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Abstract

The mammalian nucleotide-binding domain leucine-rich repeat containing (NLR, NBD-LRR or 

NOD-like receptor) family was reported over 20 years ago, although several genes later grouped 

in the family were already known. While it is widely known that NLRs include inflammasome 

receptors/sensors leading to the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive 

inflammation and cell death, the other functions of NLR family members are much less known 

to the scientific community. Examples include CIITA, a master transcriptional activator of MHC 

class II genes, which is the first mammalian NBD-LRR containing protein identified and NLRC5, 

which regulates MHC class I genes. Other NLRs regulate key inflammatory signalling pathways 

or interferon responses and several NLR family members serve as check points of innate immunity 

by serving as negative regulators. Multiple NLRs regulate the balance of cell death, cell survival, 

autophagy, mitophagy and even cellular metabolism. The least mentioned is a group of NLRs that 

play important non-immune functions to affect the mammalian reproductive system. The focus 

of this review is to provide a synopsis of the NLR family, both the intensively-studied and the 

underappreciated members. We will focus on their function, structure and disease relevance and 

include issues that have received less attention in the NLR field that may serve as an impetus for 

future research on their conventional and nonconventional roles within and beyond the immune 

system.

Introduction

The initial description of the human NLR family was preceded by the identification of 

a related family in plants (Fig. 1C). The plant nucleotide-binding sequence leucine-rich 

repeat (NBS-LRR)-containing proteins are the largest group of plant disease resistance (R) 

6.Co-corresponding author, michael_linhoff@med.unc.edu, jenny_ting@med.unc.edu. 

Competing Interests
J. Ting is a co-founder of IMMvention Therapeutix.

HHS Public Access
Author manuscript
Nat Rev Immunol. Author manuscript; available in PMC 2024 June 13.

Published in final edited form as:
Nat Rev Immunol. 2023 October ; 23(10): 635–654. doi:10.1038/s41577-023-00849-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteins1. These proteins contain a nucleotide-binding domain (NBD) and LRR domain with 

variable C- and N-terminal domains. The majority of plant NBS-LRR proteins have either a 

TIR (Toll/ IL-1 receptor) domain — referred to as TNLs (TIR-NBS-LRRs) — or coiled-coil 

(CC) domains — referred to as CNLs (CC-NBS-LRRs) — and these domains are considered 

important for protein–protein interaction. NBS-LRR proteins are critical for host defense 

against viruses, bacteria, nematodes, fungi, oomycetes and insects2,3.

In 2000, our group noted that similarities between NBS-LRR proteins, MHC class II 

transactivator (CIITA)4 [G] and nucleotide-binding oligomerization domain-containing 

protein 1 (NOD1, also known as CARD4) in terms of their nucleotide-binding domain 

(NBD) and LRR sequences and additionally noted the similarity in size and spacing of these 

domains5. Subsequently we identified a large family of 22 NBD-LRRs encoding human 

genes, with CIITA as the founding member6 (Fig. 1B and Fig. 2, Timeline). These genes 

were identified by BLAST homology searches of available genome sequences before the 

human genome was fully assembled. Family members have divergent N-termini, including 

the acidic transactivation domain of CIITA, baculovirus inhibitor of apoptosis repeat domain 

(BIR), pyrin domain (PYD) or caspase recruitment domain (CARD).

Several other research groups had parallel findings regarding NBD-LRR family members. 

Human neuronal apoptosis inhibitory protein (NAIP) was originally thought to be deleted 

in spinal muscular atrophy7, but the deletion was later attributed to a neighboring genetic 

region. Nonetheless the encoded protein was noted as having BIR and NBD-LRR domain 

and negatively regulates apoptosis8. Koonin and Aravind used NAIP, CIITA and two other 

proteins to define the conserved NACHT domain [G] which includes the sequences that 

cover the ATP/GTPase specific P-loop, the Walker A and B motifs and five additional 

motifs9. Two CARD containing proteins, NOD1/CARD410,11 and NOD2/CARD1512 

were found to activate NF-κB and are sensors of processed fragments of bacterial 

peptidoglycan13–16. Additionally, NOD2 frameshift and missense variants are genetic risk 

factors associated with Crohns’ disease17,18, first establishing these as pathogen recognition 

molecules important in inflammatory diseases. Inohara and Nunez noted similarities in 

the nucleotide-binding and oligomerization domain (NOD) of Apaf-1 [G], Ced-4, NOD1, 

NOD2 and the plant disease resistance genes and proposed that these constitute a family — 

the NOD family 19. Another CARD-NBD-LRR protein, IPAF (now referred to as NBD-, 

LRR- and CARD-containing protein 4 (NLRC4)), was discovered by Poyet et al. and found 

to associate with pro-caspase 1, leading to caspase 1 maturation20. Two other groups focused 

on the PYD-containing subgroup. Martinon, Burns and Tschopp first showed that NALP1 

(now referred to as NBD-, LRR- and PYD-containing protein 1 (NLRP1)), has caspase 

maturation activity which they coined the term “the inflammasome” 21, and later reported 

a 14-member PYD-containing family22. Bertin’s group focused on the PYD-containing 

Apaf1-like proteins — which they named PYPAFs — and showed that PYPAF7 (now 

known as NLRP12) and PYPAF5 (now known as NLRP6) induced caspase 1-dependent 

cytokine processing activity and NF-κB-activating function when co-expressed with the 

ASC [G] adaptor protein23,24. The link of these proteins to human was first demonstrated by 

transformative human genetics study from Hoffman et al. in 2001 which identified mutations 

in CIAS1 (cold-induced autoinflammatory syndrome 1; now known as NLRP3) to be the 
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cause of two rheumatological diseases, namely familial cold autoinflammatory syndrome 

(FCAS) and Muckle-Wells syndrome25. NLRP3 was later shown to direct the cleavage of 

pro-caspase 1 as well, thus representing the second inflammasome effector protein to be 

described26. These initial discoveries of NLR family members in the 1990s to the early 

2000s kicked off over two decades of exciting progress in the field of innate immunity 

(Fig. 2, Timeline). In a surprising twist, a family of prokaryotic anti-viral STAND [G] (Avs) 

proteins was recently described that utilizes a similar oligomerizing NBD and sensor domain 

architecture to eukaryotic NLRs (Fig. 1D)27. Some of these Avs proteins use their sensor 

domains to detect the presence of phage proteins, and oligomerization brings N-terminal 

endonuclease domains into a complex to degrade phage DNA. Thus, this threat dependent, 

induced-proximity mechanism has remarkably been consistently utilized for cellular defense 

in all kingdoms of life.

In this Review, we will provide an overview of our current understanding of the NLR protein 

subgroups and discuss their biology, mechanisms of action and physiological relevance. 

Due to the expansiveness of this topic, we cannot credit all relevant work in the field; we 

apologize for this and refer the reader to other reviews for topics that have been extensively 

reviewed28,29. The intention here is to present a brief overview of well-known NLRs but to 

also discuss those members that have received less attention. NLR family members mediate 

a wide variety of functions, including serving as transactivators of MHC gene transcription, 

as inflammasome receptors and sensors, as positive and negative modulators of signalling 

pathways and in a variety of cell death processes. We discuss the key roles of each of these 

NLR functional subgroups and offer a forward-looking perspective on the field.

NLRs as transcriptional regulators

Although NLR proteins are primarily thought of as innate immune sensors, the founding 

member, CIITA, and the related protein NLRC5, are master transcriptional regulators of 

MHC class II (MHC II) and MHC class I (MHC I) genes, respectively (Fig.1, Table 1). 

CIITA was identified via complementation cloning using a mutant cell line devoid of MHC 

II expression, and mutations in CIITA were found in bare lymphocyte syndrome (BLS), an 

immunodeficiency caused by the lack of MHC II4. CIITA shuttles between the nucleus and 

cytoplasm30, and its expression pattern precisely matches that of MHC II and its accessory 

proteins31,32. Consistent with its role as a transcriptional co-activator, CIITA contains an 

N-terminal acidic transactivation domain. The NACHT domain of CIITA was shown to 

bind GTP although this study was not conducted with highly purified protein33. There is 

no clear evidence that CIITA binds DNA directly, and therefore it mediates its activity 

via interactions with transcription factors bound to the SXY cis-elements [G] 34 in the 

promoters of all MHC II genes, leading to recruitment of chromatin modifiers including 

histone acetyltransferases and methylases35. CIITA has interesting associations with cancer, 

including its absence in some cancers36,37, its transduction to active tumour immunity38, and 

its role as a gene fusion partner in lymphoid cancers39.

Similarly to CIITA, NLRC5 also shuttles between the nucleus and cytoplasm, and its 

primary function is to upregulate MHC class I and accessory protein gene expression40. 

NLRC5 also requires an SXY cis-acting module in MHC I promoters for transcriptional 
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activation. In contrast to CIITA, the N-terminus of NLRC5 is composed of an atypical 

CARD and lacks an acidic activation domain. NLRC5 also contains a much larger C-

terminal LRR region with up to 38 LRRs. In contrast to the highly restricted expression 

of CIITA, NLRC5 is expressed constitutively with elevated expression observed in T cells, 

B cells and NK cells. The role for NLRC5 in MHC I gene expression was clearly shown 

in the NLRC5-deficient mice generated by several groups41–43. The loss of NLRC5 has 

the greatest effect on MHC I expression in T cells, natural killer (NK) cells, and natural 

killer T (NKT) cells, whereas MHC I expression in macrophage is more modestly reduced 

in NLRC5-deficient mice. The role of NLRC5 in controlling MHC I expression in other 

cell types is modest to absent. Hence, NLRC5 differs from CIITA in that its impact 

is not observed in all MHC I positive cells. Similarly to CIITA, it is also a target of 

immune evasion in cancer44. An additional role in regulating inflammatory cytokines has 

been proposed for NLRC5. In one model, direct interaction between NLRC5 and IKKα/β 
blocks interaction with IKKγ resulting in reduced NF-κB activation45. Analysis of NLRC5-

deficient mice has not consistently verified this physiological role for NLRC5, and these 

conflicting studies have been reviewed elsewhere46.

NLRs in inflammasomes and pyroptosis

In this section, we provide an overview of the NLR family members that form 

inflammasomes (Fig. 3, Table 1.). Regulated inflammasome signalling is vital for 

homeostasis and tissue repair, but dysregulated inflammasome signalling is central to many 

diseases (Fig. 3, Table 1.).

NLRP3 inflammasomes.

NLRP3 is the best studied of the inflammasome sensors, and it detects pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Its 

significance in autoinflammatory diseases and its mechanisms of activation have been 

detailed in many excellent reviews29,47. This section is not intended to provide a 

comprehensive review of this topic. NLRP3 inflammasome assembly with pro-caspase 1 and 

ASC leads to proteolytic maturation of caspase 148. Caspase 1 in turn cleaves and activates 

more than 70 substrate proteins, including the pro-inflammatory cytokines IL-1β and IL-18. 

Cleavage of Gasdermin D (GSDMD) by caspase 1 was found to be necessary and sufficient 

for pyroptosis49,50. The N-terminal fragment of GSDMD forms a multimeric membrane 

pore to cause pyroptotic cell death51–54 and facilitate the release of IL-1β and IL-18 via 

a non-conventional mode of secretion. The discovery of NLRP3’s inflammasome activity 

helped to define its role in IL-1β release in cryopyrin-induced autoinflammatory syndromes 

(CAPS) [G] 25,26. CAPS include several diseases with increasing disease severity, including 

FCAS1, Muckle-Wells syndrome and the severely debilitating chronic infantile neurological 

cutaneous and articular syndrome55 (CINCA; also known as neonatal-onset multisystem 

inflammatory disorder (NOMID)). The NLRP3 inflammasome has also been implicated in 

many other diseases, ranging from autoinflammatory, metabolic and neurodegenerative to 

infectious diseases48.
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Assembly of the fully functional NLRP3 inflammasome is initiated by two distinct 

steps: priming and activation. The priming step involves the recognition of PAMPs 

or DAMPs via receptors such as TLRs or NOD2, or the detection of TNF and 

IL-1β, which leads to NF-κB activation and increased cellular expression of NLRP3, 

caspase 1 and IL-1β56–58. In addition, post-translational modifications (PTMs) of NLRP3 

including phosphorylation59 and deubiqitination60,61 promote NLRP3 activation, while 

ubiquitination62 and sumoylation63 suppress NLRP3 inflammasome activity. In the 

activation step, NLRP3 oligomerizes through homotypic interactions between NACHT 

domains, which serves as a scaffold to nucleate ASC through PYD–PYD interactions64,65. 

ASC and pro-caspase 1 combine via CARD–CARD interactions leading to the formation of 

prion-like filaments. Pro-caspase 1 undergoes auto-proteolytic cleavage and processing into 

mature caspase 1 within this complex66. Several groups identified NIMA-related kinase 7 

(NEK7) as an essential component of NLRP3 inflammasome activation67–69(Fig. 3). NEK7 

oligomerizes with NLRP3 to form a complex that promotes ASC speck formation and 

caspase 1 activation70. NEK7 interacts with NLRP3 but not with the NLRC4 and AIM2 

inflammasome sensors.

Whereas the so-called ‘canonical’ activation of NLRP3 inflammasome activates caspase 

1, non-canonical activation of NLRP3 inflammasome activates caspase 4 and caspase 5 

in humans, and caspase 11 in mice71–73. Non-canonical NLRP3 inflammasome activation 

occurs in response to intracellular LPS sensing by caspase 4/11, resulting in the secretion 

of IL-1β and IL-18 and the induction of pyroptosis, which can lead to endotoxemia-induced 

death 72,74,75. Caspase 11 can be induced by TRIF and senses intracellular LPS from 

cytosolic gram-negative bacteria that have escaped vacuoles73. Caspase 8 can activate 

canonical and non-canonical NLRP3 inflammasomes in response to many pathogenic 

stimuli76–79. Caspase 8 initiates apoptosis in response to FASL and TNF and protects against 

necroptosis.

Several studies have reported that inflammasome activation can involve more than one 

sensor. For example, NLRP3 and NLRC4 both activate caspase 1 in response to PAMPs 

from Salmonella typhimurium80,81 and to DAMPs, such as lysophosphatidylcholine, 

which causes demyelination82. NLRP3 and AIM2 [G] inflammasomes are activated by 

Plasmodium parasite-derived hemozoin and DNA83 and by Aspergillus fungi84. Cytosolic 

DNA sensed by the cGAS–STING pathway, activates the NLRP3 and AIM2 inflammasomes 

via cGAMP production85. Dual-sensing mechanisms may reflect cooperative function within 

a cell or independent inflammasomes within a cell.

Despite extensive studies, the precise mechanism through which NLRP3 becomes activated 

remains unclear (see also later section on ‘Structure of NLR proteins’). However, NLRP3 

can be activated by many diverse pathways, including through the chemical disruption of 

glycolysis86 or accumulation of cholesterol crystals87 or free fatty acids88. It is presumed 

that common downstream molecules associated with cellular damage are the critical 

activators of NLRP3. Mitochondrial DNA is a candidate for a downstream mediator that 

can increase NLRP3 activation89,90. RNA also has been shown to activate NLRP3, and the 

mitochondrial antiviral signalling protein (MAVS) has been implicated in this process91–94. 

Although K+ efflux is also suggested to be a common activation pathway of NLRP395, 
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N-acetylglucosamine-induced hexokinase relocalization promotes NLRP3 inflammasome 

activation independently of K+ efflux in certain bacterial infections96.

The intense focus on the role of NLRP3 inflammasome activation and pyroptosis in 

numerous disease models has led to the development of many NLRP3 inhibitors97. While 

some of these inhibitors affect the conformation of NLRP3 (Oridonin, MCC950, and 

tranilast), others affect its function (OLT1177 and Parthenolide) or binding to signaling 

partners (BAY11–7082 and VI-16)98. These inhibitors show promise as future therapeutics 

for a range of inflammatory diseases.

NLRP1 inflammasomes.

Human NLRP121 (also known as DEFCAP, CARD7, NAC and NALP1)99–101 is a PYD- 

and CARD-containing NLR protein first found to induce pro-IL-1β cleavage in an in vitro, 

cell-free reconstitution assay when combined with caspase 1, caspase 5 and ASC. Indeed, 

experiments with NLRP1 led to the term ‘inflammasome’ being coined (Fig. 2). NLRP1 is 

highly expressed in keratinocytes and has been associated with several skin diseases102–107 

(Table 1.). NLRP1 is also found in the lung and is associated with chronic obstructive 

pulmonary disease (COPD)108 and recurrent respiratory papillomatosis109. Finally, NLRP1 
polymorphisms are associated with a novel autoinflammatory disorder, NLRP1-associated 

autoinflammation with arthritis and dyskeratosis (NAIAD)107.

NLRP1 exhibits significant genetic divergence in different species. Humans have one 

NLRP1 gene, while mice have four Nlrp1 homologue/paralogue genes110. Human and 

mouse NLRP1 are also divergent in their protein structure. Human NLRP1 contains an 

N-terminal PYD and a C-terminal CARD that flank a central NACHT, LRR and FIIND 

(function to find) domain, while mice have an N-terminal NR100 [G]. Although the 

N-termini of human and mouse NLRP1 are different, they both represent autoinhibitory 

domains111,112, which are removed by proteolytic cleavage of the N-termini resulting in its 

activation113,114. For example, the N-terminal NR100 domain of mouse NLRP1B115 and 

rat NLRP1116 is cleaved by B. anthrax lethal toxin (LT)117–119. In contrast, the human N-

terminal PYD is resistant to LT. This cleavage exposes a new N-terminus which undergoes 

N-end rule-mediated degradation by ubiquitin ligase-mediated degradation, resulting in the 

release of the C-terminus, which is freed to interact and recruit pro-caspase 1 through its 

CARD, resulting in caspase 1 maturation120–122. Ubiquitin ligases and proteases that can 

cause NLRP1 cleavage include ubiquitin ligase UBR2122, Shigella flexneri IpaH7.8 121, 

and picornavirus 3C proteases123. The 3C protease cleaves human NLRP1, exposing a new 

N-terminus, which then undergoes N-glycine-mediated degradation, thus liberating the UPA 

(UNC5, PIDD and ankyrin) and CARD domains to form an inflammasome.

The FIIND domain of NLRP1 also undergoes proteolytic cleavage. The serine proteases 

dipeptidyl peptidase 8 (DPP8) and DPP9 interact with the FIIND domain of human NLRP1 

to maintain it in an inactive state, and a DPP8/9 inhibitor, ValboroPro (VbP, or Talabostat) 

reverses this inhibition111,124–126. VbP causes the proteasome-dependent degradation of the 

N-terminus of NLRP1 and the autoproteolytic cleavage of the FIIND domain at the ZU5 

(ZO-1 and UNC5) and UPA subdomains, releasing the C-terminal domain that includes 

CARD to recruit pro-caspase 1 113,114,127. Cryo-EM shows a ternary complex of DPP9 

Chou et al. Page 6

Nat Rev Immunol. Author manuscript; available in PMC 2024 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



full-length NLRP1 and the C-terminus of NLRP1128,129. It is postulated that the full 

length NLRP1 inhibits activation of the C-terminal NLRP1 since an autocatalytic deficient 

full-length NLRP1 promotes inhibition of the C-terminal fragment. Thus, VbP weakens 

NLRP1-DPP9 interaction to induce inflammasome activation.

NLRP1 can also be activated by Toxoplasma parasites, bacteria, viruses and long 

dsRNAs130–133. Regarding the last, it was shown that human but not mouse NLRP1 

binds dsRNA through its LRR domain134. NLRP1B can also be activated by energy 

deprivation and nutrient depletion of ATP. In contrast to other NLRs, where ATP binding 

is necessary for their functional activity, the ATP-binding domain in NLRP1B inhibits its 

function135 and this inhibition of NLRP1B by ATP also requires the FIIND region136. A 

recent paper sheds some light on the effect of ATP on NLRP1 activation. It shows that 

oxidized but not reduced thioredoxin-1 (TRX1) can interact with NLRP1 NACHT-LRR 

domain to restrain the activation of NLRP1, and this process is ATP-dependent process137. 

Furthermore, both patient-derived and ATPase-deficient mutant blocked binding to oxidized 

TRX1 leading to inflammasome activation. The authors suggest that under reductive stress 

when oxidized TRX1 is reduced, NLRP1 can be activated. Others have shown that inhibition 

of TRX1 activity induces the β-amyloid activated NLRP-1/caspase-1/GSDMD pyroptotic 

response138. Recently, another form of stress, ribosome stress, is also found to cause the 

hyperphosphorylation and activation of human NLRP1 by the ribotoxic stress response 

kinase ZAKα (also known as MAP3K20) and p38 139. Thus NLRP1 is activated by a 

number of cell stress inducers.

NLRC4/NAIP inflammasomes.

NLRC4 was the first NLR shown to associate with pro-caspase 1 leading to caspase 1 

activation and subsequent cell death20. NLRC4 is important for caspase 1 activation after 

exposure to Salmonella typhimurium140 due to Salmonella flagellin141. Components of the 

bacterial type III secretion system (T3SS) [G] can also induce mouse NLRC4-dependent 

caspase 1 activation in the absence of flagellin, showing multi-component activation of 

the NLRC4 inflammasome142. However, NLRC4 is not the direct receptor for bacterial 

PAMPs, but instead, pairs with mouse NAIP5, which recognizes flagellin143, and NAIP1 

and NAIP2, which respectively recognize T3SS needle144,145 and rod proteins143. Thus, 

the NAIP proteins recognize bacterial components and recruit NLRC4 to activate caspase 

1. NAIPs contain N-terminal BIR domains, while NLRC4 displays an N-terminal CARD. 

Humans only have one NAIP gene and it responds to flagellin and both T3SS needle and 

rod protein. NLRC4 and NAIP5 also mediate pyroptosis in response to flagellin146,147, and 

pyroptosis induced by bacterial T3SS needle proteins is NLRC4 dependent142.

Gain-of-function mutations in human NLRC4 lead to inflammasomopathies [G] that are 

associated with the spontaneous formation of the NLRC4 inflammasome, production of 

IL-1β and IL-18 and inflammatory cell death148. Three NLRC4 inflammasomopathies 

have been described: autoinflammation with infantile enterocolitis (AIFEC), neonatal-onset 

multisystem inflammatory disease (NOMID) and FCAS4148. Endogenous short interspersed 

nuclear element (SINE) RNAs — which promote atrophic macular degeneration and 

systemic lupus erythematosus — induce NLRC4 inflammasome activation with DDX17 
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helicase-mediated sensing of these RNAs independent of NAIPs149. In addition, NLRC4 has 

been implicated in microglial cell death in models of stroke150.

NLRP6 inflammasome and inflammasome-independent functions.

NLRP6 (also known as PYPAF5 24) is expressed by immune and stromal cells, but its 

expression in typical lymphoid tissues is low while its expression is high in intestinal colonic 

myofibroblasts and epithelial cells11,151,152. Overexpression of NLRP6 leads to its assembly 

with ASC to form specks (that is, large protein complexes) in cells and these coordinate 

the activation of NF-κB and pro-caspase-1 24. It is regulated post-translationally by the 

deubiquitinase CYLD, which targets K63-linked ubiquitination of NLRP6 to prevent its 

binding to ASC153.

NLRP6 functions as an inflammasome in the dextran sodium sulfate (DSS)-induced colitis 

model and protects against colitis by driving IL-18 release, which promotes epithelial barrier 

integrity151,152,154 via the promotion of Lgf5+ stem cells and anti-microbial response155. 

NLRP6 also protects against colon cancer by inducing IL-18 154, resulting in reduced 

intestinal inflammation and reduced proliferative signals such as SMARRC1, p53, Wnt 

and Notch pathways all of which have been linked with intestinal tumourigenesis151. 

Additionally, NLRP6 enhances mucin secretion by intestinal Goblet cells through the 

promotion of autophagy156. NLRP6 is also reported to influence the intestinal microbiota, 

although this is controversial. Some have found that NLRP6 expression affects components 

of the microbiota such as Prevotella152, while others have failed to see this association using 

littermates from different animal facilities157,158.

In addition to functions in the intestine, NLRP6 is expressed in the liver and can affect 

disease development in this tissue. For example, expression of NLRP6 was shown to 

attenuate non-alcoholic fatty liver disease159, alcoholic hepatitis160, and hepatocarcinoma 

(HCC) in mice161. These are found to mediated by the reduced inflammatory cytokines such 

as TNF, reduced NF-κB and TLR4 signalling by NLRP6. By contrast, others found that 

C. albicans infection promotes hepatocarcinogenesis in patients may occur in an NLRP6-

dependent fashion by increasing metabolites that can promote tumorigenesis 162. Thus, the 

impact of NLRP6 expression may be dependent on the disease and tissue context.

In the setting of infection, NLRP6 can be activated by the microbial metabolite taurine163, 

bacterial lipoteichoic acid164, and viral RNA through the RNA helicase Dhx15 to induce 

type I and type III interferon165. Furthermore, viral infection, dsRNA, TNF and type I 

interferon can enhance NLRP6 expression165. A seminal paper showed that during virus 

infection, NLRP6 is activated by binding to dsRNA and undergoes liquid–liquid phase 

separation (LLPS) and that a disordered poly-lysine sequence (K350–354) in the protein is 

important for its function166.

In addition to its role in inflammasome assembly, NLRP6 has an alternative role in 

suppressing inflammatory responses and signals. NLRP6-deficient mice show enhanced 

resistance to bacteria, accompanied by increased NF-κB and MAPK activation after TLR 

activation167. NLRP6 also reduces neutrophil influx and granulocytic bactericidal activity 

during gram-positive bacteria infection168. NLRP6 expression in inflamed periapical tissues 
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and human periodontal ligament cells negatively regulates IL-6 and TNF by inhibiting 

NF-κB and ERK signaling169. Thus, NLRP6 has both inflammasome-dependent and 

independent functions.

In summary, a major function of multiple NLR proteins lies in inflammasome function. 

While the ligands for some are well defined, others are not. Furthermore, some 

inflammasome NLRs have alternative functions such as reducing inflammatory responses. In 

the next section, the focus will be on NLRs that control a variety of signalling pathways.

NLRs as regulators of diverse signalling pathways

This section focuses on NLRs that contribute to pathogen sensing and diverse immune 

signalling responses independently of inflammasome assembly (Fig. 4), with the exception 

of NLRP12 (Fig. 3) and NLRP11. NLRP12 has been reported to assemble inflammasomes 

in response to certain infections, but we include this NLR in this section due to its well-

described role in negatively regulating inflammation. NLRP11 does not itself form an 

inflammasome, and is reported to regulate the NLRP3 inflammasome, as discussed below.

Sensing of peptidoglycan fragments by NOD1 and NOD2.

NOD1 and NOD2 represent the earliest and best-characterized signalling NLRs, and 

they function to detect PAMPs and activate inflammatory signalling pathways. These 

two proteins have been exhaustively reviewed, hence only a brief synopsis is provided 

here170,171. In addition to a central NACHT domain and C-terminal LRR domain, the 

N-terminus of NOD proteins consists of a single CARD (in the case of NOD1) and two 

CARDs (for NOD2). NOD1 and NOD2 detect the cytosolic presence of processed fragments 

of peptidoglycan derived from bacterial cell walls, γ-D-glutamyl-meso-diaminopimelic acid 

(iE-DAP)13,14 and muramyl dipeptide (MDP)15,16, respectively. A recent study highlights 

the critical role of host peptidoglycan processing by showing that MDP is phosphorylated by 

N-acetylglucosamine kinase (NAGK), and this modification is essential for the activation 

of NOD2 in THP-1 cells and primary mouse macrophages172. Recognition of these 

PAMPs results in oligomerization, CARD-mediated recruitment of receptor-interacting 

serine/threonine kinase 2 (RIPK2 or RIP2) and the downstream activation of NF-κB 

and MAPK signalling pathways173, leading to production of inflammatory cytokines, 

chemokines and inflammatory cell recruitment. In addition, NOD1 can cause apoptosis in a 

caspase 8 and RIPK2 dependent fashion174.

NOD1 is expressed in a wide variety of cell types, including epithelial cells10, and 

studies in intestinal epithelial cells have illustrated key roles for NOD1 in the immune 

response to intestinal pathogens. By contrast, NOD2 is primarily expressed in cells of the 

myeloid lineage12, and specialized cells such as intestinal Paneth cells. Gain-of-function 

mutations in NOD2 were found to be associated with the human inflammatory disease, 

Blau syndrome175. Blau syndrome mutations are restricted to the NACHT domain, and the 

resultant amino acid changes are predicted to destabilize the autoinhibited conformation 

of NOD2 leading to constitutive activation176. In contrast, mutations that lead to impaired 

function of NOD2 represent the most significant risk factor for development of Crohn’s 

disease17,18. Crohn’s associated mutations are dispersed throughout both the NACHT 
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and LRR domains potentially interfering with oligomerization, localization, or ligand 

sensing176. Both NOD1 and NOD2 have been shown to associate with endosomes, and 

this localization efficiently places these sensors in position to encounter their ligands 

transported by endosomal peptide transporters177,178. Membrane localization of NOD1/

NOD2 is dependent on S-palmitoylation mediated by the palmitoyltransferase ZDHHC5, 

and mutations that disrupt palmitoylation result in impaired NF-κB signalling in response to 

NOD activators179.

The mitochondrial sensor NLRX1.

NLRX1 is ubiquitously expressed in mammals. It has a central NACHT and LRR domain 

and a unique N-terminus, which functions as a mitochondrial targeting sequence (MTS)180–

182. The C-terminus of human NLRX1 was found to be required for oligomerization and 

it binds ssRNA, dsRNA, lipid metabolites but not DNA183–185. The precise location of 

NLRX1 in mitochondria may be dynamic. It is found in the mitochondrial outer membrane 

and thought to interact with the CARD of MAVS through its LRR domain180. Others found 

that it localizes to the mitochondrial matrix to regulate mitochondria reactive oxygen species 

(ROS) production181,182. Multiple studies have shown that NLRX1 negatively regulates 

MAVS-mediated activation of IRF3 and type I IFN induction in virus infection180,186,187. 

It also blocks STING–TBK-mediated antiviral responses in HIV-1 infection188, negatively 

regulates NF-κB signalling through interacting with TNF receptor-associated factor 6 

(TRAF6)187,189 and has been shown to function as a tumour suppressor in cancer190,191. 

However, in contrast to these roles in negatively regulating IRF3- and NF-κB-mediated 

antiviral responses, NLRX1 has been shown to support early antiviral responses by post-

transcriptionally regulating IRF1 abundance192.

NLRX1 also functions in autophagy and mitophagy186. NLRX1 was first reported to induce 

autophagy by interacting with the Tu elongation factor mitochondrial (TUFM)–ATG5-

ATG12 pathway to promote virus-induced autophagy and to inhibit RLR-induced type I 

IFN production upon virus infection193. NLRX1 also interacts with Beclin-1 or E7 protein 

of oncogenic human papillomavirus (HPV16) to promote autophagy in cancer cells194,195. 

Additionally, it promotes LC3-associated phagocytosis (LAP, a non-canonical form of 

autophagy), and activates the MAPK pathway upon fungal infection196. Furthermore, 

NLRX1 acts as an LC3 interacting region (LIR)-containing mitophagy receptor to promote 

mitophagy during Listeria monocytogenes infection197. It also regulates mitophagy in 

metastatic mammary tumours198, in intestinal ischaemic–reperfusion injury199, and mediates 

morphine-induced immunosupression in microglia by activating an insufficient mitophagy 

response200. In contrast to these aforementioned studies, NLRX1 was reported to negatively 

regulate autophagy during Group A Streptococcus infection201. However, the findings of 

a majority of the studies indicate that NLRX1 may represent a therapeutic target when 

increased autophagy or reduced inflammation is desired. Indeed, an activator of NLRX1, 

NX-13, is found to attenuate inflammatory bowel disease model by decreasing multiple 

aspects of immune activation202.
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Negative regulation of immune cell activation by NLRC3.

NLRC3 is a CARD-containing NLR and is expressed in both human and mouse immune 

cells6,203. Its highest expression is in T cells, and T cell activation downregulates NLRC3 

expression, suggesting that it may serve as a suppressor of T cell activation203. Indeed, 

NLRC3 reduces K63-linked ubiquitination of TRAF6 to downregulate NF-κB signalling, 

expression of interferon-γ and TNF, and the mTOR pathway in CD4+ T cells in the 

context of viral infection, T cell-mediated autoimmunity204 and M. tuberculosis infection205. 

In peritoneal macrophages, NLRC3 negatively regulates TLR4- and LPS-induced NF-κB 

activation by interacting with TRAF6 to mediate its deubiquitination in macrophages206. 

Additionally, NLRC3 also attenuates innate immune cell responses to cytosolic DNA, cyclic 

di-GMP and DNA viruses. It does this by interacting with the DNA sensor stimulator 

of interferon genes (STING) and TBK1 to impede the STING–TBK1 interaction, thereby 

limiting interferon production and NF-κB activation207. Upon binding of viral dsDNA and 

dsRNA to the LRR domain, NLRC3’s ATPase activity is increased and STING–TBK1 is 

released185. Additionally, NLRC3 NACHT can interact with a scaffold IQGAP1 and this 

disrupts the NLRC3-STING association in regulating type I IFN responses208. Overall, 

these studies reveal the impact of NLRC3 in regulating STING–TBK-mediated type I IFN 

signalling and NF-κB pathways to control cellular immune responses. In human cancer, 

NLRC3 expression is found to be a positive prognostic factor209,210, and NLRC3 was shown 

to mediate protection in a mouse model of colon cancer by inhibiting the PI3K–mTOR 

pathway 211.

Cell-specific regulation of inflammation by NLRP12.

NLRP12 is expressed in different myeloid cell populations, with prominent expression 

in granulocytes and dendritic cells212. NLRP12 functions as both a negative regulator of 

inflammation and as an inflammasome. It attenuates canonical and non-canonical NF-κB 

signalling pathways by blocking IRAK1 activation213 and by increasing the degradation 

of the NF-κB-inducing kinase (NIK)214, respectively. Additionally, NLRP12 can interact 

with TRAF3, which is involved in NIK degradation. Others have shown that it associates 

with ASC to mediate caspase 1 activation23, leading to IL-1β and IL-18 release in bone 

marrow-derived macrophages (BMDMs) infected with Yersinia pestis and Plasmodium 
chabaudi215,216 thus serving as an inflammasome sensor.

NLRP12 activity in myeloid cells is essential for colonic homeostasis217,218. Inhibition 

of NF-κB and ERK signalling by NLRP12 suppresses colonic inflammation and colitis-

associated colorectal cancer in mouse models. NLRP12 also mitigates colitis by regulating 

the gut microbiota — for instance, its expression maintains the presence of protective 

commensal strains of Lachnospiraceae in the gut219,220. Interestingly, colonic inflammation 

and dysbiosis of the microbiota in NLRP12-deficient mice can contribute to obesity via 

enhanced inflammation221.

NLPR12 has also been associated with cell proliferation. NLRP12-deficient microglia 

show increased proliferation while NLRP12-deficient tumour cells show decreased cellular 

proliferation in glioblastoma222. Human glioblastoma tissue shows elevated NLRP12 

expression. In response to Leishmania major Nlrp12 deficient neutrophils showed increased 
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neutrophil migration towards the chemokine CXCL1 and the neutrophil parasite Leishmania 

major, revealing NLRP12 as a negative regulator of directed neutrophil migration in vitro223.

Mutations in NLRP12 are associated with the systemic autoinflammatory disease 

FCAS2224. This is a cold-induced autosomal dominant disease characterized by 

noninfectious periodic fevers and inflammatory symptoms in joints, muscles, digestive 

organs, skin and nerves. Interestingly, the IL-1 receptor antagonist (Anakinra) [G] only 

partially relieves the symptoms seen in patients with FCAS2225, whereas this drug is 

potently protective in patients with the NLRP3-associated diseases CAPS and FMF . It 

remains to be explored if the clinical manifestations are reflective of the divergent functions 

attributed to NLRP12.

A potential anti-inflammatory role for NLRP10.

NLRP10 (also known as PYNOD) contains an N-terminal PYD in addition to a 

NACHT domain, but it is the only mammalian NLR family member that lacks an LRR 

domain226. NLRP10 is expressed in a variety of tissues, and is highly expressed in 

heart, skeletal muscle, brain and skin226,227. Exogenous expression studies in cell lines226 

and transgenic mice227 found that overexpressed NLRP10 inhibits IL-1β processing. 

NLRP10 overexpressing transgenic mice were resistant to lethal doses of LPS injection, 

although serum levels of TNF-α were more significantly reduced when compared to 

IL-1β227. Attempts to examine the physiological role of NLRP10 in knockout mice 

were temporarily hindered by the presence of a secondary genetic mutation that was 

responsible for the initially described phenotype228,229. Extensively backcrossed NLRP10-

deficient mice were shown to have increased inflammatory responses in response to 

Leishmania infection, supporting a potential anti-inflammatory role for NLRP10230. 

Additional NLRP10 KO lines have been created and are phenotypically normal in the 

absence of an inflammatory challenge231,232. However, while one line of NLRP10 KO mice 

showed reduced inflammation in a contact hypersensitivity model231, another group saw no 

difference between NLRP10-deficient and wild type mice in a similar model232. NLRP10 

remains an enigmatic NLR protein, and future studies will be required to determine its 

physiological role.

Regulation of inflammatory signalling and autophagy by NLRP4.

NLRP4 is strongly expressed in placenta, oocytes, testis, spleen, pancreas, liver, lung, 

kidney, and thymus233–235. Similar to other NLRPs, NLRP4 has an N-terminal PYD, but 

the NLRP4 PYD contains unique features and does not interact with ASC236. Initially, 

NLRP4 was found to negatively regulate TNF- and IL-1β-induced NF-κB activation234. 

Subsequently, NLRP4 was also reported to negatively regulate type I interferon signalling in 

response to dsRNA, DNA or viral infection. The NACHT domain of NLRP4 interacts with 

the E3 ubiquitin ligase DTX4 to direct the K48-linked polyubiquitination of TBK1, resulting 

in its degradation and this blocks the TBK1-mediated phosphorylation and translocation of 

IRF3235.

Aside from its role in regulating these immune signalling pathways, NLRP4 regulates 

autophagy in response to bacterial infection and interacts with the autophagy regulator, 
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Beclin-1, via its NACHT domain. Upon infection with Group A Streptococcus, NLRP4 

is recruited to autophagosomes and dissociates from Beclin-1, allowing the initiation of 

autophagy237. Additionally, NLRP4 associates with the class C vacuolar protein-sorting 

complex to inhibit autophagosome maturation. NLRP4 also interacts with Rho GDP 

dissociation inhibitor α to regulate Rho GTPase signalling and facilitate actin-mediated 

antibacterial autophagy during Streptococcus infection238.

NLRP11 in the regulation of signal transduction and in NLRP3 inflammasome formation.

NLRP11 is a primate-specific protein and is highly expressed in monocytes, THP-1 (human 

monocyte line), B cells, B cell lymphoma lines, testis, ovary, and lung 239–242. NLRP11 

is induced by type I IFN and translocates to the mitochondria to interact with MAVS 

by its LRR and NACHT domain upon RNA viral infection 243. Furthermore, NLRP11 

binds to TRAF6 to promote its degradation in a MAVS-dependent manner, reducing type 

I IFN signalling and virus-induced apoptosis243. NLRP11 also inhibits TLR signalling by 

recruiting the ubiquitin ligase RNF19A to catalyze K48-linked ubiquitination of TRAF6 for 

its degradation, resulting in the suppression of NF-κB activation, MAPK signalling, and 

pro-inflammatory cytokine production239.

In addition to its roles in regulating these immune signalling pathways, NLRP11 has been 

shown to negatively regulate NLRP3 inflammasome activation in cultured human cell 

lines by interacting with DEAD-box protein 3 (DDX3X)244, a protein shown to activate 

the RLR pathway245. This interaction causes NLRP11 to inhibit DDX3X’s function in 

enhancing type I IFN responses and NLRP3 inflammasome activation244. In contrast, 

another study found that NLRP11 can support NLRP3 assembly by functioning as a 

scaffold. NLRP11 interacts with NLRP3 via its LRR domain and ASC via its PYD domain 

to promote NLRP3 inflammasome assembly and activation but does not affect the assembly 

of other inflammasomes246. This study also reported that NLRP11 is necessary for NLRP3 

inflammasome responses driven by CAPS-linked NLRP3 mutations246. The exact reason for 

these differences is currently unknown. This underscores the need for a deeper investigation 

of these understudied NLR.

Above, we have primarily focused on the immune-associated functions of NLRs. However, 

NLRs also regulate other biological processes including studies to indicate their importance 

in the reproductive system which are discussed below.

NLRs in reproduction

There is growing evidence for a mammalian reproduction-associated NLR gene cluster 

which include NLRP2, NLRP4, NLRP5, NLRP7, NLRP8, NLRP9, NLRP11, NLRP13 
and NLRP14. Human NLRs in this reproductive gene cluster — as well as their murine 

orthologues, namely Nlrp2, Nlrp4a-Nlrp4g, Nlrp5, Nlrp9a-Nlrp9c and Nlrp14, — are 

highly expressed in oocytes and in the ovaries241,247,248. Except for the gene encoding 

NLRP14, all reproduction-associated NLRP-encoding genes in the human genome are 

located on chromosome 19, whereas all mouse reproduction-related Nlrp genes are located 

on chromosome 7, with the exceptions of Nlrp4g (chr 9) and Nlrp4f (chr 13)248. In this 

section, we focus on our growing understanding of the functions of some of these proteins.
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Regulation of nucleic acid signalling and fertilization by NLRP14.

NLRP14 is expressed in the gonads241 and several NLRP14 mutations are linked to 

spermatogenic failure249. Interestingly, NLRP14 was reported to function as a negative 

regulator of the nucleic acid-sensing (NAS) pathway in germ cells by interacting with 

TBK1 through its N-terminus to suppress TBK1-mediated IFNγ production for supporting 

fertilization250. Furthermore, NLRP14 was found to interact with MAVS and STING 

through its LRR domain to negatively regulate the NAS pathway, however, MAVS and 

STING also resulted in the degradation of NLRP14, hence revealing a feedback loop to 

prevent the sustained immunosuppressive function of NLRP14250. Although these studies 

were performed in 293T cells, another group reported that NLRP14 promotes primordial 

germ cell-like cell differentiation and spermatogenesis through a complex with HSPA2 and 

BAG2251. These studies provide physiological insights on the functions of NLRP14 and 

indicate its roles in both immune and gonadal regulation.

NLRP2 in inflammation, proliferation, reproduction, and genomic imprinting.

NLRP2 was one of the first NLRs found to interact with ASC to assemble an 

inflammasome, leading to IL-1β generation26,252. By contrast, NLRP2 also acts as an 

inhibitor of the NF-κB pathway and a nonfunctional allelic variant within the NLRP2 

NACHT contributes to the hyperactivation of NF-κB pathway and subsequent downstream 

inflammatory responses252,253. Along with being an inhibitor of NF-κB, NLRP2 also 

regulates inflammation or cell proliferation by suppressing NF-κB activation in hepatic 

steatosis254, HLA-C expression in trophoblasts255 and in cancer256. Additionally, it interacts 

with TBK1 and negatively regulates type I IFN signalling upon viral infection257. In the 

reproductive system, NLRP2 is essential for early embryogenesis but not oocyte maturation 

in ice and humans258,259, and interacts with FAF1 (Fas-associated protein factor 1) in mouse 

ovaries259,260. A germline frameshift mutation in exon 6 of NLRP2 is linked to Beckwith-

Wiedemann syndrome, which is a human imprinting disorder [G] 261 that is also associated 

with NLRP5 and NLRP7 mutations262. NLRP2 also maintains proliferation and viability 

in human umbilical vein endothelial cells (HUVECs) by promoting MAPK signalling263. 

These studies demonstrate the potential of NLRP2 in inflammasome activation but also 

in the dampening of inflammatory and interferon activation. The latter may contribute to 

the establishment of immune tolerance at the maternal–fetal interface to prevent aberrant 

immune activation.

NLRP5 regulates embryogenesis

MATER (Maternal Antigen That Embryos Require), a murine counterpart of NLRP5, was 

one of the first-discovered maternal-effect genes encoding an oocyte-specific protein. It 

is associated with autoimmune oophoritis and is required for embryonic development in 

mice264. Additionally, NLRP5 was found to localize in oocyte mitochondria and nucleoli265 

and is essential for assembly of the subcortical maternal complex (SCMC), which is a 

multiprotein complex encoded by maternal-effect genes specifically expressed in oocytes 

and early embryos in mice266. NLRP5 also regulates mitochondrial biogenesis and its 

respiratory activity, and it may affect other cell death molecules that contributes to its 

function in successful preimplantation during early embryogenesis267. In human, NLRP5 
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is predominantly expressed by oocytes and follicular cells268,269, and has been found 

to represent a tissue-specific autoantigen involved in hypoparathyroidism in patients with 

autoimmune polyendocrine syndrome type 1 (APS-1)270. Additionally, NLRP5 variants are 

not only found in the Beckwith-Wiedemann syndrome, but also in multi-locus imprinting 

disturbance (MLID) in female patients and is associated with maternal reproductive 

fitness271. Its direct role in these diseases will be of interest for future investigation.

NLRP7 regulates inflammation and embryogenesis.

NLRP7 is only found in primates241. It is highly expressed in reproductive organs but also 

broadly expressed in cell lines and most other tissues, except for skeletal muscle, heart 

and brain. Expression of NLRP7 is increased in LPS- and IL-1β-stimulated PBMCs and 

macrophages272. NLRP7 mutations specifically affect the female (but not male) reproductive 

system and are associated with abnormal embryogenesis (recurrent hydatidiform moles [G] 
in humans)273–275. In contrast to NLRP2, which inhibits NF-κB but not IL-1β production, 

NLRP7 inhibits caspase 1-dependent IL-1β production272. Another report showed that 

NLRP7 failed to interact with ASC and activate NF-κB24. By contrast, microbial acylated 

lipopeptides from bacteria can activate the NLRP7 inflammasome function in macrophages 

leading to downstream IL-1β production but not pyroptosis 240. The precise structures of the 

NLRP7 PYD interacting with ASC or the LRR sensing different ligands need to be further 

investigated to solve these controversial findings. These results suggest that certain NLRs 

might be either positive or negative regulators in different signalling pathways upon different 

stimulations in a cell-type specific manner. Others have found that the TLR agonists LPS 

and Pam3CSK4 can activate NLRP7 inflammasome activity and that a deubiquitinase, 

STAM-binding protein, increases NLRP7 activity by preventing its trafficking to the 

lysosome where it is normally degraded276. Additionally, higher NLRP7 expression was 

reported to promote tumour cell proliferation and metastasis in human colon cancer and to 

promote the development of M2-like macrophages [G] by increasing NF-kB activation and 

CCL2 to promote tumor progression277. It will be of interest to investigate if the role of 

NLRP7 in regulating the inflammasome or NF-κB signaling, which has not been studied in 

cells of the reproductive system, can be extended to reproductive cells or disorders.

As a final point of interest, in the consensus phylogenetic cluster, the NLRP2 cluster 

contains NLRP7, suggesting that NLRP7 might originate from a duplication of the NLRP2/7 

ancestor in primates241,248. Given that both are highly expressed in the reproductive 

organs and regulate inflammatory signaling, these two might have overlapping functions 

in regulating the physiological and pathological inflammatory processes of pregnancy.

NLRP9 in reproduction and immunity.

NLRP9 is mainly expressed in the reproductive system of human and bovine, and mice 

(Nlrp9a-Nlrp9c) 241,278. In mice, NLRP9 is specifically expressed in ovarian follicles during 

early embryonic preimplantation279,280. However Nlrp9b, but not Nlrp9a and Nlrp9c, is 

also uniquely expressed in intestine epithelial cells and associates with an DExH-box RNA 

helicase 9 (DHX9) to recognize double-strand RNA and functions as an inflammasome 

for viral clearance during rotavirus infection in mice281. Additionally, NLRP9 expression 

has been reported in lung cells, brain pericytes and endothelial cells, and microglia278. 
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Human NLRP9 also interacts with ASC to form the inflammasome upon DHX9-mediated 

rotaviral RNA recognition in HEK293 T cells281. However, two groups recently have 

reported the crystal structure of human NLRP9 PYD (hNLRP9PYD) and showed that it 

forms a monomer but not oligomers in solution282,283. One paper also found that it does 

not nucleate ASC specks in HEK293T cells, which is in contrast to NLRP3, NLRP6 and 

AIM2 inflammasomes282. Additionally, hNLRP9PYD might exhibit autoinhibitory function 

based on: (1) charge inversions in the interfaces of hNLRP9PYD which might cause 

repulsive effects to prevent self- oligomerization and activation282; (2) a bent N-terminal 

loop of hNLRP9PYD oriented toward the interior of the helical bundle which might prevent 

filament formation structure and subsequent NLRP9 inflammasome assembly283. NLRP9 

is also linked to several inflammatory diseases 278. One study demonstrated that the lack 

of NLRP9b resulted in reduced neutrophil inflammation but elevated proinflammatory 

cytokines, NF-κB activation, and oxidative stress in the mouse acute lung injury model284. 

Much remains unknown regarding NLRP9. The analysis of mice lacking this gene will 

help understand its role in inflammatory diseases and infections in addition to its role in 

reproduction system.

In the sections above we have detailed the diverse functions that are mediated by NLR 

family members. A better understanding of the structure of the different NLR proteins 

should help us to better define their biology. Indeed, impressive progress has been made in 

deciphering the structure of several NLR proteins described below.

Structure of NLR proteins

Apaf-1, plant R proteins, and NLRs are members of the STAND subgroup of P-loop 

ATPases related to the AAA+ superfamily285 [G], a large family of ATPases with diverse 

molecular functions and a wide assortment of accessory domains. AAA+ superfamily 

proteins share a common arrangement of an N-terminal αβα fold (NBD) followed by a 

helical bundle (HD1). Early in the field, X-ray crystallography studies for NLRs were 

limited to isolated domains, including the PYD, CARD, and LRR domains. A significant 

milestone was the determination of the crystal structure for the NACHT–LRR domain of 

NLRC4 in the ADP-bound, autoinhibited state286 (Fig. 5A, left panel). At the time, the 

structure of the NLRC4 NACHT domain was most similar to the structure determined 

for Apaf-1 in its inactive state287. Both structures showed that ADP binding involved 

contributions from the NBD, HD1, and WHD, resulting in a compact, closed conformation. 

For NLRC4, interdomain interactions between the first LRR and the NBD are also observed 

in the autoinhibited conformation. Mutations that disrupt WHD-ADP binding or the LRR–

NBD interaction destabilize the closed conformation resulting in auto-activation of NLRC4 

and caspase 1 processing. These two basic principles for the autoinhibited state were echoed 

in the crystal structure for the NACHT–LRR domains of NOD2176. Similarly to NLRC4 

and Apaf-1, ADP binding involves involves interactions with the NBD, HD1, and WHD 

resulting in a compact, closed conformation. In addition, the first two LRR units of NOD2 

interact with the HD1 and HD2 subdomains within the NACHT domain. The interaction of 

the LRR and NACHT domains aligns with the hypothesis that ligand binding to the LRR 

domain disrupts LRR–NACHT interactions and exposes a surface on the NACHT domain 

for oligomerization.
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The advent of cryo-EM for high-resolution structural analysis of large proteins and proteins 

complexes allowed for breakthroughs in NLR structure determination. High-resolution 

structures for full-length NLRs and oligomerized complexes have now been determined. 

Cryo-EM structures for an inflammasome in the activated, oligomerized state were solved 

for NAIP2-NLRC4 inflammasomes activated by the bacterial type III secretion inner rod 

protein PrgJ 288,289. These studies show that PrgJ binding to NAIP2 results in a 90° 

rotation at a hinge site between HD1 and WHD. This conformational change exposes 

a surface in the NACHT of NAIP2, which can interact with an acceptor surface in 

NLRC4, and the activated NLRC4 can promote a similar conformational change in another 

NLRC4 molecule. Propagating NLRC4 activation results in the formation of a disc-like 

structure composed of a single NAIP with ten NLRC4 molecules (Fig. 5A, right panel). 

Subsequent cryo-EM studies of the NAIP5-NLRC4 complex with bound flagellin provided 

the first glimpse into the molecular interaction of an activating ligand with an NLR sensor. 

The flagellin-NAIP5 interaction shows that binding of ligand involves multiple domains 

including the NACHT, LRR, and BIR domains290. Whether this mode of ligand-sensor 

interaction extends to other NLR proteins remains to be determined.

A simplistic model for inflammasome formation involves activation of cytosolic, monomeric 

NLRs by a ligand leading to oligomerization and recruitment of pro-caspase 1. However, 

recent cryo-EM studies of NLRP3 suggest that there are additional layers of regulation 

beyond the presence of ligand that determine whether an inflammasome will form. Cryo-EM 

studies with NLRP3 alone revealed an oligomeric complex in which the pyrin domains 

are sequestered within a cage291–293 (Fig.5B, left panel). Isolation of pyrin domains in 

such a manner would prevent spurious interaction with ASC, providing protection against 

inappropriate inflammasome activation (Fig. 5B, middle panel). Interestingly, a previous 

cryo-EM structure for NLRP3 had been determined in a complex with NEK770 which is 

known to license NLRP3 activation (Fig. 5B, right panel). Both the caged NLRP3 and 

NLRP3-NEK7 structures contain NLRP3 in an autoinhibited, ADP-bound conformation. In 

vitro addition of NEK7 disrupts the caged oligomers, suggesting that NLRP3 inflammasome 

activation involves more than just the presence of activating ligand. Future studies will 

determine if other NLRs employ additional regulatory mechanisms.

Emerging concepts and conclusions

In the past two decades, the NLR field has gone through a revolution. However, while some 

NLRs are exceedingly well investigated, many are understudied. We propose some emerging 

concepts as well as areas that are deserving of further attention.

First, aside from well-established reports on activation and functions of NLRs in innate 

immunity, there are accumulated evidence suggesting NLRs function in other cell types. 

We have discussed the area of NLRs in the reproductive system, bolstered by fascinating 

genetic data supporting key roles for NLRs in this setting. Furthermore, several NLRs 

have roles for regulating adaptive immunity and immunometabolism in cells. NLRP3 is the 

first and most intensively linked to crosstalk between innate and adaptive immunity294 and 

metabolism29,295. Adenosine-induced NLRP11 can reduce IFN-γ and IL-17A production 

of human peripheral CD4+ T lymphocytes296. NLRC3 attenuates TRAF6 and modulates 
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CD4+ T cell metabolism. NLRX1 has also been found to regulate glycolysis and oxidative 

phosphorylation in T cells,297,298. These studies shed light on the roles of NLRs in an array 

of cell types and provide a much broader perspective regarding their importance beyond 

innate immunity.

Second, many NLRs exhibit multiple functional roles, and this may be attributed to 

numerous reasons. One is that their cellular localization may be dynamic. NLRs are 

located in different cellular compartments and their organelle-specific, membranous or 

non-membranous localization may determine their ultimate functions. The mitochondrial 

location of NLRX1, and the nuclear localization of transcriptional regulators CIITA 

and NLRC5 have long been known. NLRP3 has been shown to be associated with 

mitochondria and the dispersed trans Golgi network299. NOD1 and NOD2 associate with 

the plasma membrane and endosomes177,187, and membrane localization is dependent on S-

palmitoylation179 raising the possibility that post-translational modifications may influence 

localization of other NLRs. Another possibility is that different NLR isoforms, perhaps 

generated via alternative splicing or post-translational modification, may show distinct 

functions. One possible approach to address these different possibilities is to assess if 

distinct interactomes are formed by an NLR protein to conduct different functions in 

different cell types. Such interactomes may vary depending on all of the factors described 

above, including differential expression in cells with distinct protein compositions, divergent 

localization in organelles, varied post-translational alterations and different isoforms. 

Finally, it is important to re-evaluate data obtained with in vitro cell lines especially in 

the context of overexpressed proteins without validation in vivo, since these may result in 

nonphysiologic findings.

Third, several NLRs are paired to perform their function. The most prominent examples are 

the pairing of NAIPs and NLRC4. NLRP3 and NLRC4 are important for the simultaneous 

activation of inflammasomes in response to some stimuli. However, opposing functions have 

also been described; for example, NLRP12-dependent degradation of NOD2 results in the 

functional inhibition of NOD2300. This type of crosstalk is envisioned to expand the NLR 

regulatory network and their impact.

Finally, a common theme that emerges for NLR proteins (NLRX1, NLRC3, NLRP3, 

NLRP6, NLRP1) is the potential for binding to nucleic acid PAMPs and DAMPs. This 

flexibility would allow a single NLR to function both in host responses against pathogens as 

well as in host stress responses. Whether this is a shared function among many NLRs and 

what the divergent functional consequences and downstream signalling consequences of this 

may be will be of great interest to explore.

Obviously, there are numerous other areas of NLR biology that deserve further investigation, 

such as their therapeutic targeting and their precise roles in disease. We trust that the next 

decades of research on the NLR family will be just as exhilarating as the first two.
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Glossary

MHC class II transactivator (CIITA)
The master transcriptional regulator of MHC class II expression.

NACHT domain
NAIP, CIITA, HET-E (incompatibility locus protein from the fungus Podospora anserina) 

and TEP1 (telomerase-associated protein 1). The NACHT domain is a subgroup of the 

STAND class of P-loop NTPases, and is composed of four subdomains (NBD, HD1, 

WHD, and HD2). This domain allows for nucleotide-binding dependent conformational 

changes and oligomerization to influence diverse biological outcomes such as transcriptional 

activation, cytokine signalling, and pyroptosis.

Apaf-1
Apoptotic protease-activating factor 1. A protein of the STAND class of P-loop ATPases 

that is central to initiating apoptosis upon mitochondrial cytochrome C release into the 

cytosol. In addition to the STAND ATPase module, Apaf-1 contains an N-terminal CARD 

and C-terminal WD-40 repeats. The formation of the apoptosome and activation of caspase 

9 upon cytochrome C binding was a biochemical model that significantly influenced early 

NLR studies.

ASC
Apoptosis-associated speck-like protein containing a CARD. Also called PYCARD and 

TMS1. Adaptor protein that contains a PYD and CARD allowing for inflammasome 

recruitment of pro-caspase 1.

STAND
A subgroup of the AAA+ ATPase superfamily that includes both apoptotic (AP)-ATPases 

as well as NACHT ATPases. The model for STAND protein function involves ADP binding 

stabilizing a closed, inactive state, and exchange for ATP triggers a conformational change 

to the open, active state.

SXY cis-elements
A regulatory module comprising four elements: S or W box, X1 box, X2 box and the Y 

box. When bound by their cognate transcription factors, these sites allow for assembly of the 

MHC enhanceosome.

cryopyrin-induced autoinflammatory syndromes (CAPS)
Autoinflammatory diseases caused by gain-of-function mutations in NLRP3 (cryopyrin).

AIM2
Absent in melanoma 2. An innate immune sensor that detects cytosolic dsDNA resulting 

in inflammasome formation. AIM2 is composed of an N-terminal PYD and a C-terminal 

dsDNA-binding HIN domain distinguishing it from NLR inflammasome proteins.

NR100
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N-terminal domain of rodent Nlrp1 proteins, approximately 100 amino acids. Whereas 

human NLRP1 possesses an N-terminal PYD, mouse Nlrp1 proteins contain this sequence 

of unknown function. Alphafold predicts this region to be mostly disordered.

T3SS
Type III secretion system. A multiprotein membrane apparatus present in gram-negative 

bacteria used to inject proteins into host cytosol. Components of this nanomachine trigger 

NAIP/NLRC4 inflammasome assembly.

Inflammasomopathies
Autoinflammatory diseases resulting from gain-of-function mutations in inflammasome-

forming NLRs.

Anakinra
A short-acting human recombinant IL-1receptor (IL-1R) antagonist that can competitively 

inhibit the binding of IL-1β and IL-1α to IL-1R and block IL-1 signal transduction.

imprinting disorder
Diseases caused by genetic defects or epigenetic mutations affecting imprinted chromosomal 

regions or genes that are expressed in a parent-of-origin specific manner.

hydatidiform moles
A hydatifiform mole is a rare condition in which tissue around a fertilized egg that would 

normally have developed into the placenta instead develops as an abnormal mass of cells.

M2-like macrophages
M1’ and ‘M2’ are classifications historically used to define macrophages activated in 

vitro as pro-inflammatory (when ‘classically’ activated with IFNγ and LPS) or anti-

inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), respectively. However, 

in vivo macrophages are highly specialized, transcriptomically dynamic and extremely 

heterogeneous with regards to their phenotypes and functions, which are continuously 

shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too 

simplistic to explain the true nature of in vivo macrophages, although these terms are 

still often used to indicate whether the macrophages in question are more pro- or anti-

inflammatory.
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Figure 1: Nucleotide-binding and oligomerizing sensors as a universal strategy for cellular 
defense.
(A) The STAND ATPase module consisting of NBD, helical domain 1 (HD1), and winged 

helix domain (WHD) is utilized for cellular defense from prokaryotes to eukaryotes. An 

additional helical domain 2 (HD2) is present in many STAND proteins including a NACHT-

specific domain used in the NLR family of proteins. (B) The primary structural organization 

of human NLRs. Here, NLRs are grouped according to subfamily which is determined by 

the effector domain at the N-terminus. The variable domains associated with the NACHT 

domain are color coded and indicated in the domain legend below. CIITA exhibits cell-type 

specific alternative promoter usage, and this is designated with arrows. The oligomerized 

inflammasome for NAIP/NLRC4 is shown (PDB:3JBL)288. (C) Two representative members 

of the plant disease resistance proteins with either TIR or CC domains are shown. The 

NB-ARC module lacks the HD2 domain. The C-terminal sensor is an LRR domain for these 

proteins as well. The oligomerized resistosome for ZAR1 is shown (PDB:6J5T)327. (D) Two 

representative members of the recently described prokaryotic Avs protein family are shown. 

The effector domain in these proteins is a nuclease instead of a protein-recruitment domain, 

and the sensor domain is composed of tetratricopeptide repeats (TPR). The oligomerized 

complex for EcAvs4 is shown (PDB:8DGF)27. Cryo-EM structure representations in this 

figure were created with BioRender.com.
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Figure 2: Key historical events in the NLR field
The timeline highlights some of the key discoveries and conceptual advances that 

have influenced the field over the last two decades. There are clearly many important 

contributions to the field which are not included here, and we apologize to those who have 

been left out due to spatial constraints.
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Figure 3: Inflammasome activators and related disorders
The NLRP3, NLRP1, NLRC4, NLRP12 and NLRP6 inflammasomes with their intracellular 

mediators involved in activation are summarised. Dysregulated or chronically activated 

inflammasomes may lead to inflammatory diseases. NLRP3 is a sensor for numerous 

PAMPs and DAMPs responding to intracellular damage induced by pathogenic or sterile 

insults. NLRP1 is a sensor for ribotoxic stress and dsRNA. DPP8/9 inhibitors are 

activators of the NLRP1 inflammasome. The current model for NLRP1 inflammasome 

activation involves ASC-dependent recruitment of pro-caspase 1 by the UPA-CARD 

C-terminal fragment of NLRP1. The NLRC4 inflammasome detects T3SS bacterial 

proteins via NAIPs and can assemble an inflammasome with or without ASC. NLRP12 

inflammasome is assembled in response to Yersinia pestis and Plasmodium chabaudi. 

NLRP6 inflammasome detects commensal‐derived metabolites, LTA derived from Gram‐
positive bacteria. Abbreviations used: CINCA, chronic neurologic cutaneous and articular 

syndrome; NLRP3, NLR family pyrin domain containing 3; NEK7, NIMA related kinase 

7; LRR, leucine rich repeats; NBD, nucleotide-binding domain; PYD, pyrin domain; ASC, 

Apoptosis-associated speck-like protein containing a CARD; CARD, caspase recruitment 

domain; ROS, reactive oxygen species; FIIND, function to find domain; UPA, conserved 

in UNC5, the death-domain-containing protein PIDD and proteins of the ankyrin family; 

NLRC4, NLR family CARD domain containing 4; T3SS, type 3 secretory system, NAIP; 

neuronal apoptosis inhibitory protein.
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Figure 4: Regulatory Functions of NLRs
Different NLRs act as either positive or negative regulators in transcription, MAPK, NF-κB, 

and type I IFN signalling pathways and in autophagy. CIITA and NLRC5 induced by 

IFNγ acts as transactivators of MHC genes. NLRC5 also negatively regulates the NF-κB 

and type I IFN signalling pathways. In addition to NLRC5, several NLRs reduce either 

NF-κB or type I IFN signalling pathways or both. These NLRs are NLRC3, NLRX1, 

NLRP2, 4, 11, 12, and 14. On the other hand, NLRP7 may positively regulate NF-κB 

pathway, and NLRP2 promotes MAPK signalling. Likewise, NOD1 and NOD2 recognizes 

iE-DAP and MDP separately and interact with RIP2 to activate NF-κB and MAPK 

signalling pathway. Additionally, NOD2 recognizes MDP and recruits ATG16L1 to the 

plasma membrane to induce autophagy328. The right shows that NLRX1 interacts with 

TUFM to induce autophagy while NLRP4 interacts with Beclin-1 to inhibit autophagy. The 

right box shows NLRs that regulate development in the reproductive system. NLRP14 is 

the only NLRP molecule that contributes to spermatogenesis while other NLRPs including 

NLRP2,4,5,7,9,11 may regulate oogenesis and embryogenesis. NLR, NOD-like receptors; 

MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; TRAF6, 

tumor necrosis factor (TNF) receptor-associated factor 6; MHC, major histocompatibility 

complexes; STING, Stimulator of interferon genes; TBK1, TANK-binding kinase 1; IRF3, 

Interferon Regulatory Factor 3; iE-DAP, γ-D-glutamyl-meso-diaminopimelic acid; MDP, 

muramyl dipeptide; RIP2, receptor interacting protein 2; TUFM, Tu translation elongation 

factor of mitochondria.
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Figure 5: Structural Insights into NLR Activation
(A) Assembly of the NAIP/NLRC4 Inflammasome. The primary structure of NLRC4 

is shown, and color coding for domains is replicated in the structural depictions. The 

crystal structure of closed, autoinhibited NLRC4 is adapted from PDB:4kxf286. Interactions 

between the HD2 and LRR domains stabilize the closed conformation. The cryo-EM 

structure of activated NLRC4 and NAIP5 is adapted from PDB:6b5b290. Activated NAIP5 

(silver) with bound flagellin (black) initiates a conformational change in NLRC4 to an open, 

activated form which can activate downstream NLRC4 molecules. Finally, the cryo-EM 

structure of the assembled NAIP/NLRC4 inflammasome is adapted from PDB:3jbl288. A top 

view of the surface representation shows a single NAIP (gray) present in the complex with 

ten NLRC4 molecules. Red bars are added in the center of the complex to show the location 

of the NLRC4 CARDs which will recruit pro-caspase 1. (B) NLRP3 structural regulation 

preceding inflammasome assembly. The primary structure of NLRP3 is shown, and color 

coding is replicated in the structural depictions. The cryo-EM structure for autoinhibited 

NLRP3 alone is adapted from PDB:7pzc292. The left panel shows a surface representation 

of an oligomeric complex consisting of ten NLRP3 molecules. When the LRR domains 

are excluded from the image, the position of the PYDs within the “cage” shows how 

they are sequestered and prevented from initiating spurious inflammation. The cryo-EM 

structure of NLRP3 with bound NEK7 is adapted from PDB:6npy70. NEK7 interaction with 

the LRR domain of NLRP3 prevents NLRP3 from forming caged oligomers. All NLRP3 

structures shown here show NLRP3 in a closed, autoinhibited conformation bound to ADP. 

Presumably, NEK7 licenses NLRP3 to freely interact with activating signals or ligands to 

form an inflammasome. Upon activation, NLRP3 assembles into an inflammasome disc with 
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10–11 NLRP3 molecules329. A cartoon representation is shown as the PDB file is currently 

unavailable. Structural representations were created using VMD330.
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Table 1:
NLR Functions and Human Disease Associations

The table shows the 22 human NLRs with the first column indicating their principal function and the second 

column showing the best-characterized pathways by which they mediate their function (transcription, 

inflammasome, signalling pathway, etc.). Finally, the last column shows human diseases that have been linked 

to mutations in human NLRs. This list includes a spectrum of affected states ranging from polymorphisms that 

increase disease susceptibility to severe gain-of-function inflammasomopathies. We have attempted to be 

thorough, but we are aware that there may be some research that is not cited here.

NLR Function Pathway Diseases

CIITA MHC-II transcriptional regulator Regulation of MHC-II 
expression

Bare lymphocyte syndrome, Primary mediastinal B-cell 
lymphoma and Classical Hodgkin lymphoma, Multiple 
Sclerosis

NAIP Flagellin sensing, pyroptosis, 
inhibition of apoptosis

TAK1-dependent JNK1 
activation, inflammasome 
assembly

Increased susceptibility to legionella, spinal muscular atrophy

NOD1 PRR for DAP RIP2-dependent NF-κB 
and MAPK activation

Asthma, inflammatory bowel disease

NOD2 PRR for MDP and viral ssRNA, 
autophagy

RIP2-dependent NF-κB 
and MAPK activation

Crohn’s disease, Blau syndrome, atopic eczema, atopic 
dermatitis, susceptibility to leprosy and tuberculosis

NLRC3 Negative regulation of T cell 
activation and TLR response

Interaction with STING 
to reduce STING-TBK1 
association

Prevents colorectal cancer and hepatocellular carcinoma, 
M. tuberculosis infection, and attenuates lymphocytic 
choriomeningitis virus infection and experimental 
autoimmune encephalomyelitis (EAE).

NLRC4 PRR for flagellin and rod protein, 
pyroptosis, phagosome maturation

Inflammasome formation Increased susceptibility to bacterial infection, Multiple 
Sclerosis, autoinflammation with infantile enterocolitis 
(AIFEC), NOMID and FCAS4, stroke, colitis and colitis-
induced colon cancer.

NLRC5 MHC-I upregulation, regulates 
innate immune response

MHC-I regulation, type I 
interferon response

hepatocellular carcinoma, liver inflammatory injury, hepatic 
steatosis, Liver ischemia/reperfusion injury, lymphoid 
cancers, CNS infection, cerebral ischemia/reperfusion injury, 
glioma, multiple sclerosis, and epilepsy

NLRP1 PRR for MDP, anthrax lethal toxin Inflammasome formation Vitiligo, Alzheimer’s disease, celiac disease, Addison’s 
disease, type 1 diabetes, autoimmune thyroid disorders, 
systemic lupus erythematosus, systemic sclerosis, giant 
cell arteritis, congenital toxoplasmosis, rheumatoid arthritis, 
corneal intraepithelial dyskeratosis

NLRP2 Negative regulation of NF-κB, 
embryonic development

Inflammasome formation Beckwith-Wiedemann syndrome, Female infertility, hepatic 
steatosis

NLRP3 PRR for PAMPs, DAMPs, and 
irritants

Inflammasome formation Cryopyrin-associated periodic fever syndrome, gout, type 
1 diabetes, celiac disease, psoriasis, Multiple Sclerosis, 
increased susceptibility to HIV-1 infections, Inflammatory 
bowel diseases, type 2 diabetes

NLRP4 Negative regulation of type I 
interferon signaling by dsRNA, 
DNA, or viral infection. Reduces 
autophagy in response to bacterial 
infection

DTX4-dependent TBK1 
degradation, beclin-1 
dependent autophagy

Streptococcus infection, viral infection, Asthma

NLRP5 Embryogenesis Mitochondrial function, 
ROS

Female Infertility

NLRP6 Negative regulation of NF-κB Inflammasome formation Colitis and colon cancer, non-alcoholic fatty liver disease, 
alcoholic hepatitis, hepatocarcinoma

NLRP7 PRR for lipopeptide Inflammasome formation Recurrent hydatidiform moles, testicular seminoma, 
endometrial cancer, colon cancer

NLRP8 Unknown Unknown Expressed in ovaries, testes and preimplantation embryos
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NLR Function Pathway Diseases

NLRP9 Unknown Unknown Expressed in ovaries, testes and preimplantation embryos

NLRP10 Adaptive immunity by dendritic 
cells

Unknown Increased susceptibility to bacterial infection, candida 
albicans, atopic dermatitis, Asthma, EAE

NLRP11 Association with MAVS during 
viral infection, inhibits type I 
interferon signaling

NLRP3 Licenses NLRP11 
for inflammasome 
activation

Cryopyrin-associated periodic syndrome (CAPS)

NLRP12 Negative regulation of NF-κB Inflammasome formation FCAS2, Atopic dermatitis, Glioblastoma

NLRP13 Unknown Unknown Unknown

NLRP14 Spermatogenesis Unknown Spermatogenic failure

NLRX1 ROS generation, autophagy and 
mitophagy

blocks STING-TBK-
mediated antiviral 
responses, negatively 
regulates NF-κB pathway 
through TRAF6

Increased susceptibility to chronic hepatitis B, Viral 
infections, Listeria monocytogenes infection, tumor 
suppressor in cancer, negatively regulates Group A 
Streptococcus (GAS) infection
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