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ABSTRACT: Diffusion Monte Carlo (DMC) is an exact technique to
project out the ground state (GS) of a Hamiltonian. Since the GS is always
bosonic, in Fermionic systems, the projection needs to be carried out while
imposing antisymmetric constraints, which is a nondeterministic polynomial
hard problem. In practice, therefore, the application of DMC on electronic
structure problems is made by employing the fixed-node (FN) approx-
imation, consisting of performing DMC with the constraint of having a fixed,
predefined nodal surface. How do we get the nodal surface? The typical
approach, applied in systems having up to hundreds or even thousands of
electrons, is to obtain the nodal surface from a preliminary mean-field
approach (typically, a density functional theory calculation) used to obtain a
single Slater determinant. This is known as single reference. In this paper, we
propose a new approach, applicable to systems as large as the C60 fullerene,
which improves the nodes by going beyond the single reference. In practice, we employ an implicitly multireference ansatz
(antisymmetrized geminal power wave function constraint with molecular orbitals), initialized on the preliminary mean-field
approach, which is relaxed by optimizing a few parameters of the wave function determining the nodal surface by minimizing the
FN-DMC energy. We highlight the improvements of the proposed approach over the standard single-reference method on several
examples and, where feasible, the computational gain over the standard multireference ansatz, which makes the methods applicable
to large systems. We also show that physical properties relying on relative energies, such as binding energies, are affordable and
reliable within the proposed scheme.

1. INTRODUCTION
Ab initio electronic structure calculations, which compute the
electronic structure of materials nonempirically, have become
an essential methodology in the materials science and
condensed matter physics communities. Density functional
theory (DFT), a mean-field approach which was originally
proposed by Kohn and Hohenberg,1 is the most widely used
methodology for ab initio electronic structure calculations.
DFT has enjoyed widespread success, despite its reliance on
the so-called exchange−correlation (XC) functional, whose
exact form is yet to be discovered. Although many XCs have
been proposed, no functional that performs universally well for
all materials is established.

Several methodologies transcend the mean-field paradigm.
For example, in the quantum chemistry community, the
coupled cluster method with single, double, and perturbative
triple excitations,2 denoted as CCSD(T), is widely recognized
as the gold-standard approach, balancing accuracy and
computational efficiency. This technique has been employed
as a reference in many benchmark tests, both for isolated and
periodic systems.2−5 CCSD(T) is mostly applied in relatively
small systems, as it becomes very computationally intensive as

the simulated systems get larger (hundreds of electrons or
more). Moreover, despite the many successes of CCSD(T),
there are a few cases where CCSD(T) fails, mostly attributed
to the multireference character of a chemical system (strong
correlation) and where other methods, more expensive
computationally, are needed.6 A different approach, adopted
by the condensed matter community as the gold standard, is
the diffusion Monte Carlo (DMC) method.7 DMC has good
scaling with the system size and it uses algorithms that can be
parallelized with little or no efficiency loss, fully exploiting
modern supercomputers and making relatively large systems
treatable.

CCSD(T) and DMC predictions typically show consensus
in the computed physical properties, such as heats of formation
and binding energies, and good agreement with experi-
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ments.5,8−13 It was believed that CCSD(T) and DMC would
also agree on extended systems, but recent findings by Al-
Hamdani et al.12 have unveiled discrepancies in binding energy
calculations between these methods for large systems, such as a
C60 buckyball inside a [6]-cycloparaphenyleneacetylene ring
(C60@[6]CPPA). It is unclear which approach is to be trusted
in these tricky cases. These findings raise a pivotal question:
what is the reference approach for noncovalent interactions
between large systems? To answer this question, Al-Hamdani
et al.12 discussed possible discrepancy sources coming from
uncontrollable errors existing in both CCSD(T) and DMC.
Both approaches employ some approximations and have their
weaknesses, and the debate is still open. To draw a more
conclusive determination, one should develop a scheme which
mitigates the impact of uncontrollable errors in the methods.
In this work, we focus on improvements in the DMC approach
that alleviate its largest source of error: the fixed-node (FN)
approximation.

DMC yields the exact ground state (GS) in bosonic systems.
In Fermionic systems (for instance, in electronic structure
calculations), DMC suffers from the so-called negative sign
problem, arising from the fact that the Fermionic GS has
positive and negative regions. The negative sign problem in the
DMC method for Fermions has been proven to be a
nondeterministic polynomial hard problem;14 thus, it seems
unrealistic to find a general solution at present. This problem is
avoided, in practice, by modifying the DMC projection
algorithm with the introduction of the FN approximation,
where the projected wave function ΦFN is constrained to have
the nodes of a predetermined guiding function ΨT. The FN
approximation keeps the projected wave function ΦFN
antisymmetric, but ΦFN is the exact GS Φ0 only if its nodes
are exact. A general property of ΦFN is that it is always the
closest function to Φ0 within the FN constraint. For trial
functions obtained from mean-field approaches, such as
Hartree−Fock (HF) or DFT, it is generally believed that the
error associated with the FN approximation is small and
benefits from a large error cancellation in the evaluation of
binding energies.8 However, the FN error is typically not
accessible, as Φ0 is unknown, and this yields an uncontrollable
error in FN-DMC.

In standard FN-DMC simulations, the nodal surface is given
by an approximate wave function, which is typically obtained
starting from a mean-field approach, such as HF or DFT. The
variational principle can still be applied to FN-DMC,a and so
to go beyond the mean-field solution, one should optimize the
given nodal surface by minimizing the FN-DMC energy EFN
(which is the expectation value of ΦFN), going in the direction
of the exact wave function Φ0 and the exact energy E0. This
procedure is seldomly followed in DMC simulations, especially
on large systems (say, with hundreds or thousands of
electrons), as it is hardly affordable computationally and the
uncertainty on the optimization of the FN surface could be
easily comparable, if not larger, than the binding energy under
consideration. Thus, the standard approach is to just keep the
nodal surface of the Slater determinant (SD) built with the
Kohn−Sham orbitals obtained from a DFT calculation. While
the FN surface from DFT might be suboptimal, this approach
typically yields quite reliable results, especially in the
evaluations of noncovalent interactions, due to very favorable
error cancellations.5,8

In smaller systems (with say, tens of electrons), it is possible
to improve the nodal surface, and the most standard approach

is to use an ansatz that has more degrees of freedom than the
initial SD, such as the antisymmetrized geminal power
(AGP),19−21 the Pfaffian,22−24 the complete active space,25,26

the valence bond,27,28 the backflow,23,29,30 and multideter-
minant expansions,31−38 including methods employing neural
networks and machine learning techniques.39−45 The standard
approach here is to optimize the wave function parameters at
the level of theory of variational Monte Carlo (VMC).19,46−50

Indeed, optimization at the FN-DMC (FN-opt) level implies
further difficulties, as we will discuss below. However,
optimization at the VMC (VMC-opt) level has some flaws.
In VMC-opt, the object that is optimized is the variational
wave function ΨT, which is obtained from the product of one
of the ansatzes discussed above and the Jastrow factor.b The
closer ΨT gets to the GS Φ0, the smaller its VMC energy
(variational principle) and its VMC variance (zero-variance
property) are. VMC-opt explores the parameters’ variational
space, seeking the set which minimizes the VMC energy or the
VMC variance, and it is often done by employing the VMC
gradient. It is not guaranteed that the parameters obtained
from VMC-opt are those giving the best possible nodal surface
allowed by the employed ansatz (unless we are in the limit case
where ΨT yields VMC with zero variance, such that we know
that ΨT is an eigenstate of the Hamiltonian). Although this
approach, in practice, gives a better nodal surface than the
DFT one, it sometimes gives unreasonable outcomes, e.g., it
overestimates binding energies, as revealed in this work. It
would be desirable, instead, to implement an optimization at
the FN-DMC level of theory, where the parameters of the
function ΨT giving the nodal surface are optimized so as to
minimize the FN energy. This would guarantee to find the best
nodal surface allowed by the adopted wave function ansatz. To
the best of our knowledge, the first attempt to directly optimize
the variational parameters included in a trial wave function at
the FN-DMC level was done by Reboredo et al.51 in the ab
initio framework. They proposed a way to iteratively generate
new trial wave functions to get a better nodal surface. They
generalized the method to excited states52 and finite temper-
atures53 and also applied for large systems such as C20.

54 Very
recently, McFarland and Manousakis55 reported successful
energy minimizations with approximated and exact FN
gradients. They proposed to optimize nodes using a
combination of FN gradients and the projected gradient
descent (PGD) method. The PGD method works for Be, Li2,
and Ne using all-electron DMC calculations,55 while it has
been successful only for small molecules.

When it comes to optimizing the nodal surface of a large
system, the main problem is that the number of variational
parameters determining the nodal surface often scales more
than linearly with the size of the system. For instance, the
number of variational parameters in the determinant part of
the AGP ansatz scales with O(L2), where L is the number of
basis functions in a system. It makes the parameter space to be
optimized so complex that the optimization is easily trapped in
local minima and one cannot find the true GS. Moreover, since
the optimization algorithms are stochastic, there is always an
additional uncertainty on the optimized parameters, which are
not going to be exact and the corresponding DMC energy has
therefore an optimization bias. The optimization bias increases
with the system size and with the number of variational
parameters and can be reduced only at the cost of increasing
the statistical sampling (and the computational cost). The
evaluation of binding energy implies the difference between
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two or more DMC energies, and it is often a tiny fraction of
the total energy. Therefore, the optimization uncertainty can
often be comparable to the binding energy, making the
evaluation of the interaction energy unreliable. Moreover, we
need to verify that the adopted approach satisfies basic physical
properties, such as being size-consistent.c At the VMC level,
the size consistency is a property of the wave function ansatz
employed, and it depends on the optimization procedure. At
the FN-DMC level, size consistency might depend on some
choices on the algorithm,56 on the ansatz of the wave function
providing the FN constraint, and on the optimization.

In this paper, we propose a scheme which aims to address
these issues. In particular, our scheme satisfies the following
points: (i) it is systematically more accurate than the standard
approach of employing a single SD, (ii) it is size-consistent,
and (iii) it is applicable also to large systems. The idea
underlying the present work is the combination of the AGP
wave function consisting of molecular orbitals (MOs), dubbed
AGPn,21 the use of natural orbitals (NOs), and the
optimization of its nodal surface using FN gradients on a
selected subset of the AGPn parameters. In particular, we
initialize the orbitals in the AGPn wave function using NOs,
which are kept fixed afterward, such that only the coefficients
combining them are optimized to relax the nodal surface. We
call this scheme the fixed node antisymmetrized geminal power
active space (FNAGPAS). Since the orbitals are fixed, this
results in a much smaller number of variational parameters in
the ansatz; thus, one can apply it for larger systems, such as C60
fullerene. We show that our scheme gives a better nodal
surface (i.e., a lower energy in the FN-DMC calculation)
compared to the typical Slater−Jastrow ansatz, and it reliably
describes also strongly correlated systems (such as diradicals).
We show that the use of FN-opt is important to fulfill the size-
consistency property.

2. FNAGPAS SCHEME
We describe here the scheme that we suggest to improve the
accuracy of FN-DMC over the traditional single-determinant
Slater−Jastrow ansatz. The key idea is the combination of the
AGPn,21 which is the AGP wavefunction constraint with MOs,
and the optimization of the ansatz using approximated FN
gradients.55 We describe the ansatz in the following section,
assuming an unpolarized system for simplicity. The schematic
illustration explaining the key concept and its workflow is
shown in Figure 1.

The real-space quantum Monte Carlo (QMC) typically
employs a many-body wave function ansatz Ψ written as the
product of two terms, ΨQMC = ΦAS × exp J. The term exp J,
conventionally dubbed Jastrow factor, is symmetric, and the
term ΦAS is antisymmetric. The Jastrow factor is explicitly
dependent on electron−electron distance and often includes
electron−nucleus and electron−electron−nucleus terms.d The
nodal surface of a wave function is determined by the
antisymmetric part ΦAS (because exp J ≥ 0). Thus, in FN-
DMC, the accuracy of the results depends crucially on the
quality of the nodes of ΦAS.

The antisymmetric part of a trial wave function is initially
constructed from a mean-field self-consistent-field (SCF)
approach, such as DFT or HF. The standard QMC setup in
large systems is to define ΦAS as the single SD obtained from
such preliminary SCF calculations. The corresponding ΨQMC is
dubbed JSD. Therefore, the nodes of JSD are predefined
before any QMC calculation and unrelaxed. Initializing the SD
using different setups for the SCF calculations (e.g., different
exchange−correlation functionals) leads to slightly different
total energies, but most of the times, the interaction energies
(which are evaluated from energy differences between two or
more systems) are almost unaffected by the details of the
preliminary SCF calculation, especially for weak noncovalent
interactions. This is an indication that there is an almost
perfect cancellation of the error induced by the FN

Figure 1. Panel a: Schematic illustration of the FNAGPAS scheme. We perform a preliminary mean-field calculation to obtain MOs, followed by a
correlated calculation yielding NOs. The AGPn ansatz corresponds to a multideterminant expansion built on the NOs and depending on the
coefficients λi associated with each orbital i and optimized in order to minimize the FN energy. Panel b: Flowchart illustrating the FNAGPAS
scheme workflow.
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approximation within the JSD ansatz, provided that the SD is
initialized consistently in all systems.

However, changing the setup of the SCF calculation only
allows the nodes to move within the variational freedom of a
single SD. By contrast, giving ΦAS the variational freedom to
relax the nodes beyond the JSD ansatz leads to an
improvement of the FN-DMC total energy of the system,58

and possibly, also the interaction energies could change. The
challenge that we take here is to generalize the ansatz in a way
that large systems are still doable.

Here, we suggest to use the AGP ansatz as ΦAS. AGP is an
implicitly multideterminant ansatz,56,59 which corresponds to a
constrained zero-seniority expansion, as illustrated schemati-
cally in Figure 1. The evaluation of an AGP function can be
reduced to the computation of a determinant; therefore, the
AGP ansatz is computationally comparable to an SD
(differently from explicitly multideterminant functions), thus
ensuring the cubic scaling with the system size of both the
variational and FN algorithms.e The AGP ansatz for a system
of Nel electrons is

= [ ]g g gx x x x x x( , ) ( , )... ( , )N NAGP 1 2 3 4 1el el (1)

(we are assuming for simplicity an unpolarized system with an
even number of electrons, but the ansatz can be generalized as
discussed in ref 19), where is the antisymmetrization
operator and the function g is the geminal function

=g fx x r r( , ) ( , )1 2 1 2
(1) (2) (1) (2)

2
, which is a pairing func-

tion between two electrons with coordinates x1 and x2 forming
a spin singlet. The spatial part f(r1, r2) is symmetric, and it can
be written in terms of a basis set {χμ} for the single-electron
orbital space as follows:

=f cr r r r( , ) ( ) ( )
L L

1 2 1 2
(2)

where μ and ν run over all the L basis orbitals and cμν are
variational parameters. Notice that in general, L ≫ N, and the
number of variational parameters cμν is equal to L2. The
parameters define a L × L symmetric matrix C (the symmetry
of f implies cμν = cνμ), so there is an orthogonal transformation
U which diagonalizes C and allows rewriting f as

=f r r r r( , ) ( ) ( )
L

1 2 1 2
(3)

where ϕμ = ∑νUμνχν. With no loss of generality, we can
assume that λs are ranked in a decreasing order of their
absolute value. Notice that if only the first Nel/2 λs are
different from zero, then ΨAGP corresponds to a single SD built
on the orbitals , ..., N1 /2el

occupied with both spin-up and
spin-down electrons. Since such an SD built on orbitals from
an SCF calculation is the standard QMC setup, and it typically
delivers good results, we tried to relax the nodes by considering
a subset norb (larger than Nel/2 but ≪ L) of the orbitals
obtained from the SCF calculation. This is what we call the
AGPn ansatz.

For efficient and effective use in QMC, the AGP and AGPn
functions shall be multiplied by a Jastrow factor, yielding the
so-called JAGP and JAGPn functions. The Jastrow factor can
have the same variational form used also in JSD, which allows
for the JSD, JAGP, and JAGPn functions to satisfy the cusp

conditions and to effectively recover the dynamical correla-
tions. Indeed, the main improvement of JAGP and JAGPn over
JSD is their ability to capture static correlations, yielding to
qualitatively different results on systems with an underlying
multireference character, both at the variational and at the FN
level of theory.56,59 The optimization of the parameters in the
Jastrow is usually quite a feasible problem also on large
systems, as their number does not grow uncontrollably with
the size of the system. In practice, every QMC code
implements a slightly different functional form of the Jastrow,
but they share the general features mentioned above. The
QMC code used in this work is TurboRVB,57 an open-source
package. The Jastrow factor implemented in TurboRVB
(described in ref 57) has a number of parameters growing
linearly with the size of the system (as shown in the Results
and Discussion section).

In this work, we keep the orbital frozen and optimize the
coefficients λ1, ..., λn dorb

of the JAGPn ansatz using FN-DMC
gradients. A similar idea, but at the variational level, was also
mentioned in a seminal work by Casula and Sorella to describe
the BCS pairing function in iron-based superconductors.60

JAGPn dramatically reduces the number of variational
parameters with respect to the JAGP ansatz, such that the
optimization of the JAGPn function is doable even in pretty
large systems, in contrast to JAGP which is affordable only on
relatively small systems. Nevertheless, employing JAGPn
significantly improves the FN-DMC energy (as well as the
variational QMC energy) over the results within the traditional
JSD function, as we will show in the results section. Of course,
the JAGP ansatz has higher variational freedom than JAGPn,
so JAGP can in principle improve further over JAGPn.
However, in practice, we observe that FN-DMC energies
obtained from the JAGP ansatz are comparable to those
obtained from JAGPn on small systems (and both JAGP and
JAGPn are significantly better that JSD), while, in large
systems, JAGP is unaffordable because the optimization can be
stuck at local minima at the variational level and can become
unstable at the FN level. The latter instability is probably due
to insufficient signal-to-noise ratios61 that the QMC
optimization always suffers from, but the origin of the
instability is yet unclear. On intermediate systems, we notice
that JAGP FN-DMC energy is worse than the JAGPn FN-
DMC energy, as a clear indication that despite the higher
variational freedom on JAGP, the optimization of that many
parameters is not converging and there is too much noise on
the parameters.

The main problem of the AGP ansatz (and AGPn) is that it
is not size-consistent at the variational level of theory, but
JAGP (JAGPn) is size-consistent if we employ a very flexible
Jastrow factor.62,63 Since the FN-DMC corresponds to
applying an infinitely flexible Jastrow factor to the determinant
part, optimizing the AGPn parameters at the FN level ensures
the size consistency of our approach.

A crucial point to make JAGPn almost as accurate as JAGP,
despite employing only a small number norb of parameters λs, is
to carefully choose the orbitals. We notice that the virtual
orbitals obtained from SCF calculations are typically not
optimal, as we need a large number of them (of the order of L)
to converge to the best JAGPn FN energy. Moreover, if we
cannot afford a systematic test of the convergence of norb for
each system of interest, it is difficult to define a sensible
criterion to decide which norb to pick. We solved both the
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problems by employing NOs for expanding the pairing
function, instead of using MOs. NOs were constructed from
second-order Møller−Plesset (MP2) calculations. This is
because the MP2 unoccupied orbitals incorporate perturbation
effects and are physically better than those obtained with HF
or DFT,64 as shown in the Supporting Information. More
specifically, we constructed NOs by diagonalizing the density
matrix obtained by MP2 calculations. We also notice that a
method to construct NOs should be affordable also for large
systems. This is also a reason why we chose MP2 for
constructing NOs in this study. In practice, from the weight of
the NOs, we can easily define a cutoff value to select norb on
each system, and we notice that we get to converged results
already with a value of n that is not much larger than Nel/2
(norb = Nel/2 would correspond to a single SD).

3. COMPUTATIONAL DETAILS
We applied our scheme to planar and twisted ethylenes, eight
hydrocarbons (CH4, C2H4, C2H6, C6H6, C10H8, C14H10,
C18H12, and C20H10), the C60 fullerene, and water−methane
dimer (see Supporting Information for their coordinates). The
number of valence electrons treated in this study is 12, 12, 8,
12, 14, 30, 48, 66, 84, 90, 240, and 16, respectively. The MP2
calculations (HF and DFT calculations for comparison) to
generate nodal surfaces of trial wave functions were performed
using PYSCF v.2.0.1.65,66 The trial wave functions were
converted to the TurboRVB wave function format using
TurboGenius67 via TREXIO68 files. We employed the cc-
pVQZ basis set accompanied by the ccECP pseudopotentials69

for the eight hydrocarbons and C60 fullerene, while the cc-
pVTZ basis set accompanied by the ccECP pseudopotentials69

for the water−methane and for the torsion calculation of
ethylene. We employed [3s], [3s1p], and [3s1p] primitive
Jastrow basis for H, C, and O atoms, respectively. The Jastrow
factor and the weights of the NOs in the pairing function (i.e.,
the nodal surface of a wave function) were optimized using the
stochastic reconfiguration method70 implemented in Tur-
boRVB57 with an adaptive hyperparameter.71 The Jastrow
factor was optimized only with VMC gradients, and it was held
fixed during optimization with FN gradients. The FN gradients
were computed from a standard walker distribution using
mixed estimators, which corresponds to method A in ref 55.
The lattice-discretized version of the FN-DMC calculations
(LRDMC)72,73 was used in this study. The single-shot
LRDMC calculations were performed by the single-grid
scheme72 with lattice spaces a = 0.30, 0.25, 0.20, and 0.10
Bohr, and the energies were extrapolated to a → 0 using f(a2)
= k4·a4 + k2·a2 + k0. The LRDMC calculations for computing
those gradients were performed by the single-grid scheme72

with lattice space a = 0.20 Bohr. The determinant locality
approximation (DLA)18 was employed for the LRDMC
calculations.f We notice that the LRDMC framework
guarantees the variational principle even with the presence of
nonlocal pseudopotentials, as proven in the Appendix. The
molecular structures are depicted using VESTA.74

4. RESULTS AND DISCUSSION
4.1. FNAGPAS Captures Strong Correlation. We show

that the proposed FNAGPAS is able to incorporate the
correlation effect that the JSD ansatz cannot do at all. We apply
our scheme for the torsion energy estimation of ethylene
(C2H4). The torsion energy is defined as the energy difference

between the GS ethylene structure (denoted as planar
ethylene) and the orthogonally rotated ethylene structure
(denoted as twisted ethylene), which are both shown in the
inset of Figure 2. Here, we consider only the singlet states for

both configurations. It was shown59 that the JSD ansatz cannot
describe the torsion energy correctly since the ansatz cannot
consider the static electronic correlation of the twisted
ethylene, which has a diradical character. This is true both at
the variational and at the FN level of theory.59 The lack of
reliability in the FN results based on a JSD ansatz indicates
that projection schemes cannot recover strong correlation if
the FN constraints are given from a wave function with
qualitative issues, due to the constraint on the projection
coming from the trial wave function. Thus, the way to improve
the quality of the FN results is to adopt a more general ansatz,
able to improve the nodes of the trial wave function and
enhance the reliability of FN estimations.

The planar ethylene has an electronic structure characterized
by a highest occupied MO (HOMO) of type π and a lowest
unoccupied MO (LUMO) of type π*, and the HOMO−
LUMO gap is finite. A single SD having two electrons of unlike
spin on the HOMO and no electrons on the LUMO captures
qualitatively well the nature of the wave function and there is
no static correlation. However, when the molecule is twisted,
the HOMO−LUMO gap decreases because the overlap
between the p orbitals (orthogonal to the plane of the
−CH2 atoms) of the two carbons decreases. At a torsional
angle of 90° (i.e., twisted ethylene), the two p orbitals become
orthogonal and the frontier orbitals become degenerate,
forming two singly occupied MOs. We can define three
independent (orthogonal) wave functions having two electrons
on two degenerate orbitals forming a spin singlet, a diradical,
and two zwitterionic states.75 Their wave functions imply the
use of more than one SD, i.e., their electronic structure shows
strong correlation. Thus, a multireference ansatz is needed to
correctly describe the diradical character of the orthogonally
twisted ethylene.59

Figure 2. Torsion energy of ethylene from FN-DMC with JSD,
JAGPn or JAGP wave functions. The values of JAGP and MR-CISD +
Q (horizontal broken line) are taken from refs 59 and 76, respectively.
The inset shows the structure of the planar and twisted ethylene.
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Figure 2 shows the torsion energies of ethylene computed
with the JSD ansatz with an HF nodal surface and the same
energies computed with the JAGPn ansatz with HF MOs,g

whose weights are optimized using DMC gradients. As a
comparison, we also show results obtained with the full JAGP
ansatz optimized using VMC gradients, which was taken from
ref 59. The reference value in Figure 2 is taken from ref 76, and
it is computed using MR-CISD + Q.h The JSD ansatz gives
133.1(4) kcal/mol for the torsion energy, which is far from the
reference value obtained by MR-CISD + Q (i.e., 69.2 kcal/
mol76). Our JAGPn ansatz gives an FN energy of 73.0(4) kcal/
mol for the torsion energy, which is close to the reference
values. This result demonstrates that the JAGPn ansatz
optimized using FN gradients correctly describes the diradical
character of the orthogonally twisted ethylene, something that
the JSD ansatz cannot do.
4.2. Application of FNAGPAS to Small and Large

Systems.We now show that the FNAGPAS scheme leads to a
systematic improvement over the traditional JSD ansatz in
molecular systems of increasing size, showing an accuracy in
line with the full JAGP ansatz (and better on systems where
the optimization error for the JAGP ansatz is large), while
being affordable on much larger systems. We consider the eight
hydrocarbons and the C60 fullerene, represented in Figure 3.

Figure 4 (top panel) shows the energy gain in the LRDMC
total energies (a → 0) by the nodal-surface optimizations of
JAGP and JAGPn over the traditional JSD ansatz (with the
nodal surface taken from the DFT LDA calculations). Our
proposed FNAGPAS scheme (JAGPn ansatz optimized using
FN gradients) shows positive gains for all molecules, indicating
that the nodal-surface optimizations improve the nodes of the
SD obtained from DFT. Therefore, there is a systematic
improvement in the description of the correlation energy. The
energy gain scales linearly with the number of electrons in the
system. The traditional JAGP ansatz (optimized using VMC
gradients) was computationally affordable only on the four
smallest systems, due to the rapid increase of the number of
variational parameters (see the bottom panel in Figure 4),
which makes the optimization unstable or not converging. In
addition, we could only use VMC-opt for the JAGP ansatz
because FN-opt is not stable. This highlights an additional
crucial advantage of FNAGPAS over the traditional JAGP

approach. In the four systems where we have both the
traditional JAGP and the FNAGPAS results, the latter is
equivalent to the former on ethane, and it recovers more
correlation energy in methane, ethylene, and benzene. Larger
systems were computationally unaffordable with JAGP, while
JAGPn optimization remains feasible both at the variational
and at the FN level. In fact, FNAGPAS has been successfully
performed up to C60 fullerene. The gain in C60 is ∼2 meV/
valence electron, as shown in the inset of Figure 4. This is a
reasonable value, considering a previous study by Marchi et al.
reporting ∼3 meV/valence electron for the finite-size graphene
calculations with the same atoms as the C60.

77

Let us consider more closely the medium-size molecules.
Figure 4 shows that the gains of JAGPn (optimized with FN
gradients) are larger than those of JAGP (optimized using
VMC gradients) in spite of the compactness of the AGPn
ansatz. In fact, the number of variational parameters in the
benzene molecule is 86 for the JAGPn ansatz and is 17,629 for
the JAGP ansatz. Moreover, JAGP is a generalization of
JAGPn. Therefore, one could naively expect that the larger the
number of variational parameters, the lower the energy. Here,
we observe an exception to this expectation. For this point, we
recall that the calculations reported in Figure 4 are obtained
with a quite small Jastrow factor, employing a [3s1p] basis set
for C atoms and a [3s] for H atoms. This is because we target
large systems with FNAGPAS, for which the use of large
Jastrow factors is unaffordable. It has been reported that an
incomplete Jastrow factor leads to misdirection of the nodal
surface within the variational optimization of the JAGP ansatz
in the square H4.

78 To confirm if this is the case in the present
calculations, we performed additional calculations with a larger
Jastrow factor in the JAGP ansatz calculations (i.e., a basis set
of [4s3p1d] and [3s1p] for C and H atoms, respectively) and
obtained that the larger Jastrow factor leads to a much larger
energy gain than that obtained with the JAGP ansatz with a
small Jastrow [see results in the Supporting Information
(Table S-I and Figure S-I)]. The result indicates that the small
Jastrow factor leads to misdirection of the nodal surface of the
JAGP ansatz also in this study. On the other hand, Figure 4
demonstrates that the FNAGPAS scheme works even with a
small Jastrow factor and a minimal number of parameters in

Figure 3. Molecular systems considered in this work, whose FN energy has been computed with the traditional JSD ansatz and with the JAGPn
ansatz (within the FNAGPAS scheme) discussed in this work. The energy gain (i.e., the improvement of the FNAGPAS scheme over the traditional
scheme which employs the JSD ansatz) and the number of variational parameters in the wave function for each system are shown in Figure 4.
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the antisymmetric part, making the approach applicable to
larger systems.

As mentioned in the method part, see Section 2, the two
main features over which FNAGPAS is built are (1) the AGPn
ansatz and (2) the optimization of its nodal surface using FN

gradients. To reveal which of the two is more crucial for the
success of the method, i.e., the ansatz or the gradient, we tried
the following combinations: (i) JAGPn with VMC-opt; (ii)
JAGPn with FN-opt, (iii) JAGP with VMC-opt; and (iv) JAGP
with FN-opt. Note that (ii) corresponds to FNAGPAS. The
scheme (iv), unfortunately, is not possible as the JAGP has too
many parameters and the FN optimization becomes unstable.
Results obtained with schemes (i−iii) are reported in the
Supporting Information (Table S-I and Figure S-I). We
observe that scheme (ii) gives the best gains. Scheme (i) gives
gains close to (ii), and they both are much better than (iii).
Thus, it appears that freezing the orbitals to those obtained by
a mean-field approach plays a crucial role in avoiding
misdirection of the node optimization.
4.3. FNAGPAS Scheme Is Size-Consistent. We have

shown that the AGPn ansatz is able to gain correlation energies
at the FN level using very few variational parameters. In
addition to their role in improving the nodal surface, FN
gradients also appear to be crucial when calculating binding
energies of molecules, preserving size consistency. As shown in
Table 1 and discussed hereafter for the particular case of the

water−methane dimer, this is not the case when VMC
gradients are used. Therefore, when calculating binding
energies of molecules, the use of VMC gradients in the
JAGPn ansatz gives incorrect results, while the use of FN
gradients plays a crucial role in it.

Table 1 contains the binding energies of the methane−water
dimer computed with the JSD ansatz, with the JAGPn ansatz
optimized using either VMC or FN gradients (the FNAGPAS
approach), and with the JAGP ansatz optimized with VMC
gradients. The binding energy is evaluated as the energy
difference between the dimer and the sum of the energies of
the two molecules: Eb = Ewater−methane − Ewater − Emethane. The
reference value for the binding energy of the water−methane
dimer, −27 meV, was computed by CCSD(T) implemented in
the ORCA

79,80 program.i We chose the CCSD(T) value as a
reference because the bounded water−methane dimer is not a
strongly correlated system, thus CCSD(T) should describe the
binding energy correctly. In this system, the JSD ansatz gives a
binding energy of −27(2) meV, which is in good agreement
with the CCSD(T) values of −27.0 meV. Thus, a new DMC
approach with nodal-surface optimization should lower the
value of the total energies but should not affect the energy
differences. The FNAGPAS scheme, which optimizes the
JAGPn parameters with the FN gradients, behaves as expected,
yielding a binding energy of −29(2) meV, still in good
agreement with the reference value. However, this is not the
case for the JAGPn ansatz optimized with the VMC gradients,

Figure 4. Top panel shows the improvement, dubbed energy gain, of
the JAGP (red) and JAGPn (blue) ansatz with respect to the
traditional JSD ansatz for each of the considered systems, as a
function of the number of valence electrons. The energy gain is the
difference between FN energy of the JSD ansatz and the JAGP (or
JAGPn) ansatz. The bottom panel shows the number of parameters in
the Jastrow factor, in the JAGP, and in the JAGPn wave functions.
The dashed lines show the linear (gray for JSD and cyan for JAGPn)
and quadratic (orange for JAGP) fitting curves.

Table 1. FN Binding Energy Eb and Size-Consistency
Energy Error ESCE, Computed with LRDMC a → 0, as
Obtained with the JSD, JAGPn, and JAGP Wave Functionsa

ansatz nodes opt Eb (meV) ESCE (meV)

JSD −27(2) −1(1)
JAGPn VMCopt −46(2) 10(2)
JAGPn FNopt −29(2) −2(2)
JAGP VMCopt −41(3) 11(3)
CCSD(T) −27 0

aFor JAGPn, we consider both the case of using VMC and FN
gradients to optimize the nodal surface. The latter is the scheme
dubbed FNAGPAS in this work.
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which gives Eb = −46(2) meV, or for the JAGP ansatz (with
VMC optimization), which gives Eb = −41(3) meV.

We can interpret the deterioration of the binding energy as
follows: binding energies are computed from relative energies
among two or more molecules; thus, the accuracy relies on its
error cancellation. The error cancellation in DMC was
reviewed and discussed by Dubecky ́ in 2016.8 Their conclusion
is that one can rely on error cancellation as long as one keeps
the constructions and optimizations of the corresponding wave
functions as systematic as possible. Indeed, this cancellation
works when the nodes are kept at the same systematic accuracy
at every step of the trial wave function constructions. In fact,
for the water−methane dimer calculations in this study, our
JSD ansatz fully satisfies the size consistency and gives
satisfactory binding energy, which means that the error
cancellation works with the DFT nodal surfaces. In this
study, we found that error cancellation was deteriorated by the
nodal-surface optimizations using the VMC gradients while
recovered by those using the FN-DMC gradients. When one
computes the binding energy of a complex system, one usually
uses the same Jastrow basis sets for each element in the
complex and the isolated systems. The use of the same Jastrow
basis sets does not guarantee the same contribution to the total
energy of both the complex and the isolated systems at the
VMC level. Indeed, during the nodal-surface optimization at
the VMC level, the incomplete Jastrow factor affects the nodal
surface differently between the complex and isolated systems;
thus, the resultant nodal surface gives the incorrect binding
energy. The recovery should be because FN-DMC is a
projection method to relax the amplitude of the AGPn ansatz,
which corresponds to adding an unlimited flexible Jastrow
factor to a given ansatz.

The Jastrow incompleteness is also related to the
deterioration of the size consistency for JAGPn and JAGP
with VMC optimization. The size consistency is a property
that guarantees the consistency of the energy behavior when
the interaction between the involved molecular system is
nullified (e.g., by a long distance). If the size consistency is
fulfilled, the energy of the far-away system should be equal to
the sum of the energies of the two isolated molecules. The last
column in Table 1 shows the difference in energies of the far-
away water−methane complex (at a distance of ∼11 Å) and
the sum of the isolated molecules, which can be considered the
size-consistency error and is here dubbed ESCE. The JSD ansatz
is size-consistent, as expected.81 The table clearly shows that
the size consistency is deteriorated by the optimization using
VMC gradients, i.e., the difference between the isolated and
far-away energies is finite. In contrast, the size consistency is
perfectly retrieved by the optimization using FN gradients.
Neuscamman63 pointed out that the deterioration of the size
consistency comes from an incomplete Jastrow factor. More
specifically, the real-space three/four-body Jastrow factor,
which was employed in the present study, cannot completely
remove the size-consistency error unless we use unlimited
flexibility in the Jastrow.63 To solve the problem, Goetz and
Neuscamman proposed the so-called number-counting Jastrow
factors that can suppress the unfavorable ionic terms and is
able to solve the size-consistency problem82,83 within the VMC
framework. In this regard, our proposed scheme can be
interpreted as an alternative approach because, again, FN-
DMC is a projection method to relax the amplitude of the
AGPn ansatz, which corresponds to adding an unlimited
flexible Jastrow factor to a given ansatz.

4.4. Discussion. First, we compare our approach with
others that also target to go beyond the single-reference FN
approximation. A well-established strategy is to use the
multideterminant ansatz, which has witnessed numerous
successes so far.84−92 The multideterminant approach offers
the advantage of systematic improvement by increasing the
number of SDs. Nonetheless, the number of SDs for a
comprehensive representation exponentially scales with system
size, imposing substantial computational demands for large
systems. Therefore, this method has mainly been applied to
small molecular systems.84−86 However, there have been
successful efforts to reduce the number of required
determinants by neglecting less important ones87,88 using, for
instance, the configuration interaction using a perturbative
selection made iteratively (CIPSI), which mitigates the
exponential character of the multideterminant approach in
practice.90,92 Recently, Benali et al. successfully applied the
multideterminant approach for solids with more than a
hundred electrons by combining the CIPSI technique with a
restricted active space built using NOs,91 which is a similar
idea as we present in this study. Indeed, they demonstrated
that one can go beyond the single-reference nodal surface in
large systems by the multideterminant approach in practice,
though its naive asymptotic scaling is exponential. The
multideterminant approach is becoming as practical and
promising as the single-determinant approach.

Concerning the actual computational costs of our proposed
methods, the choice of ansatz (i.e., JSD or AGPn) does not
significantly affect the cost of wave function optimization,
while the choice of gradients does. For instance, for C60,
Jastrow optimization with the JSD ansatz and Jastrow + nodal-
surface (i.e., weights of NOs) optimization with the JAGPn
ansatz using VMC gradients require 11.9 and 43.6 core hours
per optimization step with ∼7 mHa accuracy on the total
energy evaluation at each optimization step, respectively.j

However, if one uses FN gradients for wave function
optimization, one needs more computational time. For
instance, for C60, the nodal-surface (i.e., weights of NOs)
optimization with the JAGPn ansatz using FN gradients with a
= 0.20 au requires 195.3 core hours per optimization step with
∼7 mHa accuracy on the total energy evaluation at each
optimization step. Thus, our FNAGPAS scheme using FN
gradients shows the same scaling of the number of variational
parameters as the single-reference FN DMC with JSD ansatz,
while it increases the prefactor of computational cost.

Based on the results obtained in this work so far, we finally
discuss how to improve a Fermionic ansatz in ab initio QMC
calculations, in general. Recently, there have been many
successful reports about machine-learning-inspired ansatz with
a huge degree of freedom in describing electronic and spin
states, such as deep neural networks,93 restricted Boltzmann
machines,94−96 and transformers,97 which are utilized as ansatz
of wave functions to solve the Schrödinger equation with
lattice Hamiltonians. Also, in the ab initio community, ansatzes
using deep neural networks have been successfully applied for
realistic problems, such as PauliNet,42 FermiNet,39 and
others.40,41,43−45 In light of the present results, let us consider
exploiting an ansatz with a huge degree of freedom (i.e., many
variational parameters) in ab initio QMC calculations to
pursue an exact Fermionic GS. If we stop at the VMC level, we
may apply such a flexible ansatz to Jastrow factors, the
determinant part, or both parts, and it is expected that the
larger the degree of freedom an ansatz has, the larger the
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energy gain should be. However, improvements at the VMC
level do not necessarily lead to improvements at the FN level,
especially if the determinant part is optimized at the variational
level. A variational optimization improves the overall shape of
the trial wave function ΨT, while the nodal surface might not
be as optimized as the ΨT. In this work, indeed, we have seen
how the JAGPn ansatz optimized at the FN level leads to much
better results than the JAGP ansatz optimized at the VMC
level, despite the latter having many more variational
parameters and it is much better at the VMC level. Moreover,
we also observed how the JAGPn (and JAGP, for that matter)
ansatz itself yields a size-consistency error at the FN level if the
parameters are optimized at the VMC level, while the same
ansatz with parameters optimized at the FN level is not
affected by this issue. Thus, caution should be used when
employing these new highly flexible machine-learning-based
wave function parameterizations, as it is not guaranteed that
improvements in the VMC energy are reflected in improve-
ments in the FN energy in a consistent way. Basic physical
properties, which were present in the most standard wave
functions (such as the JSD), might not appear in the fancier
approaches, similar to the mentioned problem of size
inconsistency in JAGP and JAGPn.

5. CONCLUSIONS AND PERSPECTIVES
In this study, we propose a method for variational optimization
of the AGP wave function expressed in terms of NOs, with
pairing coefficients optimized using FN gradients. Within our
scheme, the variational parameter space increases only linearly
with the system size, as opposed to the quadratic scaling of the
standard parameterization of AGP, with the result that our
proposed method allows the optimization of the nodal surfaces
for large systems, which has been difficult to achieve with
conventional approaches. In addition to demonstrating that
our scheme can be applied to systems as large as C60, we
showed that our scheme also achieves better (i.e., lower) DMC
energies than the single-reference FN DMC calculations.
Moreover, we have shown that our approach is size-consistent
and can be used to estimate binding energies.

We showed that the Jastrow incompleteness affecting nodal-
surface optimizations can be mitigated by using FN gradients
combined with the JAGPn ansatz. However, in this study, we
did not investigate the effect of the basis set incompleteness on
the determinant part (i.e., nodal surface). The basis set
incompleteness is believed to be less severe in QMC
calculations than in quantum chemistry methods because the
Jastrow factor (at the variational level) or the projection (at the
FN level) mitigates its error. However, to the best of our
knowledge, no one has seriously investigated the error so far.
Considering binding energy calculations done by DMC
reported so far,8 the basis set incompleteness should have a
small effect on small molecules, but it should be carefully
considered when studying large molecules using DMC done
with localized basis sets. This is one of the intriguing future
works for applying the single-reference DMC and our
proposed methods to large systems.

■ APPENDIX

Proof for the Variational Principle of the LRDMC
Optimization with DLA
As pointed out in seminal works by Casula et al.,72,98 the use of
a pseudopotential that has the so-called nonlocal term induces

an additional sign problem in the standard DMC approach
with the LA; thus the variational principle, which justifies the
energy minimization strategy, is deteriorated. Instead, one of
the advantages of the LRDMC is that the use of
pseudopotentials does not deteriorate the variational princi-
ple;72 thus, the energy minimization is justified. Recently, we
implemented the DLA18 into the TurboRVB package. In this
study, we combine the DLA with the LRDMC framework
implemented in the TurboRVB package. We prove here that
the variational principle holds also in the LRDMC with the
DLA. This proof is inspired by the proof by Haaf et al.99 that
the lattice Green’s function Monte Carlo method is variational.

In LRDMC calculations with the DLA, the effective
Hamiltonian (i.e., the FN Hamiltonian) reads
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by which the original term in the LRDMC approach,
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that all x′ (≠x) satisfy ΨT(x′)Hx,x′ΨT(x) > 0. Here, we omit
the lattice-space dependency of the Hamiltonian (i.e., H ≡ Ha)
because one can extrapolate energies to the a → 0 limit. Notice
that we assume that a trial wave function can be decomposed
into the Jastrow and determinant parts, i.e., ΨT = JTDT. We
also notice that
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since the Jastrow factor does not affect the sign of a wave
function. We define the following notations:
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where |ΦFN⟩ is the FN GS of ĤFN. In the following, we will
show that the following equations hold:

=E E E EMA FN 0 (9)

The first equality (EMA = EFN) holds because |ΦFN⟩ is the exact
GS of HFN (i.e., ĤFN|ΦFN⟩ = EFN|ΦFN⟩). This is also true with
the nonlocal terms of pseudopotentials. Now, we define the
difference between the effective FN energy obtained with the
effective Hamiltonian ĤFN and that obtained with the true
Hamiltonian Ĥ:

= | |E E E H HFN FN
FN

FN (10)
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We want to prove that ΔE ≥ 0 for the FN state and that the
equality holds for ΦFN = ΨT = Ψ0, where we denote Ψ0 as the
exact wave function of the original Hamiltonian Ĥ, i.e.,

| = |H E0 0 0 . Hereafter, we will do the same exercise
written in ref 99. We define the difference between the
effective FN energy obtained with the effective Hamiltonian
HFN and that obtained with the true Hamiltonian H:

= | |
= | |

E E E

H H
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FN

FN
FN

FN

FN
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where we define a truncated Hamiltonian Htr and a spin-flip
Hamiltonian Hsf by

= +H H Htr sf (12)

and
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Indeed, the matrix elements are

=

=

>

l
m
ooooooo

n
oooooo

H

H x x

x x x H x

H x x

for

0 for if ( ) ( ) 0

for otherwise

x x

x x

x x

x x

,
tr

,

T , T

, (14)

and

=
=

>

l
m
ooooo

n
ooooo

H

x x

H x x x H x

x x

0 for

for if ( ) ( ) 0

0 for otherwise
x x x x x x,
sf

, T , T

(15)

ΔE can be written explicitly in terms of the matrix elements:
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where sf means that all x′ (≠ x) satisfy ΨT(x′)Hx,x′ΨT(x) > 0.
In this double summation, each pair of configurations (x, x′)
appears twice. Therefore, we can combine these terms and
rewrite it as a summation over the pairs:
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Notice that the Hamiltonian is Hermitian: Hx,x′ = Hx′,x. Since
all the pairs satisfy >H 0D x

D x x x
( )
( ) ,

T

T
, we obtain
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Then
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where sgn(x, x′) denotes the sign of Hx,x′. Finally, we get

= | |E H

D x
D x

x x x
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x x
x x

,
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FN
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(21)

indicating that ΔE is positive for any wave function ΦFN. Thus,
the GS energy of HFN is an upper bound for the GS energy of
the original Hamiltonian H (i.e., EFN ≥ E). Hereafter, we
consider the case that one uses the true GS Ψ0 for the
determinant of the trial wave function (i.e., ΨT = JT·Ψ0), to
prove that EFN = E holds with ΨT = JT·Ψ0 (i.e., DT = Ψ0): For
all the pairs (x, x′), Ψ0Hx,x′Ψ0 > 0 is satisfied, meaning sgn(x,
x′) → + and +x

x
( )
( )

0

0
or sgn(x, x′) → − and x

x
( )
( )

0

0
.

Thus, the above condition is fulfilled when the following
condition is satisfied:

=x
x

x
x

( )
( )

( )
( )

FN

FN

0

0 (22)

In the DLA approach, the spin-flip term is composed only of
the determinant of the trial wave function. Therefore, the FN
outcome with the DLA approach is not affected by the
presence of the Jastrow factor in the trial wave function (in the
a → 0 limit). Therefore, one gets ΦFN = Ψ0 with ΨT = JT·Ψ0.
Thus, ΔE = 0 is fulfilled with ΨT = JT·Ψ0, and the following
relations hold:

= = = ·E E E E J(with )MA FN 0 T T 0 (23)

meaning that the effective Hamiltonian H FN
and the true

Hamiltonian Ĥ have the same GS energy E0 and the same GS
ΦFN = Ψ0 with ΨT = JT ·Ψ0, where the final equality E = E0
comes from the usual variational principle.

In the DLA approach, we can update the trial wave function
ΨT such that EMA goes down according to the gradient ∂αEMA
or using a more sophisticated optimization scheme. As written
above, the equals EFN = E = E0 are met when ΨT = J ·Ψ0. It
implies that one can look for the true GS energy and wave
function by variation of the determinant part of the trial wave
function. Indeed, in the LRDMC calculations with the DLA,
one can access the mixed-average energy EMA and its derivative

EMA , where α⃗ is a set of the variational parameters. Since
EMA satisfies the variational principle, i.e., EMA ≥ E0, the
equality holds when ΨT = JT·Ψ0; as proven above, one can
update the determinant part of the trial wave function, DT,
such that EMA goes down, then, it is expected that DT finally
reaches DT → Ψ0 and EMA → E0.
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■ ADDITIONAL NOTES
aIn all-electron calculations, FN-DMC is always variational,
meaning that the lowest FN energy EFN is obtained when the
exact nodal surface is used, otherwise EFN > E0. When
pseudopotentials are employed, there are also nonlocal
operators in the Hamiltonian. This yields to a problem similar
to the sign problem, which requires a further approximation.
There are a few alternatives to deal with pseudopotentials in
DMC: the LA,15 the T-move (TM),16,17 the DLA, and the
determinant locality TM (DLTM).18 TM and DLTM are
variational, meaning that their energy (EFN,TM or EFN,DLTM) is
an upper bound of the exact GS energy E0.
bThe Jastrow factor correlates explicitly all pairs of electrons; it
is a symmetric positive function, so it recovers dynamical
correlation and it does not change the nodal surface.
cAn approach is size-consistent if the energy of a system
constituted by two or more noninteracting subsystems (e.g.,
two molecules far away) is the same of the sum of the energies
of the subsystems.
dSee ref 57 for details about the functional form of terms
implemented in the TurboRVB package used for this work.
eIt is generally claimed that the cost of FN-DMC scales as the
cube of the number of electrons Nel. This is true for
simulations where the antisymmetric part of the wave function
can be computed as a determinant and Nel up to roughly a
thousand. For larger systems, the cost for a MC step is N( )el

3

and therefore the cost of FN-DMC is quartic.
fThe use of DLA in LRDMC is equivalent to the DLTM18

scheme in standard DMC.
gThe HF orbitals obtained with the Fermi−Dirac smearing
method were used for the occupied and the virtual orbitals of
the JAGPn ansatz for the twisted ethylene because the HOMO
and LUMO should have the same energies. Note, in this case,
we did not use the NOs (introduced in the discussion above)
because this system is characterized by strong correlation
coming from the two frontier orbitals, which are easily derived
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already from the HF theory. Moreover, in the twisted ethylene
case, we allowed the optimization of the off-diagonal
coefficient of the AGP matrix that pairs the two frontier
orbitals.
hThe twisted ethylene is a prototypical example of a system
characterized by strong correlation where single-reference
perturbative approaches, such as CCSD(T), fail and multi-
reference approaches are needed.
iIn particular, we performed canonical CCSD(T) calculations
with the automatic basis set extrapolation implemented in
Orca (which assumes an exponential convergence for the HF
energy and a polynomial convergence for the correlation
energy) using Dunning correlation-consistent core-polarized
basis sets, cc-pCVnZ, with quadruple-ζ (n = Q) and quintuple-
ζ (n = 5) basis sets. We performed both estimations with and
without counterpoise correction, both yielding a binding
energy of −27.2 meV.
jWe measured the computational times on the Numerical
Materials Simulator at the National Institute for Materials
Science (NIMS) using 1536 cores [32 nodes × Intel Xeon
Platinum 8268 (2.9 GHz, 24 cores) × 2 per node].
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