v2 [63].

Construction of the nonredundant gene/
protein catalog and pan‐genome analyses

In the initial phase of our analysis, the 1868 genomes
were annotated by Prokka v1.14.6 [64] with default
settings to predict both nucleotide and protein sequences
associated with the genes present in these genomes.

Nucleotide sequences were used for CD‐HIT v4.6.3
[65] to generate gene catalogs [65], utilizing specific
parameters such as ‐c 0.95 and ‐aS 0.9, which defined
stringent criteria of 95% protein identity and 90%
coverage. This step facilitated the generation of a
nonredundant gene catalog, ensuring that each gene
was uniquely represented and eliminating redundancy in
the data set.

In parallel, we also turned to the construction of the
protein catalog. To achieve this, protein sequences were
used for “linclust” function of MMseqs. 2 (Version
13.45111) [66], employing a set of defined parameters,
including “‐‐cov‐mode 1 ‐c 0.8 ‐‐kmer‐per‐seq. 80 ‐‐min‐
seq‐id 0.95,” which defined previously used criteria of
95% protein identity and 80% coverage [52].

Pan‐genome analyses were carried out by Roary
v3.7.0, with option “‐i 90” [19] to identify the core and
cloud genes of family, genera, and species. In terms of
eight multilineage genera, the gene‐genome matrix
generated by Roary that included the presence/absence
profile of each gene family for all genomes was extracted,
and the R function “vegdist” was used to calculate the
pairwise Jaccard index between genomes. Heatmap
visualization was performed by the ComplexHeatmap R
package [67].

Parsnp v1.5.0 [68] was employed with default settings
to collect SNPs from all genomes of Agathobacter rectalis
and generate an SNP‐based phylogenetic tree. Variants
were annotated using SnpEff v5.1 [69], which reports
their predicted impact on the protein (HIGH, MODER-
ATE, LOW, or MODIFIER).

Functional characterization

The function profile of the nonredundant gene catalog was
carried out by eggNOG‐mapper v2 [70] (eggNOG database
version: 5.0.2 [71]). KEGG ORTHOLOGY (KO) was
extracted from the eggNOG‐mapper results and visualized
in iPath3 [72]. To identify KOs that differed significantly
between known and novel clusters, linear discriminant
analysis effect sizes (LEfSes) were determined using the
Huttenhower Lab Galaxy module. For the analysis process
of LEfSe, the sum of gene values per genome was
normalized to 1M. The input parameters were as follows:
alpha value for the pairwise Wilcoxon test between
subclasses was 0.01, logarithmic linear discriminant
analysis score threshold for discriminative features was 2.0.

The acetyl‐CoA‐to‐butyrate and propionyl‐CoA‐to
propionate biosynthesis pathways were generated ac-
cording to previous studies [20, 73], and the protein
sequences of associated enzymes were extracted from
the KEGG database to construct a small database. The
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enzyme Commission numbers of relevant enzymes are
shown in Table S3. To better describe the potential
ability of the strains to participate in the production of
butyrate and propionate, we BLASTed the gene
sequences of each strain on the database constructed
above (blastp, cut‐off 1e‐2, identity ≥ 60%, coverage ≥
50%). If a genome could be annotated with enzymes for
all steps in the pathway in Figure 3A, it was defined as
having a complete pathway.

A total of 7373 SMBGs were mined by antiSMASH
6.0 [74], a tool that can detect BGCs and characterize
known functions. The relationship between the known
function SMBGs and their regional genome was dis-
played using Cytoscape (v3.8.2) [75].

A previous study has proposed 66 sporulation
characteristic genes [28]. We searched for these gene
names in the prokka annotation results to obtain the
distribution of the characteristic genes in each genome.

Identification of disease‐associated
markers of Lachnospiraceae

The clean data of 385 metagenomes (171 from healthy
control individuals and 214 from individuals with
ACVD) were downloaded from the European Bio-
informatics Institute (EBI) database with the accession
number ERP023788 of one study of human gut micro-
biome association with ACVD [7]. Human gut metagen-
ome sequencing data of the IBDMDB study [76] were
downloaded (https://portal.hmpdacc.org/), and the me-
tadata can be found through https://ibdmdb.org/results/
HMP2/.

To calculate the abundance of Lachnospiraceae
genomes across the samples, we built a Kraken2/Bracken
database (options: ‐k 31 ‐l 100) with 1868 genomes of the
Lachnospiraceae family. For each sample, reads assign-
ment was performed using Kraken2 v2.1.2 and Bracken v
2.6.1. A threshold of 0.001% relative abundance and at
least 10% occurrence was assigned to define the presence
of the genome in the sample.

Abundances were calculated, and no reads mapping
samples or genomes were filtered out using R software.
EdgeR, a negative binomial‐based R package, was used to
identify genomes with significantly different abundances
and select genomes with adjusted p value < 0.01 and |log2
FC| > 1. R function “corr. test” to conduct bacteria
co‐occurrence analysis.
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