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Abstract

Objective: To compare verbal fluency scores derived from manual transcriptions to those 

obtained using automatic speech recognition enhanced with machine learning classifiers.

Methods: Using Amazon Web Services, we automatically transcribed verbal fluency recordings 

from 1400 individuals who performed both animal and letter F verbal fluency tasks. We 

manually adjusted timings and contents of the automatic transcriptions to obtain “gold standard” 

transcriptions. To make automatic scoring possible, we trained machine learning classifiers to 

discern between valid and invalid utterances. We then calculated and compared verbal fluency 

scores from the manual and automatic transcriptions.

Results: For both animal and letter fluency tasks, we achieved good separation of valid versus 

invalid utterances. Verbal fluency scores calculated based on automatic transcriptions showed high 

correlation with those calculated after manual correction.

Conclusion: Many techniques for scoring verbal fluency word lists require accurate 

transcriptions with word timings. We show that machine learning methods can be applied 

to improve off-the-shelf ASR for this purpose. These automatically derived scores may be 

satisfactory for some applications. Low correlations among some of the scores indicate the need 

for improvement in automatic speech recognition before a fully automatic approach can be reliably 

implemented.
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1. Introduction

Desiderata for remote screening methods for dementia include efficiency, low cost, wide 

accessibility, and the possibility of frequent repetition. A sufficiently accurate technique 

would identify individuals in need of further clinical or neuropsychological evaluations, 

biofluid testing, or imaging. Incorporating automatic methods such as automatic speech 

recognition (ASR) into neuropsychological tests can facilitate the processing and analysis 

of large amounts of data, allowing for the possibility of rapidly and cheaply stratifying 

individuals on the basis of dementia risk. Some research has shown utility of incorporating 

ASR to automatically calculate scores from verbal fluency (König et al., 2018; Pakhomov 

et al., 2015; Tröger et al., 2018), logical memory tests (Lehr et al., 2012), and spontaneous 

speech (Tóth et al., 2017). Though these studies show that scores derived from ASR perform 

similarly compared to manually derived scores, complex training or post processing is often 

needed in order to obtain accurate transcriptions, which may be due to the relatively low 

sample sizes (n ≤ 165). Furthermore, there is room for investigating the prognostic value 

of automatically derived scores as the studies mentioned above only classify patients in 

terms of severity of cognitive impairment. Finally, previous studies have investigated ASR 

scores in languages other than English. Replication of such studies in English is important 

to determine which features are independent of the languages spoken. Here, we evaluate the 

performance of off-the-shelf automatic speech recognition enhanced with machine learning 

classifiers to calculate an assortment of verbal fluency scores and compare them to manually 

derived scores.

The neuropsychological test under study in this work is the verbal fluency task (VFT). 

VFTs are brief cognitive exams where an individual is instructed to list words that belong 

to a specific category, usually within a 60 second time frame. The most common types 

of verbal fluency tasks are semantic (e.g., animals) or initial letter (e.g., letter “F”). The 

standard metric of VFTs is the total count of valid responses, or raw score. Researchers and 

clinicians also quantify errors such as intrusions and repetitions. Raw scores and error counts 

distinguish many varieties of cognitive decline (Butters et al., 1987; Monsch et al., 1992; 

Obeso et al., 2012; Perez et al., 2020).

Some novel methods of scoring VFTs require measurement of valid word response times. 

One such method involves the coarse representation of decline in word production over 

time by segregating raw counts into time intervals. Compared with normal control (NC) and 

Alzheimer’s disease (AD) groups, individuals with vascular dementia (VAD) or Parkinson 

disease (PD) exhibit disproportionately greater word production in the first quartile (15s) 

epoch among all letter fluency cues (A, F, S) (Lamar et al., 2002). Sextile (10s) epochs 

may also be used for partitioning the task. Raw score of the first three sextile intervals 

of semantic fluency show additive value in explaining differences among AD and mild 
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cognitive impairment (MCI), with raw score of the 3rd interval of both semantic and letter 

fluency also being complementary in predicting MCI and subjective cognitive impairment 

(SCI) (Fernaeus et al., 2008). Similar results by Linz (2019) show significantly lower total 

output and lower-frequency words in the third interval when comparing MCI with SCI and 

healthy controls (Linz et al., 2019).

Other scores have been drawn from the observation that VFT performance relies on 

separable “clustering” and “switching” components. These components define a pattern 

similar to foraging in which an individual will repeatedly exploit a sub-category (clustering) 

and change sub-categories when yield is diminished (switching) (Troyer et al., 1997). 

Various methods for calculating clustering and switching scores employ the use of 

semantics, phonology, or orthography (Bushnell et al., 2022; Goñi et al., 2011; König et 

al., 2018). In this work, we employ the slope difference technique for identifying clusters 

and switches based on word latencies (i.e., onset times) (Bousfield & Sedgewick, 1944; 

Gruenewald & Lockhead, 1980). Previous work by our group shows that, among the 

well-known methods used to calculate clustering and switching scores, timings derived 

from slope difference with animal fluency are among the best predictors of progressive 

cognitive impairment (Bushnell et al., 2022). Further, clustering scores as defined by the 

slope difference algorithm differentiate carriers of apolipoprotein E ε4 from non-carriers, 

who produce larger clusters and access those clusters faster (Rosen et al., 2005). Because 

the slope difference technique requires only latencies, the actual words generated in the VFT 

do not need to be explicitly recognized, making it well-suited for automatic transcriptions, if 

valid and invalid utterances may be discerned. While traditional methods of calculating 

clustering scores require recognition of links between non-sequential words, the slope-

difference approach can only identify linkages between consecutive words. We refer to 

sequences of linked words as chains, as the term cluster in related work is somewhat more 

restrictive.

The elapsed times between sequential valid words, known as inter-word intervals (IWIs), 

have been another source from which to draw novel scores. In previous work, we used IWIs 

to derive a speed score; this is a modified raw score in which a higher number represents 

more words with faster response times. In survival analyses evaluating time to incident 

cognitive impairment, speed scores make independent contributions to variance and improve 

concordance (Ayers et al., 2022). Other work employs a simple regression model to predict 

IWIs from word indices (numerical order in which words are listed). According to Mayr 

(2002) and Mayr and Kliegl (2000), the slope coefficient of the regression measures the 

semantic search that increases in difficulty as time elapses, resulting in longer IWI with 

each produced word. The intercept of the model indexes time-invariant features of the task 

that relate to its difficulty (both task difficulty and factors specific to the individual, such as 

formulation and adherence to a search strategy and psychomotor speed). Utilizing this same 

technique to calculate regression parameters, we found in previous work that the intercept 

has potential value for predicting acute decline in cognition (Bushnell et al., 2022).

Here, we investigate the feasibility of calculating verbal fluency scores directly from the 

telephone-administered raw audio in both animal and letter fluency tasks. We obtained 

automatic transcriptions from Amazon Web Services (AWS). We manually corrected the 
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timings and contents of each utterance to generate “gold standard” transcriptions for 

comparison. Through the use of machine learning, we identified valid utterances in the 

AWS transcriptions. We automatically calculated verbal fluency scores on both sets of 

transcriptions. For the manual transcriptions, we used utterances manually selected as valid. 

For the automatic transcriptions, we used utterances designated as valid by the machine 

learning classifiers. Using correlations, we compared the scores from the two sets of 

transcriptions.

2. Methods

See Figure 1 for a diagram showing the steps in the analysis.

2.1 Subjects

Utilizing the same dataset employed in two other published analyses (Ayers et al., 2022; 

Bushnell et al., 2022), we selected 703 cases of incident cognitive impairment (ICI) 

from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study 

(Howard, 2013; Howard et al., 2005; Wadley et al., 2011). We determined ICI on the basis 

of longitudinal scores of the Six-Item Screener (SIS), a brief cognitive exam with three 

temporal orientation questions and a three-word delayed recall (Callahan et al., 2002). Each 

case was matched to a control according to age, sex, race, geographic region, and education 

for a total of 1406 subjects. All subjects performed both animal and letter F fluency tasks 

at baseline prior to detection of any cognitive impairment. Participants were stratified by 

fluency task performance to facilitate partitioning them into comparable training and test 

sets. The size of the training and test sets were 1200 and 206, respectively. Because some 

scores can only be calculated based on multiple responses, we then removed any subject 

whose actual raw score was below 2 for either verbal fluency task. The training and test sets 

were reduced to 1196 and 204, respectively. Within the training set, a validation set with 200 

subjects was used for pretraining.

2.2 Data pre-processing

2.2.1 Transcriptions—We obtained a preliminary transcription of each verbal fluency 

recording through AWS. We provided AWS with lists of candidate animals and F-words to 

facilitate accurate transcriptions (both lists are available by request from the corresponding 

author). To obtain manual transcriptions, we used the ASR transcriptions as a basis and 

implemented a series of steps to create accurate transcriptions. First, we employed a 

voice activity detector (VAD) to identify areas in which the ASR failed to detect speech 

for review. Next, we utilized a custom MATLAB (Natick, MA) transcription tool to 

manually correct both the timings and contents of the ASR transcriptions, also reviewing 

the missed utterances identified by the VAD. Our transcription tool displays the audio 

waveform and permits selection of a window for audio playback. A transcription for a 

segment of audio may then be entered and is displayed above the waveform. Utterance 

timings are automatically extracted based on the selection window. A human rater listened 

to every audible portion of each recording. Utterances that were difficult to understand 

were resolved through informal consensus among the study personnel. The first author 

(JB) performed extensive quality control, making changes or consulting the lead author 
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(DGC) for questionable items. Test administrator utterances were identified and marked. For 

automatic identification of repetitions, we created ancillary lists in which each valid word 

was paired with a canonical form (e.g., “hippos” was paired with “hippopotamus”). Within a 

single list, we considered any second instance of a valid word with the same canonical form 

to be a repetition. Intrusions were identified on a per-transcription basis and marked as such 

in the manual transcriptions. For the automatic transcriptions, we presumed that intrusions 

were filtered out by the classifiers (see section 2.3), but we could not automatically count 

them.

2.2.2 Alignment—To label utterances from the original ASR transcriptions as valid or 

invalid, we first aligned them with the manually transcribed words on the basis of timings. 

Iterating through each known valid word within the manually corrected transcriptions, we 

considered an utterance from the ASR transcription to be aligned with an utterance from the 

corrected transcription if at least 50% of the briefer utterance overlapped the time interval 

of the longer utterance. If multiple ASR words were aligned with the same valid word, the 

ASR words were then concatenated and considered as a single utterance. This step allowed 

us to place nonsensical sequences from the ASR transcription, such as “Iraq tuna,” into 

alignment with valid material (“a raccoon”). ASR material that aligned with valid utterances 

was labeled as valid while unaligned material was labeled as invalid. We then concatenated 

any sequential, invalid ASR words into a single utterance if they were contiguous in time 

(i.e., the end time of the first was identical to the start time of the second). For sample 

alignments, see tables e1 – e4 in the supplementary material.

2.3 Identification of Valid Utterances and Repetitions

We trained Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) 

classifiers to discern between valid and invalid utterances. To train and apply these 

classifiers, we generated four different feature matrices. Thus, for each fluency task, we 

fit 12 classifiers (3 architectures × 4 feature matrices). Classifiers were fit using R, version 

3.5.1 (R-Core-Team, 2018).

The first feature matrix consisted of a simple type-token matrix. The rows of the matrix 

represented the ASR utterances of all transcriptions, while the columns represented the set 

of all transcribed words from the ASR (types). A numerical entry in the matrix indicated the 

number of times a given word occurred in an utterance (tokens). The second feature matrix 

was a term frequency-inverse document frequency (tf-idf) matrix derived through a simple 

transformation of the first matrix (Jurafasky & Martin, 2009). The third feature matrix 

consisted of phonological overlap measurements between each utterance and each feature. 

Because utterances often consisted of more than one transcribed word, we evaluated the 

phonological overlap between any single word within an utterance and each possible feature. 

In addition to single words, we also examined the overlap between the entire utterance 

and each feature. The matrix entry for a given row (utterance) and column (feature) was 

the maximum of the phonological overlap scores thus obtained. The fourth feature matrix 

consisted of a simple element-wise sum of the tf-idf and phonological overlap matrices.
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We fit the NB classifiers using the naivebayes library (0.9.7) for R (Majka, 2019). The 

hyperparameters included Laplace smoothing of 1.0 and use of a Poisson distribution for 

predictor variables consisting only of positive integers. For the RF classifier, we employed 

the ranger library (0.13.1) (Wright & Ziegler, 2017). Each RF classifier included 500 

trees, placing no limit on depth, with mtry (number of features to randomly select for 

consideration at each branch point) set equal to the square root of the number of features. 

We fit the SVM classifiers using the e1071 library (1.7.9) (Meyer & Wien, 2015), setting 

both the cost and gamma hyperparameters to 1.0.

For animal fluency, the training set matrices (with the validation set included) contained 

33,172 rows. The test set matrices contained 5,732 rows. Both matrices contained 2,417 

columns. For letter fluency, the training set matrices (with the validation set included) 

contained 28,451 rows. The test set matrices contained 4,762. Both matrices contained 

2,533 columns. It should be noted that for training the classifier we excluded any manually 

transcribed word (i.e., valid VFT word) in which there was not an aligned ASR utterance. 

(Because we were training based on the ASR transcription, there was no way to include 

information that was missing). We report ASR quality scores in the results section. We 

removed material marked as invalid by the classifier prior to calculating verbal fluency 

scores from the ASR transcriptions. Using the same ancillary lists for identifying repetitions 

in the manual transcriptions (see section 2.2.1), we marked and removed repetitions if a 

previous word matched any form (e.g., inflection) of the current word. Upon removing 

repetitions, we obtained the final version of the automated transcriptions. We plotted 

receiver operating characteristic (ROC) curves and calculated area under the ROC curve 

(AUC).

For each VFT and each feature matrix, we generated two ensemble classifiers by combining 

the output from the NB, RF, and SVM classifiers. The first ensemble consisted of a simple 

average of output from the three classifier architectures. The second ensemble consisted 

of a weighted average, in which the weights were derived by fitting a simple logistic 

regression with the output from the three classifiers as independent variables and validity as 

the dependent variable.

2.4 Evaluating and Improving ASR Accuracies

To assess the possibility of calculating scores based on word semantics (e.g., traditional 

clustering and switching scores), we calculated three types of word error rates (WER) using 

the formula WER = (S+D+I)/N, where S is substitutions, D is deletions, I is insertions, and 

N is the number of tokens based on the manual transcriptions. First, we report the standard 

WER derived from our aligned automatic and manual transcriptions. Second, Following 

König et al. (2018), we calculated the verbal fluency error rate (VFER) which quantifies 

word-level errors based only on valid verbal fluency words. Initially, we converted each 

manually transcribed word to the canonical form and ASR utterance where possible. To 

simplify the calculation of number of errors (numerator), we then calculated the difference 

of the word list sets, using each set as the reference to obtain two sets for each row in 

the aligned transcription. The set with the maximum length represents the total number of 

errors between the ASR aligned utterance and the manually transcribed utterance. If the 
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ASR software missed the word altogether, the VFER for the aligned utterance was weighted 

by the total number of words missed. The denominator is the total number of words in the 

manually transcribed utterance.

We calculated a third type of WER which we call phonemic error rate (PhER). This error 

rate captures phonemic-level similarities between the manual and automatic transcriptions, 

providing additional information for how proximate the ASR software was in transcribing. 

Here, we left both the ASR and manual utterances in their original, potentially inflective 

state. Initially, we phonetically aligned the manually transcribed utterance with their aligned 

ASR utterance. We then counted the number of instances where the phonemes were not 

identical (substitutions) or where one phoneme sequence had a phoneme not present in the 

other (insertions and deletions). Similar to the VFER, the PhER for the aligned utterance 

was weighted by the total number of phonemes missed if the ASR software missed the word 

altogether. We then divided the number of phoneme errors by the total number of phonemes 

in the manually corrected transcription. For details of the phonological alignment algorithm, 

see supplementary materials of Bushnell et al (2022).

In order to improve the VFER, we implemented a phonologically based algorithm (identical 

to the alignment for PhER) to map each aligned ASR utterance to its closest phonological 

neighbor from the list of valid verbal fluency words. Next, we converted the mapped words 

and the human transcribed words to their canonical form. Finally, we recalculated VFER.

2.5 Verbal Fluency Scores

2.5.1 Raw Scores—Raw score was calculated by counting the number of utterances in 

each automatic transcription (after processing). Along with total raw score, we calculated 

raw scores within six 10s (sextile) epochs. The epoch to which a word belonged was based 

on onset time.

2.5.2 Clustering and Switching Scores—We computed clustering and switching 

scores by means of the slope difference algorithm, a time-based method that relies only on 

word onset times and indices. Following Bousfield and Sedgewick (1944), we plotted each 

subject’s verbal fluency task using the onset times as the independent variable and the index 

of the onset times as the dependent variable. To this reference curve, we fit an exponential 

curve to the latencies of valid words following the formula y = c 1 − e−mt , where c and

mare parameters and t represents the onset times of the valid words. Using a custom 

MATLAB program, we determined values of c and m to minimize the sum of squared 

deviations between the exponential curve and the reference curve. To determine if sequential 

words are related, the program compares the slope between the exponential curve and 

reference curve at the halfway point between the two words. If a word is produced more 

quickly than predicted by the fitted exponential curve, the slope difference is positive, and 

the words are considered “linked.” A negative slope difference indicates absence of a link, or 

a “switch.” Once the links are established, we count the number of switches and measure the 

lengths of the chains. We report the average of these lengths as a type of clustering score.
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2.5.3 Inter-word Intervals—Following Mayr (2002) and Mayr and Kliegl (2000), we 

fit a simple linear regression to every VFT, using IWI as the dependent variable and the 

index of the IWI as the independent variable (IWI sx + b). Only IWIs that occurred between 

consecutive, valid words were considered.

Another score computed from the set of IWIs is the speed score. These scores were 

computed by taking the 4th root of all IWIs, placing them on the interval [0,1] with min-max 

normalization, and subtracting the result from 1.0 (such that faster transitions receive higher 

scores). An individual’s speed score was the sum of these transformed IWIs. Following 

Bushnell et al. (2022), we also calculated speed scores separately for switch and edge 

transitions as determined by the slope difference algorithm.

2.6 Statistical Analyses

We compared scores derived from the processed ASR transcriptions (i.e., utterances 

determined to be valid by the best classifier and their onset times) to those derived from 

the manually corrected transcriptions. The main comparison was Pearson correlation. Means 

and standard deviations were calculated on the signed and unsigned (i.e., absolute value) 

differences between the estimated and actual scores (Actual – Estimated). Because the c and 

m parameter ranges were extreme, we used Spearman correlation and summarized central 

tendency and dispersion with median and interquartile range. The signed and unsigned 

differences were performed after applying a z-transformation to each distribution. All 

statistical analysis were conducted in R.

To rigorously test the utility of our automatically derived scores for clinically relevant 

predictions, we performed an analysis like the one we presented in Bushnell et al. (2022), 

using the statisticalrethinking library (McElreath, 2020). We selected the variable sets that 

yielded the best fit in the previously published work and fit two Bayesian logistic regression 

models for each variable set: one in which the variables were manually derived and one 

in which the variables were automatically derived. The “badness of fit” for each model 

was quantified using the Watanabe-Akaike information criterion (WAIC), and the WAIC 

values were used to compare each pair of models in terms of “weight.” Models that fit the 

data better receive a higher weight. In addition, we calculated AUC, sensitivity, specificity, 

negative predictive value (NPV), positive predictive value (PPV), and F1 score. We 

performed the Bayesian logistic regressions on animal and letter fluency tasks separately, 

then again with the fluency tasks combined.

3. Results

WER for animal fluency was 42.9%, with an average of 2.2 insertions, 6.0 deletions, and 

12.0 substitutions per transcription. For letter fluency, WER was 41.8%, with an average 

of 2.8 insertions, 5.3 deletions, and 11.7 substitutions per transcription. The VFERs for 

animal and letter fluency were 39.3% and 37.9%, respectively. With the implementation 

of the phonological mapping algorithm for error correction, the recalculated VFERs were 

25.6% and 32.2%. The PhER for animal fluency was 23.7% and for letter fluency was 

19.5%. Filled pauses (e.g., “um”) were common, consisting of 12.8% of the overall sample 
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from AWS animal transcriptions and 11.4% of the overall sample from AWS letter F 

transcriptions.

The RF classifier trained with the combined phonological overlap + tf-idf matrix gave the 

best AUC for both animal (0.9649) and letter F fluency (0.9579). The balanced accuracy for 

the identification of repetitions for animal fluency was 0.81 (Pearon’s r also 0.81) and was 

0.82 (Pearson’s r 0.77) for letter fluency.

Pearson’s correlations for animal fluency raw score was 0.91 and letter fluency was 0.88. 

The maximum epoch correlation for animal fluency was 0.90 on the second sextile. The 

minimum epoch correlation for animal fluency was 0.81 on the fifth sextile. Maximum 

epoch correlations for letter fluency occurred for the first sextile at 0.87. Minimum epoch 

correlation for letter fluency was 0.79 on the fourth sextile.

When comparing Bayesian logistic models fit with manual vs. automatically derived scores, 

the proportions of weight assigned to the automatic animal fluency, letter fluency, and 

combined Bayesian logistic regression models were 4.5%, 0.9%, and 6.9%, respectively.

4. Discussion

Using automatic methods such as automatic speech recognition for remote-capable 

neuropsychological tasks could help in the early detection of cognitive decline. Such 

methods may also aid in directing individuals to the next step in evaluation, an important 

issue given the potentially broad selection of other tests, all with varying levels of cost and 

invasiveness. Ongoing improvements in ASR will further improve estimates of scores and 

may soon converge with those based on manual transcriptions. However, obtaining perfect 

transcriptions may require additional machine learning techniques for speaker diarization, 

classification of utterances, and quantification of repetitions and intrusions.

In this study, we enhanced off-the-shelf ASR with machine learning algorithms to 

identify valid material. We aimed to assess the accuracy of verbal fluency scores 

between automatically and manually transcribed audio recordings. We processed remotely 

acquired audio recordings from the REGARDS dataset with ASR to automatically obtain 

transcriptions for both animal and letter F fluency. To label the ASR utterances as valid or 

invalid, we first aligned the ASR utterances with valid words in the corrected transcriptions 

based on time and then trained classifiers to separate valid and invalid utterances. 

Repetitions were identified, quantified, and removed (for scoring purposes) through 

comparison of canonical forms of items in each transcribed list. Manually transcribed 

versions were obtained by correcting both the time and contents of the ASR transcriptions. 

We then calculated scores for the raw ASR and manually corrected transcriptions. Scores 

derived from the two types of transcriptions on the test set were then compared.

4.1 ASR Accuracies

VFER rates were somewhat better than WER, suggesting that fewer errors occurred in the 

valid VFT utterances. VFER was diminished further by our phonological mapping technique 

but remained sufficiently high (>25%) to suggest that off-the-shelf ASR technology paired 
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with our method of automatically correcting utterances would be insufficient for calculating 

scores that require explicit, accurate word identification. The discrepancy between our 

animal fluency VFER and the error rate acquired by König et al. (2018) is likely due to 

different ASR technology used in transcribing audio. The ASR software we used did not 

provide a list of possible candidate words with confidence scores from which to choose, 

producing a less refined output from the ASR compared with König et al. The extent to 

which the automatic alignment of utterances contributes to the discrepancy is unknown but 

may also be a factor in higher VFER.

With our simple phonological mapping algorithm, we observed a marked decrease in VFER 

for animal fluency and a notable, but smaller, decrease in VFER for letter fluency. The 

error rate with phonological mapping for semantic verbal fluency suggests that calculating 

semantic-based scores could be possible as this error rate is close to the error rate achieved 

by König et al. The VFER for letter fluency suggests that the accuracies may still be 

insufficient but further investigation is necessary.

The PhER for both fluency tasks indicates that ASR provides a similar sounding word or 

phrase in place of the correct word. This similarity makes possible the improvements in error 

rates through phonological mapping.

4.2 Post hoc Sensitivity Analysis of Repetitions

The balanced accuracies for the classification of repetitions indicate there is room for 

improvement. The method we employed is straightforward but depends on the accuracy of 

the ASR. To see the influence repetitions had on scores, we simulated perfect repetition 

detection on the valid utterances identified by the best classifier by recalculating all scores 

using the manually identified repetitions. The average change in correlation across all scores 

for animal and letter fluency was an increase of 0.01 and 0.025, respectively. The maximum 

increase in correlation for animal fluency was 0.038 and for letter fluency was 0.081 (both 

for switch speed). Any improvement in ASR will directly aid the identification of repetitions 

in a model such as ours. Alternatively, ASR could be further improved with methods 

from digital signal processing for automatic identification of repetitions. However, for the 

most part, improving recognition of repetitions will lead only to modest improvements in 

automatic scoring.

4.3 Classifiers

For both fluency tasks, the best AUC was obtained by fitting an RF classifier with the 

combined phonological overlap + tf-idf matrix (animal train/test: 0.9809/0.9649; letter F 

train/test: 0.9732/0.9579). With the exception of using the type-token feature matrix, the RF 

models outperformed all other classifiers and ensembles.

Though there is nothing inherently different about the identification of letter F words and 

animal words from an ASR standpoint (as supported by the ASR quality scores in the results 

section), the slight difference in AUC may be explained by the generally smaller letter F 

dataset (due to lower raw scores on average) and the larger set of candidate F-words (867 

letter F vs. 433 animal words).
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4.4 Bayesian Logistic Regression Models

The Bayesian logistic regression models show that the ASR-derived scores have similar 

AUCs compared to the same scores derived from manual transcriptions. However, the 

weights of each model indicate that the predictive value of the ASR-derived scores is 

severely weakened when compared to their manual counterparts. We would not expect the 

best possible automatically derived scores to perform better than manually derived scores. 

Given perfect automatically derived scores, the models should receive equal WAIC scores, 

and each model would therefore receive 50% of the weight in the model comparison.

4.5 Interpretation of Results

We find that off-the-shelf ASR, when accompanied by our RF valid-item recognizer and our 

automatic method for identifying repetitions, yields scores that correlate strongly with those 

obtained through labor intensive manual transcription. Among the highest correlations for 

both fluency tasks are raw scores (with epochs), repetitions, and the speed score. Perhaps 

the simplicity of the calculation required for these scores contributes to the high correlation. 

The number of switches (according to the slope difference algorithm) and edge speed also 

showed high correlations for both VFTs. Mean chain lengths of both verbal fluency tasks 

have low correlations. These scores require correct identification of multiple consecutive 

words and misidentification of any valid item could split a single chain into separate, smaller 

chains. Similarly, misidentification of an invalid item could lead to the joining of two 

short chains. This score would require still higher accuracies of valid word identification to 

make it useful for detecting or discerning among diseases. Animal M&K (Mayr and Kliegl) 

correlation scores were low in comparison to other scores, including letter F M&K scores. 

This inconsistency may be due to outliers within the animal fluency task.

König, et al. (2018) performed a similar comparison of animal fluency scores derived 

from automatic transcriptions to those from manually corrected transcriptions, with some 

comparable results. We report very similar correlations for raw score (0.91 compared to 0.92 

in König et al.) and number of switches (0.79 vs. 0.80). We did not observe such a strong 

correlation for the clustering scores we reported (0.57 vs. 0.86), but we employed a different 

method that only considered the speed with which consecutive words were generated. (In 

previous work, we observed that this method yielded better predictions of future of cognitive 

impairment than other clustering methods, but we did not evaluate the method described 

by König et al.) There were several other key differences between the two studies. First, 

our participants spoke English rather than French. Thus, to the extent that the results agree, 

we have replicated König et al.’s work in an additional language. Such replication will 

be necessary to determine which aspects of this line of research are language-independent 

and to develop language-specific tools for evaluating cognitive impairment in speakers of 

different languages. Second, we report similar results for letter fluency as well as animal 

fluency. Third, apart from having a larger sample size, our participants were recruited in 

the context of an epidemiological study that sampled individuals of two races across the 48 

contiguous United States. The ethnic and geographic heterogeneity might have provided a 

more conservative evaluation of the capability of current off-the-shelf ASR techniques for 

this purpose. Fourth, we employed AWS rather than Google Cloud Platform ASR. Although 

we did acquire transcriptions from Google at a cost similar to that for AWS, we found that 
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the timings were not sufficiently accurate to use for aligning with our manual transcriptions. 

Although it might have been possible to perform a purely phonological alignment, we would 

have been forced to rely on the timings from our manual transcriptions. This approach would 

not have suited our purpose, as the non-traditional scores we were evaluating depended on 

accurate timings and we wished to evaluate the ASR system’s capacity to measure them. 

Finally, our data set did not include any individuals who were thought to be impaired at the 

time the recordings were made. One expects that if two scores are influenced by severity 

of cognitive impairment, inclusion of cognitively impaired individuals may strengthen the 

correlation between the two scores. Some of the scatter plots shown in Figure 1 (König et 

al., 2018). reveal a strong tendency for individuals within a diagnostic category to cluster. 

This tendency could have strengthened the correlations in that work.

4.6 Study Strengths

There are many robust characteristics of this study. The generous sample size offers 

the ability to train the classifiers on a large portion of the data and to preliminarily 

apply the model to a validation set, yielding a more generalizable model with excellent 

performance on the held-out test set. For each recording, we obtained highly accurate 

manual transcriptions using software which allowed us to quickly replay less intelligible 

words, identify test administrator utterances, and mark timings with the help of visualization 

of each waveform. Our study applied two types of verbal fluency tasks. Similar results 

were obtained on both VFTs, suggesting that our approach is useful for both tasks. We also 

showed that a variety of features from the literature can be calculated using this automatic 

method because precise identification of lexical content is not required for scoring. Finally, 

the audio used was recorded over the telephone and our results directly pertain to remote 

administration.

4.7 Limitations

The main limitation of this study is the investigation of only one ASR system. There 

are numerous speech-to-text packages, likely with varying accuracies in both timings and 

content. Other packages such as Google Cloud Platform, Microsoft Azure, Dragon, and 

IBM Watson may perform better or worse than AWS. It may be possible to improve 

on our results by integrating output from multiple classifiers. Another limitation is that 

ASR accuracy of our application may be affected by factors of brain health reflected by 

ICI group membership. For example, individuals with AD have a greater proportion of 

voice breaks (König et al., 2015; Meilán et al., 2014). Furthermore, with reference to 

healthy controls, individuals with mild cognitive impairment (MCI) have weaker speech 

when controlling for age, greater shimmer (instability in amplitude of voice), and greater 

dysphonia (Themistocleous et al., 2020). The presence of these differences could lead to 

more errors in ASR transcriptions, yet if they were accurately measured, they could provide 

additional prognostic features. Because the SIS is simple and brief by design, the ICI group 

is almost certainly heterogeneous, and the extent of speech irregularities is unknown.
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5. Conclusion

Further advances in ASR are needed to perfect the automatic scoring of verbal fluency 

and other cognitive tests. The value of current off-the-shelf ASR is enhanced by simple 

machine learning techniques. Much work remains to be done to determine the utility 

of automatic and timing-based scores for diagnosis and prognosis. The incorporation of 

multiple ASR packages into an ensemble may yield improvements. We anticipate that 

analysis of voice quality and response times will add to standard neuropsychological test 

scores and that ongoing improvements in ASR will lead to widespread adoption of these 

additional measures.
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Highlights

• We enhanced off-the-shelf ASR with classifiers to score verbal fluency tasks

• Many novel scores utilizing timings of words can be calculated automatically

• We achieved high AUCs for the identification of valid words

• Most automated scores correlate strongly with manual scores
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Figure 1: Logical flow of analysis
AWS=Amazon Web Services Transcribe tool, PhER=phonological error rate, 

PO=phonological overlap, TF-IDF=term frequency-inverse, VFER=verbal fluency error 

rate, WER=word error rate.
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Figure 2: ROC Animal
The receiver operating characteristic (ROC) curve for the detection of valid utterances by the 

best (random forests) classifier.
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Figure 3: ROC Letter
The receiver operating characteristic (ROC) curve for the detection of valid utterances by the 

best (random forests) classifier.
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Figure 4: Slope Difference Animal
The jagged magenta curve represents the total number of words generated over the 60 

second time period. The smooth cyan curve is the fitted exponential curve. The chains 

of animals linked based on positive slope difference are: [dog, cat, rat, elephant], [tiger, 

giraffe], [ostrich], [coyote, wolf, turtle], [alligator], [snake, bear, mule, horse], [raccoon, 

squirrel, rabbit, eagle], [deer], [duck, goose, pigeon, dove]. The switching score is 8 and the 

mean chain size is 2.67.
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Figure 5: Mayr and Kliegl Animal Regression
Shown are the Mayr and Kliegl linear regressions using the estimated transcriptions and 

manual transcriptions from a sample verbal fluency task. The dependent variable is the 

inter-word intervals (IWIs) and the independent variable is the index of the IWIs.
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Figure 6: Mayr and Kliegl Letter F Regression
Shown are the Mayr and Kliegl linear regressions using the estimated transcriptions and 

manual transcriptions from a sample verbal fluency task. The dependent variable is the 

inter-word intervals (IWIs) and the independent variable is the index of the IWIs.

Bushnell et al. Page 24

Speech Commun. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bushnell et al. Page 25

Table 1.

REGARDS participant data

All (n=1400) Controls (n=702) ICI (n=698)

Age (years) 75.00 (8.68) 74.98 (8.61) 75.01 (8.76)

Sex (M:F) 643:757 323:379 320:378

Region (Non-belt:Belt:Buckle) 553:294:553 297:140:265 256:154:288

Education (< HS:HS:SC:CG+) 444:415:166:375 228:211:81:182 216:204:85:193

Race (W:B) 539:861 270:432 269:429

Animal fluency (words) 14.82 (5.10) 15.72 (5.13) 13.91 (4.91)

Letter F fluency (words) 10.05 (4.22) 10.53 (4.19) 9.57 (4.19)

Abbreviations: B, Black; CG+, college graduate or above; F, female; HS, high school; ICI, incident cognitive impairment; M, male; REGARDS, 
Reasons for Geographic and Racial Differences in Stroke Study; SC, some college; W, White.

Notes: Variables are shown as mean (standard deviation).
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Table 2.

ASR quality scores

Metrics Animal Fluency Letter Fluency

VFER (%) 39.3 37.9

VFER w/PO mapping (%) 25.6 32.2

PhER (%) 23.7 19.5

Accuracies of the ASR in transcribing the audio correctly.

Abbreviations: PhER, phonemic error rate; PO, phonological overlap;

VFER, verbal fluency error rate.
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Table 3.

Area under the ROC curve for each classifier architecture and feature matrix

Animal fluency

NB RF SVM Ensemble avg. Ensemble log.

Type - Token (train) 0.9674 0.9759 0.9554 0.9708 0.9758

Type - Token (test) 0.9612* 0.9500 0.9512 0.9623* 0.9559

TF-IDF (train) 0.6128 0.9769 0.9558 0.9495 0.9744

TF-IDF (test) 0.5938 0.9636 0.9525* 0.9421 0.9611

PO (train) 0.7229 0.9807 0.9528 0.9638 0.9800

PO (test) 0.7196 0.9646 0.9415 0.9475 0.9638*

TF-IDF + PO (train) 0.7314 0.9809 0.9568 0.9651 0.9803

TF-IDF + PO (test) 0.7219 0.9649** 0.9430 0.9495 0.9638*

Letter F fluency

Type - Token (train) 0.9606 0.9694 0.9417 0.9634 0.9688

Type - Token (test) 0.9544* 0.9425 0.9424* 0.9550 0.9393

TF-IDF (train) 0.5008 0.9687 0.9409 0.9585 0.9686

TF-IDF (test) 0.5012 0.9547 0.9404 0.9504 0.9531

PO (train) 0.8764 0.9729 0.9479 0.9672 0.9726

PO (test) 0.8821 0.9576 0.9357 0.9552* 0.9559

TF-IDF + PO (train) 0.6649 0.9732 0.9500 0.9632 0.9730

TF-IDF + PO (test) 0.6652 0.9579** 0.9398 0.9516 0.9568*

NB=naïve Bayes, PO=phonological overlap, RF=random forest, SVM=support vector machine, TF-IDF=term frequency-inverse document 
frequency.

*
Indicates the highest test set AUC for each classifier/ensemble in each verbal fluency task.

**
Indicates the highest test set AUC among all classifiers/ensembles in each verbal fluency task.

Speech Commun. Author manuscript; available in PMC 2024 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bushnell et al. Page 28

Table 4.

Animal Fluency Scores

Correlation Manual Transcription ASR Transcription Unsigned diff. Signed diff.

Repetitions 0.81 1.01 (1.25) 0.84 (1.16) 0.42 (0.65) 0.17 (0.75)

Raw score 0.91 14.94 (5.10) 14.61 (4.95) 1.56 (1.53) 0.33 (2.16)

Epoch 1 0.87 5.59 (1.85) 5.16 (1.91) 0.66 (0.83) 0.43 (0.97)

Epoch 2 0.90 3.25 (1.79) 3.10 (1.72) 0.46 (0.65) 0.15 (0.78)

Epoch 3 0.86 1.94 (1.52) 1.96 (1.41) 0.37 (0.69) −0.02 (0.79)

Epoch 4 0.89 1.49 (1.42) 1.54 (1.32) 0.34 (0.57) −0.05 (0.66)

Epoch 5 0.81 1.47 (1.33) 1.55 (1.35) 0.47 (0.68) −0.08 (0.82)

Epoch 6 0.83 1.13 (1.24) 1.22 (1.29) 0.32 (0.67) −0.09 (0.74)

c parameter* 0.72 0.06 (0.08) 0.05 (0.06) 0.44 (0.66) −0.11 (0.79)

m parameter* 0.80 15.92 (10.12) 16.50 (10.83) 0.19 (0.89) 0.01 (0.91)

Number of switches 0.79 5.25 (2.31) 5.10 (2.05) 1.01 (1.03) 0.15 (1.43)

Max chain length 0.64 3.85 (1.83) 3.76 (1.69) 0.89 (1.21) 0.08 (1.50)

Mean chain length 0.57 1.48 (0.61) 1.44 (0.59) 0.40 (0.38) 0.04 (0.56)

M&K b (intercept) 0.26 −0.19 (1.84) 0.39 (3.18) 1.57 (2.87) −0.58 (3.23)

M&K s (slope) 0.29 0.55 (1.33) 0.49 (0.95) 0.45 (1.32) 0.06 (1.39)

Speed score 0.91 7.84 (3.33) 7.69 (3.36) 0.98 (1.00) 0.15 (1.40)

Speed edge 0.87 5.48 (2.50) 5.60 (2.63) 0.92 (0.92) −0.12 (1.30)

Speed switch 0.70 2.55 (1.32) 2.18 (1.06) 0.75 (0.69) 0.37 (0.95)

The data presented is from the test set (N=204). Pearson correlation was used and all other data is shown as mean (standard deviation). The 
unsigned (i.e., absolute value) and signed difference is presented using the actual data minus the estimated data, showing the tendency of estimated 
values to be larger than their counterparts.

*
We used Spearman correlation for the c and m parameters and list their median values rather than mean and standard deviation. Signed and 

unsigned differences were calculated using z-transformation.
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Table 5.

Letter Fluency Scores

Correlation Manual Transcription ASR Transcription Unsigned diff. Signed diff.

Repetitions 0.77 0.91 (1.26) 1.05 (1.35) 0.50 (0.74) −0.14 (0.88)

Raw score 0.88 10.07 (3.99) 10.36 (4.15) 1.46 (1.41) −0.29 (2.01)

Epoch 1 0.87 3.50 (1.64) 3.36 (1.62) 0.48 (0.71) 0.14 (0.84)

Epoch 2 0.85 2.12 (1.33) 2.10 (1.32) 0.41 (0.60) 0.01 (0.72)

Epoch 3 0.83 1.50 (1.20) 1.58 (1.19) 0.36 (0.61) −0.08 (0.70)

Epoch 4 0.79 1.14 (1.04) 1.30 (1.14) 0.37 (0.62) −0.17 (0.71)

Epoch 5 0.84 0.99 (0.98) 1.07 (1.06) 0.25 (0.53) −0.08 (0.58)

Epoch 6 0.84 0.79 (0.88) 0.86 (0.93) 0.24 (0.47) −0.07 (0.52)

c parameter* 0.82 0.06 (0.08) 0.05 (0.07) 0.49 (0.71) −0.12 (0.86)

m parameter* 0.78 12.56 (9.80) 12.82 (10.93) 0.39 (0.85) 0.02 (0.94)

Number of switches 0.77 3.72 (1.66) 3.79 (1.80) 0.80 (0.86) −0.08 (1.17)

Max chain length 0.77 2.91 (1.50) 2.84 (1.48) 0.58 (0.83) 0.07 (1.01)

Mean chain length 0.57 1.22 (0.60) 1.21 (0.65) 0.37 (0.44) 0.01 (0.58)

M&K b (intercept) 0.74 0.81 (4.83) 1.16 (5.72) 2.18 (3.21) −0.35 (3.87)

M&K s (slope) 0.66 0.87 (2.09) 0.98 (3.51) 1.00 (2.44) −0.10 (2.64)

Speed score 0.86 4.95 (2.62) 4.41 (2.39) 1.09 (0.94) 0.54 (1.34)

Speed edge 0.80 3.60 (1.89) 3.22 (1.73) 0.90 (0.83) 0.38 (1.16)

Speed switch 0.58 1.64 (0.79) 1.56 (0.70) 0.50 (0.49) 0.08 (0.69)

The data presented is from the test set (N=204). Pearson correlation was used and all other data is shown as mean (standard deviation). The 
unsigned (i.e., absolute value) and signed difference is presented using the actual data minus the estimated data, showing the tendency of estimated 
values to be larger than their counterparts.

*
We used Spearman correlation for the c and m parameters and list their median values rather than mean and standard deviation. Signed and 

unsigned differences were calculated using z-transformation.
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Table 6.

Performance of models (N=1273, cases=634, controls=639)

WAIC Weight AUC Sens Spec NPV PPV F1

Animal Fluency

SD timings 1586.29 0.955 0.625 0.631 0.585 0.656 0.558 0.592

SD timings, ASR 1592.42 0.045 0.621 0.644 0.571 0.659 0.555 0.596

Letter F Fluency

Mayr scores 1757.24 0.991 0.591 0.552 0.579 0.566 0.565 0.559

Mayr scores, ASR 1766.71 0.009 0.580 0.539 0.606 0.570 0.576 0.557

Combined Model

SD timings + Mayr 1584.08 0.931 0.632 0.599 0.637 0.656 0.578 0.588

SD timings + Mayr, ASR 1589.29 0.069 0.630 0.606 0.621 0.655 0.571 0.588

ASR = scores estimated from transcriptions derived directly from automatic speech recognition; AUC = area under the ROC curve; F1 = F1 
measure (harmonic mean of PPV and Sens); NPV = negative predictive value; PPV = positive predictive value; SD = slope difference; Sens = 
sensitivity; Spec = specificity; WAIC = Widely applicable information criterion.
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