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Simple Summary: This research aims to evaluate the effectiveness of a machine learning algorithm,
XGBoost, in predicting treatment recommendations for patients with hepatocellular carcinoma
(HCC). The study uses clinical and imaging data from patients discussed at a multidisciplinary
tumor board. The findings suggest that the algorithm can accurately predict all eight treatment
recommendations made by the board, potentially aiding clinical decision-making in settings lacking
subspecialty expertise.

Abstract: This study addresses the potential of machine learning in predicting treatment recommen-
dations for patients with hepatocellular carcinoma (HCC). Using an IRB-approved retrospective
study of patients discussed at a multidisciplinary tumor board, clinical and imaging variables were
extracted and used in a gradient-boosting machine learning algorithm, XGBoost. The algorithm’s
performance was assessed using confusion matrix metrics and the area under the Receiver Operating
Characteristics (ROC) curve. The study included 140 patients (mean age 67.7 ± 8.9 years), and the
algorithm was found to be predictive of all eight treatment recommendations made by the board.
The model’s predictions were more accurate than those based on published therapeutic guidelines
by ESMO and NCCN. The study concludes that a machine learning model incorporating clinical
and imaging variables can predict treatment recommendations made by an expert multidisciplinary
tumor board, potentially aiding clinical decision-making in settings lacking subspecialty expertise.

Keywords: machine learning; computer algorithm; hepatocellular carcinoma; multidisciplinary
decision-making; tumor board

1. Introduction

Management of hepatocellular carcinoma (HCC) is complex due to the highly variable
pathology of the cancer as well as its frequent coexistence with other complex medical
issues, such as cirrhosis and viral hepatitis infection [1–3]. According to the American
Association for the Study of Liver Diseases (AASLD), the treatment of HCC involves a broad
spectrum of clinical practice, including surveillance of patients with cirrhosis for HCC,
establishing the diagnosis of HCC, and various therapeutic options for the treatment of
HCC [4,5]. In the early stages, when a tumor is small, HCC treatment may include surgery,
transplant, and ablation. Conversely, after the cancer grows and spreads, a combination
of immunotherapy and targeted therapy may be the gold standard treatment [6–8]. These
treatments include surgical tumor resection, liver transplantation, locoregional treatments
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such as ablation, transarterial chemoembolization (TACE), selective internal radiotherapy
(SIRT) with yttrium-90 (Y-90), systemic chemotherapy, and external beam radiotherapy.
Numerous factors drive the selection of treatment. These include the tumor staging, number
of tumors, location of tumors, vascular involvement, serum biomarkers (bilirubin, albumin,
prothrombin time, sodium, creatinine), goals of treatment (palliative or curative), relative
contraindications or patient comorbidities, candidacy for transplantation or clinical trials,
patient preferences, physician preferences, and available resources [4,9].

For these reasons, multidisciplinary team meetings (tumor boards) are considered best
practice in the management of patients diagnosed with HCC. Tumor boards typically consist
of oncologists, surgeons, diagnostic and interventional radiologists, radiation oncologists,
pathologists, and other healthcare professionals [7]. The combined input of individuals
with specialized expertise helps to optimize clinical decision-making. Despite the collective
expertise of tumor boards, decision-making can sometimes be flawed. Specifically, decisions
may be hindered by weaknesses in internal team processes, limitations in the quantity
and quality of information available to all board members, and group or individual biases,
resulting in variability in the final treatment plan [10,11]. Furthermore, these resource-
intensive tumor boards are not readily accessible to all 750,000 patients diagnosed annually
with HCC and tend to be restricted to a few medical centers [12].

Considering these limitations, there is interest in the role of artificial intelligence
algorithms in mimicking or supplementing the multidisciplinary decision-making of tu-
mor boards. Several studies have demonstrated the utility of artificial intelligence to
predict both diagnostic and clinical decision-making [13–15]. However, limited published
data have demonstrated the utility of machine learning in predicting multidisciplinary
decision-making [16]. The purpose of this paper is to explore the role of machine learning
in predicting treatment recommendations of a multidisciplinary HCC tumor board at a
quaternary academic medical center.

2. Materials and Methods
2.1. Patient Population

In this retrospective study, patients were enrolled if they met the following inclusion
criteria: (1) age of 18 years old or above; (2) diagnosed with HCC and not any other
type of cancer; (3) referred to oncology at Massachusetts General Hospital (MGH); and
(4) discussed at the multidisciplinary tumor board at MGH between August 2017 and
August 2019. A total of 140 patients met these criteria and were included in the study. The
study obtained Institutional Review Board (IRB) approval from the institutional IRB, and
the need for informed consent was waived.

2.2. Tumor Board Composition

The tumor board met on a weekly basis for 1 h sessions throughout the 2-year period
from August 2017 to August 2019. Each tumor board meeting consisted of consistent
medical oncologist, a surgical oncologist, a transplant surgeon, a radiation oncologist, and
an interventional radiologist.

The recommendations of the tumor board were categorized into 8 options—(1) intra-
arterial therapies, including conventional transarterial chemoembolization (TACE), drug-
eluting bead TACE (DEB-TACE), (2) selective internal radiation therapy (SIRT); (3) percu-
taneous ablation, with microwave ablation (MWA) (4) radiotherapy, including external
beam radiotherapy (EBRT) or stereotactic body radiotherapy (SBRT); (5) surgical resection;
(6) transplant; (7) chemotherapy; and (8) palliative.

The board recommended at least one treatment option, and potentially multiple
treatment options, to each patient. The aim of this study was to develop a computer
algorithm modeling these initial recommendations of the tumor board.
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2.3. Machine Learning Algorithm

For each patient, a total of 24 clinical and imaging variables were extracted from the
medical record to be included in the machine learning algorithm; patient characteristic
values are shown in Table 1. These variables were the same features considered by the
tumor board in making treatment recommendations and were provided by the tumor board.
All the features provided by the tumor board were included in the model with no exclusions.
These variables included patient demographics, number of enhancing liver tumors, tumor
size, tumor location, number of Organ Procurement and Transplantation Network (OPTN)
tumors, Model for End-Stage Liver Disease (MELD) score, alpha-fetoprotein (AFP), and
total serum bilirubin. For each recommended treatment plan, the treated patient cohort
was split between a training and testing set at a ratio of 4:1 while keeping the ratio of those
recommended and not recommended for a treatment the same for the training and testing
set. For the respective training and testing sets, missing variables were imputed using a
k-nearest neighbor algorithm. Leave-one-out cross-validation was used in the test sets.
The XGBoost machine learning algorithm was used to create a separate classifier for each
treatment plan. This model was used after comparing the performance of several different
types of algorithms, including XGBoost, random forest, regression, support vector machine,
and decision tree algorithms. XGBoost with a depth of 5 and learning rate of 0.001 led to
the best results. Model performance was assessed using AUC-ROC analysis and accuracy.

Table 1. Patient characteristics.

Total Study Participants (n) 140 Patients

Gender
Male—110 patients (79%)
Female—30 patients (21%)

Age
years 67.7 ± 8.9

Patients with extrahepatic disease
n 7 (5%)

MELD score 14.5 ± 5.81

AFP
ng/mL 22,996.7 ± 130,814.5

Total bilirubin
mg/dL 1.8 ± 2.1

Total number of tumors
n 205

Location of tumors per hepatic lobe
n (%)

Left hepatic lobe—82 (40%)
Right hepatic lobe—123 (60%)

Location of tumors per hepatic segment
n (%)

Segment 1—1 (0.5%)
Segment 2—11 (5.4%)
Segment 3—11 (5.4%)
Segment 4a—19 (9.3%)
Segment 4b—16 (7.8%)
Segment 5—28 (13.7%)
Segment 6—32 (15.6%)
Segment 7—42 (20.5%)
Segment 8—45 (21.9%)

OPTN 5 tumors
n (%) 156 (76%)

Mean tumor size
cm 4.71 ± 3.6

MELD: Model For End-Stage Liver Disease; AFP: Alpha Fetoprotein; OPTN 5: Organ Procurement and Transplan-
tation Network classification 5.
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3. Results
3.1. Patient Population

A total of 140 patients were enrolled in the study (Table 1). The mean patient age
was 67.7 ± 8.9 years. A total of 110 patients (79%) were male; 7 patients (5%) had
extrahepatic disease. The mean MELD score was 14.5 ± 5.81. The mean AFP was
22,996.7 ± 130,277.3 ng/mL. The mean total bilirubin was 1.8 ± 2.1 mg/dL. There were
205 total tumors among the study participants. A total of 82 tumors (40%) were in the left
hepatic lobe, and 123 tumors (60%) were in the right hepatic lobe. A total of 156 tumors
(76%) were OPTN 5 tumors. The mean tumor size was 4.71 ± 3.6 cm.

3.2. Tumor Board Recommendations

The tumor board recommended at least one of the eight different treatment options to
each patient. The eight treatment options included intra-arterial therapies, radioemboliza-
tion, ablation, radiotherapy, surgical resection, transplant, palliative, chemotherapy, and
hepatic transplantation. These options included intra-arterial therapy (TACE/DEB-TACE)
for 30.00% of patients, SIRT/Radioembolization for 18.57%, ablation (MWA) for 37.86%,
radiotherapy (EBRT/SBRT) for 26.43%, surgical resection for 15.71%, transplant for 12.86%,
chemotherapy for 10.17%, and palliative treatment for 7.14% of patients (Table 2).

Table 2. Tumor board recommendations *.

Treatment Recommendation Number of Patients
n (%)

Intra-arterial therapy (TACE/DEB-TACE) 42 (30.00%)
SIRT/Radioembolization 26 (18.57%)

Ablation (MWA) 53 (37.86%)
Radiotherapy (EBRT/SBRT) 37 (26.43%)

Surgical resection 22 (15.71%)
Transplant 18 (12.86%)

Chemotherapy 15 (10.71%)
Palliative 10 (7.14%)

* Note that patients may have been recommended more than one treatment option.

3.3. Model Performance

The XGBoost classifiers using the clinical variables were predictive of all eight treat-
ment recommendations made by the tumor board, although performance varied signif-
icantly between the treatments. The performance of the machine learning model was
assessed using the area under the ROC Curve (AUC), shown in Table 2. The ROC curve
plots the true positive rate against the false positive rate and, thereby, reflects the tradeoff
between sensitivity and specificity. A higher AUC corresponds to a more accurate predic-
tion by the model [17,18]. These categories encompassed a range of therapeutic approaches,
including intra-arterial therapy (TACE/DEB-TACE) with an accuracy of 0.64 and an AUC
of 0.61, SIRT/radioembolization with an accuracy of 0.78 and an AUC of 0.61, ablation
(MWA) with an accuracy of 0.69 and an AUC of 0.80, radiotherapy (EBRT/SBRT) with an
accuracy of 0.57 and an AUC of 0.55, surgical resection with an accuracy of 0.90 and an AUC
of 0.81, transplant treatments with an accuracy of 0.85 and an AUC of 0.88, chemotherapy
with an accuracy of 0.85 and an AUC of 0.72, and palliative care with an accuracy of 0.92
and an AUC of 0.85, respectively (Figure 1).
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Figure 1. Machine learning model performance for each treatment option. TACE: transarterial
chemoembolization, DEB-TACE: drug-eluting bead transarterial chemoembolization, SIRT: selec-
tive internal radiation therapy, MWA: microwave ablation, EBRT: external beam radiotherapy,
SBRT: stereotactic body radiotherapy.

4. Discussion

This study demonstrates that a machine learning model can be predictive of the treat-
ment recommendations of a multidisciplinary HCC tumor board at an academic medical
center. The AUCs for the majority of the treatment options—ablation, chemotherapy,
surgical resection, transplant, and palliative—were over 72%.

Initial experience in developing a computer algorithm to predict multidisciplinary
decisions in HCC and transplant patients was reported by Valentin et al. [19]. Beyond this
work, there is one additional study with the aim of developing a computer algorithm to
predict multidisciplinary decision-making that may be used as a point of comparison for our
model. A study by Lin et al. developed a machine learning model able to predict tumor board
decisions about adjuvant systemic therapy in early breast cancer [16]. This model considered
a smaller number of treatment options than did our model. The AUC for the treatment
options considered in this model ranged from 0.78 to 0.99, and the predictions of this model
were shown to be more accurate than those based on published therapeutic guidelines by
ESMO and NCCN [16]. As the AUCs for the majority of treatment options considered in our
model were in a similar range, our machine learning algorithm was comparable in terms of
predictive potential to this model developed by Lin et al. for breast cancer.

The findings of the present study did demonstrate low accuracy in predicting TACE/SIRT
and chemotherapy treatment recommendations. Interestingly, the model developed by
Lin et al. also reported a lower accuracy in predicting the chemotherapy treatment rec-
ommendation. The study did not comment on TACE or SIRT, as these modalities do not
play a role in breast cancer treatment. Lin et al. hypothesized that chemotherapy-specific
decision variations may have arisen in part due to divergences in resource availability.
Variations in resource availability may have similarly contributed to our model’s relatively
lower performance in predicting chemotherapy and also TACE/SIRT-specific decisions.
Additionally, the clinical variability in recommending TACE/SIRT or chemotherapy, given
that TACE/SIRT is a relatively new and evolving therapy and given the ever-changing land-
scape of chemotherapy options, may have contributed to our model’s lower performance
in predicting these treatment recommendations.

There are numerous potential applications of this model in the future. For example,
this model could be used to support existing multidisciplinary decision-making at academic
medical centers, both small and large [20–24]. Furthermore, this model could be used to
spread multidisciplinary expertise to more remote areas where such expertise may not be
available, thereby benefiting a greater number of patients [23].
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The utility of ML models in predicting treatment recommendations extends beyond
HCC to other oncologic areas as well. For instance, in breast cancer, machine learning
models have been used to predict the likelihood of recurrence and to guide the selection of
adjuvant therapy. These models take into account various factors such as tumor size, grade,
hormone receptor status, and genomic markers to make their predictions [25–29].

In lung cancer, machine learning models have been developed to predict the response
to immunotherapy. These models use data from imaging studies, clinical parameters, and
molecular markers to predict which patients are likely to respond to treatment [30–35].

In colorectal cancer, machine learning models have been used to predict the risk of
metastasis and to guide the use of adjuvant chemotherapy. These models consider factors
such as tumor stage, lymph node involvement, and molecular markers [36–39].

In each of these cases, the ML model serves as a decision support tool, helping
the multidisciplinary tumor board to make evidence-based treatment recommendations.
However, it is important to note that these models are not meant to replace the clinical
judgment of the tumor board but rather to augment it. The final treatment decision should
always be made in the context of a thorough discussion among the multidisciplinary
team, taking into account the patient’s preferences and overall health status. It is also
worth noting that while these models show promise, they are still in the early stages of
development and validation. Further research is needed to refine these models and to
evaluate their impact on patient outcomes in the real-world setting.

There are several limitations of this study. First, this is a retrospective study with a
relatively small cohort; as a consequence, the strength of the results may not be generaliz-
able. It will be helpful to validate the accuracy of this machine learning model with a larger
number of patients in predicting tumor board decisions prospectively. While the algorithm
used in the present study was able to predict decisions retrospectively, the development of a
prospective model may be more helpful but comes with unique challenges [40], such as the
risk of overfitting and complications arising from the dynamic nature of medicine [41–43].
Second, it will be useful to assess the model’s efficacy at academic medical centers outside
our institution to account for potential institutional biases and to ensure model general-
izability [44,45]. Third, expanding the study to include a larger number of patients will
facilitate the generalizability and interpretation of our results. Finally, it will be important
to consider the compatibility of the model with human cognitive processes in order to
validate the safety of a model for use in clinical settings. A machine learning algorithm
that has achieved a high degree of accuracy is not necessarily acceptable for use in clinical
settings, as issues may arise relating to human/computer interaction that threaten the
efficacy of the model [46].

5. Conclusions

This study demonstrated the utility of a machine learning model in predicting the
treatment recommendations of a multidisciplinary HCC tumor board at an academic
medical center. Future applications of this model range from supporting existing decision-
making at large academic medical centers to spreading multidisciplinary expertise to more
remote areas. As we work toward these goals, further research will be required to validate
the model prospectively, evaluate the model more broadly, and continuously improve and
assess the model’s compatibility in a clinical context.
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