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Abstract: Ailanthus altissima, an invasive plant species, exhibits pharmacological properties, but
also some allergic effects on humans. This study aimed to evaluate the potential toxicity of A.
altissima leaves, using a complex approach towards different organisms. The ecotoxic impact of a
crude extract was investigated on seeds germination and brine shrimp lethality. Cytotoxicity was
studied in vitro using non-target (haemolysis, liposomal model, fibroblast), and target (cancer cells)
assays. Leaf extract at 1000 µg/mL significantly inhibited wheat and tomato germination, while
no significant effects were found on parsley germination. A slight stimulatory effect on wheat and
tomato germination was found at 125 µg/mL. In a brine shrimp-test, the extract showed a low
toxicity at 24 h post-exposure (LC50 = 951.04 ± 28.26 µg/mL), the toxic effects increasing with the
exposure time and extract concentration. Leaf extract caused low hematotoxicity. The extract was
biocompatible with human gingival fibroblasts. No anti-proliferative effect was found within the
concentration range of 10–500 µg/mL on malignant melanoma (MeWo) and hepatocellular carcinoma
(HepG2). In a liposomal model-test, the extract proved to possess low capability to alter the eukaryotic
cell-mimicking membranes within the tested concentration range. Given the low to moderate toxicity
on tested organisms/cells, the A. altissima autumn leaves may find useful applications.

Keywords: Ailanthus altissima; ecotoxicity; cytotoxicity; germination test; shrimp lethality assay;
liposome; cancer cells

1. Introduction

Ailanthus altissima (Mill.) Swingle (Simaroubaceae), also called Tree of Heaven or
China-sumac, is a perennial tree native to Asia, which has been introduced into new areas
as an ornamental plant. In the course of time, A. altissima has become invasive producing a
strong impact on local plant communities and soil characteristics [1]. This species has been
included on the List of Invasive Alien Plants by the European and Mediterranean Plant
Protection Organization (EPPO) [2] since 2004. The spreading of A. altissima is difficult to
control despite the fact that several chemical and mechanical removal strategies have been
proposed [3].

On the other hand, a great number of scientific papers have reported the bioactivities
of A. altissima confirming several important biological properties of different parts of the
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plant, e.g., the antimicrobial properties of its leaves [4,5], the neuroprotective effects of its
bark [6], the anti-inflammatory properties of its seeds, branches and leaves [7], and the DNA
protective effects of its flowers, stem bark and leaves [8]. With regard to its composition,
the root barks of A. altissima contain alkaloids, triterpenoids, lignans and coumarins, the
stem barks contain mainly terpenoids (e.g., ailanthone) [9–11], while the fruits and seeds
are rich in terpenoids [12], quassinoid glycosides [13], steroids [14,15] and phenolics [16].
The leaves of A. altissima are known for their high content of polyphenols, molecules with
strong antioxidant properties, followed by lower amounts of other compounds, such as
alkaloids, sesquiterpene and triterpenoids (ailanthone), proteins, carbohydrates, minerals,
etc. [17,18], making leaves of such species excellent candidates for diverse applications
(antimicrobials, biopesticides) [19]. However, extracts from such invasive plant species
have been less investigated for their level of impact on the environment or human health,
generally because natural products are mostly perceived as safe. Yet, it is known that
numerous plants synthesize highly toxic metabolites [20].

The particular interest in the pesticidal effects of natural extracts makes imperative
the evaluation of their eco-safety to non-target organisms because such products will be
intentionally liberated into the environment. Ecotoxicity is usually conducted towards crop
plants and organisms from aquatic ecosystems. Ecotoxicological studies have revealed some
effects of A. altissima aqueous extract on wheat [21] or other plants’ germination [22–26],
and on the mortality of the Daphnia magna crustacean [27]. Cytotoxicity on mammalian
cells is usually investigated either on cell cultures exposed to natural products when
referring to their safety to non-target organisms, or screening tests on tumor cells when
searching for potential bioactive agents. Among cytotoxicological assessments, the in vitro
hemolysis assay has been applied as a simple and cheap method to study the disruption
of erythrocyte membranes induced by a chemical compound or a natural extract [28]. A
similar test but on model lipid membranes has also been studied for medicinal and food
applications [29,30]. The cytotoxicity of A. altissima against several tumor cells, such as
HepG2 [31,32], HeLa [31,33], 786-O [31], A549 [31,34,35], Jurkat [36], R-HepG2 [37], MCF-
7 [34,38], Hep3B [37], MDA-MB-231 [34,39], LAPC4, A375, B16 [40], and SGC-790 [41], has
been reported.

Our present study aims to give complete information on the potential toxic effects
of A. altissima leaves using a complex approach to different organisms (target/non-target
organisms), serving as a key step for future safety considerations of these extracts for
diverse applications. The ecotoxic effects of an ethanolic extract of A. altissima leaves on
plants (wheat, tomato, parsley) were investigated using the seed germination inhibition
test, and on crustaceans using the crustacean Artemia salina lethality test. The cytotoxic
effects were studied using different assays, non-target (hemolysis, membrane leakage assay
from lipid vesicle by fluorescent spectroscopy, MTS assay on human gingival fibroblast
HGF), and target (MTS assay on malignant melanoma and hepatocellular carcinoma). To
our knowledge, screening the toxicity of A. altissima leaf extracts using the brine shrimp,
hemolysis, membrane leakage, malignant melanoma cells and HGF assays has not been
reported so far.

2. Results and Discussion
2.1. Characterization of Phenolic Compounds of A. altissima Leaf Extract by HPLC-DAD

In the present work, we investigated the ecotoxic and cytotoxic effects of an A. altissima
leaf hydroethanolic extract, which has been characterized by a total content of 6026.31 ± 4.89 mg
gallic acid equivalents/100 g DW (phenolics), 575.50± 0.10 mg catechin equivalents/100 g DW
(tannins), 55.60 ± 0.11 mg β-carotene/100 g DW (carotenoids) and a total antioxidant capac-
ity as measured by FRAP assay of 5043.59 ± 48.11 mg ascorbic acid equivalents/100 g DW.

For the identification of polyphenols in A. altissima leaf extract, stock solutions of
15 polyphenols were prepared with a concentration of 0.5 mg/mL. Using the separation
method developed by our research group for HPLC analysis, all 15 polyphenols compounds
were analyzed one by one. Retention times (RT) are listed in Table 1. After their analysis, all
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the 15 polyphenols were mixed in equal proportions and the mixture was analyzed using
the same HPLC separation method. Following the separation, as noticed in the HPLC
chromatogram (Figure 1), a slight shift in RTs occurred (Table 1) due to the inter-molecular
interactions between all 15 compounds in the solution. At the same time, because the
RTs were very close for four of the compounds, their peaks overlapped two by two (see
Table 1). Even if these compounds’ peaks overlapped in the mixture spectrogram, in the
spectrogram obtained for the leaf extract the separation was evident for epicatechin and
vanillic acid.

Table 1. Retention time (RT) of polyphenolic compounds recorded in the individual polyphenol
injections, in the polyphenol mixture, and in A. altissima leaf extract.

Polyphenols
RT (min)

Polyphenols as Individual Run Polyphenols in Mixture Run A. altissima Leaf Extract

Gallic acid 10.97 10.84 10.71
Protocatechuic acid 13.98 13.9 13.99

Catechin 15.63 15.91 15.79
Vanillic acid 16.74 overlapped with epicatechin 16.65
Epicatechin 17.28 17.38 -
Caffeic acid 17.49 17.96 -

Syringic acid 18.09 overlapped with caffeic acid -
Rutin 20.42 20.63 20.7

Ferulic acid 22.38 22.35 -
p-Coumaric acid 23.1 23.46 23.48

Hesperidin 24.01 24.03 24.38
Rosmarinic acid 26.33 26.69 26.53

Salicylic acid 29.31 29.61 -
Quercetin 34.72 34.65 35.22

Kaempferol 39.71 41.0 -
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1—Gallic acid, 2—Protocatechuic acid, 3—Catechin, 4—Vanillic acid, 5—Epicatechin, 6—Caffeic acid,
7—Syringic acid, 8—Rutin, 9—Ferulic acid, 10—p-Coumaric acid, 11—Hesperidin, 12—Rosmarinic
acid, 13—Salicylic acid, 14—Quercetin, 15—Kaempferol; (B)—crude leaf extract.
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Following the performance of the HPLC analysis, nine polyphenolic compounds were
identified in the A. altissima hydroethanolic extract obtained from dried autumn leaves, of
which five were phenolic acids (gallic acid, protocatechuic acid, vanillic acid, p-coumaric
acid, rosmarinic acid) and four were flavonoids (catechin, rutin, hesperidin, quercetin). All
the polyphenolic compounds identified in this study were previously reported by other
authors in the leaves of this species [8,42,43].

2.2. Ecotoxicity of A. altissima Leaf Extract
2.2.1. Inhibitory Effects of A. altissima Leaf Extract on Germination of Seeds Used in
Agricultural Crops

Ecotoxicity assessments using plant assays are simple approaches providing results
suitable for statistical analysis and in connection with those obtained from testing on animal
models or even human cells, being used either to identify environmental contaminants
or to preliminarily validate drugs and pesticides [44,45]. Wheat and tomato are plant
species approved for the ecotoxicity testing of products by the Organization for Economic
Cooperation and Development (OECD) and the Food and Drug Administration (FDA) [46].

Wheat Caryopsis Germination Test

Wheat, an important global agricultural crop [47,48], represents one of the most
commonly used species for the toxicity assessment of chemical compounds, natural extracts,
and nanoparticles [45,49,50].

The results on wheat germination and growth records in the presence of A. altissima
ethanolic extract at a concentration range 125–1000 µg/mL are presented in Table 2, com-
paratively to those for the control.

Table 2. Wheat germination and growth parameters in the presence of A. altissima ethanolic leaf
extract and in control sample.

Physiological
Parameters *

Leaf Extract Concentration (µg/mL)
Control

125 250 500 1000

Eg (%) 62.00 ± 0.27 42.00 ± 0.19 40.00 ± 0.16 60.00 ± 0.18 48.00 ± 0.18
G (%) 86.00 ± 0.15 76.00 ± 0.13 68.00 ± 0.24 58.00 ± 0.17 72.00 ± 0.19

RL (cm) 7.89 ± 2.53 6.17 ±1.66 5.57 ± 1.65 5.10 ± 0.44 6.94 ± 1.46
SL (cm) 8.68 ± 1.76 7.68 ± 1.25 7.68 ± 2.39 8.91 ± 1.27 7.89 ± 1.65
RRG (%) 121.00 ± 0.54 91.00 ± 0.29 82.00 ± 0.25 71.00 ± 0.15 100.00 ± 0.00
RSG (%) 131.00 ± 0.57 121.00 ± 0.73 107.00 ± 0.62 72.00 ± 0.21 100.00 ± 0.00
GI (%) 108.03 ± 0.54 72.25 ± 0.39 57.48 ± 0.28 40.77 ± 0.13 72.00 ± 0.19
VI (%) 78.21 ± 0.23 61.59 ± 0.18 51.46 ± 0.27 33.14 ± 0.10 67.02 ± 0.27
PI (%) 152.00 ± 0.82 125.00 ± 0.87 113.00 ± 0.78 89.00 ± 0.45 100.00 ± 0.00

* Eg—Germinative energy; G—germination rate; RL—root length; SL—shoot length; RRG—relative root growth
percentage; RSG—relative seed germination; GI—germination index; VI—vigor index; PI—influence index on the
aerial part; Data are shown as the mean ± standard deviation.

Most germination parameters excepting the shoot length showed higher mean values
in the presence of the lowest extract concentration (125 µg/mL) among all investigated
samples. Most germination parameters excepting the germinative energy and shoot length
decreased in the presence of the highest extract concentration (1000 µg/mL).

By conducting an ANOVA test, marginally significant differences were observed for
GI (%) (p = 0.088) and VI (%) (p = 0.069) (Figure 2) in relation to the extract concentration.
According to the Tukey test, the vigor index varied significantly between groups with an
added extract at 125 µg/mL and 1000 µg/mL, respectively (p = 0.0490), while the germi-
nation index varied marginally (p = 0.0625). Although the ANOVA and Kruskal–Wallis
tests did not show statistically significant differences for the other germination parame-
ters related to extract concentrations and to the control (p > 0.1), the most pronounced
inhibitory effect of leaf extract on wheat was found at the highest investigated concen-
tration, 1000 µg/mL, while the sample at the lowest concentration (125 µg/mL) actually
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produced an opposite effect—a slight stimulation of wheat caryopses for all measured
indices compared to those of the control and samples with higher concentrations.
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Figure 2. Boxplot representation of the measured/calculated wheat germination indices, according
to extract concentration.

The Spearman’s correlation coefficients between various measured/calculated germi-
nation indices are presented in Figure 3 by using a correlogram. As noticed, all significant
coefficients at p < 0.05 showed positive values. The strongest correlations were found
between the germination rate and vigor index (R2 = 0.91, p < 0.01). The weakest significant
correlation was identified between the root length and shoot length (R2 = 0.41, p = 0.0484).
The germination energy showed no statistically significant correlation with the other vari-
ables, while the shoot length indicated only one significant positive correlation with the
influence index on the aerial part (R2 = 0.42, p = 0.0437), and a marginally significant one
with the relative root growth (R2 = 0.37, p = 0.0778).

Ahmad et al. (2020) [21] observed that an aqueous extract of A. altissima leaves may
adversely affect the wheat root length and caryopsis germination. The study of Novak
et al. (2021) [51] on A. altissima but using aqueous extracts from roots and an aqueous
solution of the pure compound ailanthone, reported very weak inhibitory activity on the
wheat germination and root length growth compared to the effect it had on other tested
plant seeds (pigweed Amaranthus retroflexus L. and red bristlegrass Setaria pumila L.), at
lower concentrations. The authors found that the least significant effect was shown by
ailanthone, indicating that an inhibitory effect occurs only in the presence of other root
allelochemicals (synergism). According to other published papers, A. altissima root or leaves
revealed either an inhibitory effect on Medicago sativa [24,25], Daucus carota [22], Sinapis alba
and Brassica napus [23], Lactuca sp. [26], or a stimulating effect on Raphanus sativus L. and
Setaria pumila L. [51,52]. The inhibitory effects may be further studied for their potential
application as bioherbicides [52].
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Tomato Seed Germination Test

The tomato species (Lycopersicum esculentum), belonging to the Solanaceae family, has
been used in order to determine the phytotoxic activity of various plant extracts [53–55]
or antibiotics [56], being considered an appropriate species due to its sensitivity to toxic
substances, availability, and good germinating rate [46,57].

Considering the results on the wheat caryopses germination test, two concentrations
(125 and 1000 µg/mL, respectively) of the ethanolic leaf extracts of A. altissima were
investigated for their potential inhibitory activity on tomato germination. The results are
presented in Table 3, comparatively to those for the control.

Table 3. Tomato seeds germination and growth parameters in the presence of A. altissima ethanolic
leaf extract and in control sample.

Physiological
Parameters *

Leaf Extract Concentration (µg/mL)
Control

125 1000

Eg (%) 66.00 ± 0.05 60.00 ± 0.10 56.00 ± 0.05
G (%) 88.00 ± 0.13 84.00 ± 0.15 92.00 ± 0.08

RL (cm) 3.77 ± 1.05 1.12 ± 0.45 3.72 ± 0.69
SL (cm) 2.46 ± 0.47 2.14 ± 0.48 2.29 ± 0.43
RRG (%) 107.87 ± 0.45 32.12 ± 0.19 100.00 ± 0.00
RSG (%) 96.28 ± 0.17 91.56 ± 0.16 100.00 ± 0.00
GI (%) 96.25 ± 0.45 26.14 ± 0.14 92.00 ± 0.08
VI (%) 133.64 ± 0.27 44.01 ± 0.14 149.96 ± 0.15
PI (%) 111.64 ± 0.51 87.96 ± 0.34 100.00 ± 0.00

* Eg—Germinative energy; G—germination rate; RL—root length; SL—shoot length; RRG—relative root growth
percentage; RSG—relative seed germination; GI—germination index; VI—vigor index; PI—influence index on the
aerial part; Data are shown as the mean ± standard deviation.

Most germination parameters excepting the germination rate, relative seed germi-
nation, and vigor index, showed the highest mean values in the presence of the lowest
extract concentration (125 µg/mL) among all investigated samples. Most germination
parameters excepting the germinative energy decreased in the presence of the highest
extract concentration (1000 µg/mL).
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A boxplot representation of four germination/ growth indices (RRG, GI, VI, RL) which
revealed significant differences in relation to extract concentrations and the control is shown
in Figure 4.
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Data analysis by the ANOVA test and its non-parametric variant, the Kruskal–Wallis
test, showed significant differences between mean values of germination indices as a
function of extract concentration, indicating a decrease in the investigated indices with
the increase in extract concentration. A high statistically significant inhibitory effect was
registered for the group with added extract at 1000 µg/mL. No statistically significant
differences were found between germination indices of the control and those in the group
with added leaf extract at the lowest concentration, 125 µg/mL. Similarly, the Dunn’s test
indicated highly statistically significant differences (p < 0.05) for the indices RRG and GI
between the groups with added leaf extract at different concentrations, and between the
group with the highest extract concentration and the control. The Tukey’s test showed
statistically significant higher VI and RL values (p < 0.001) in the control and the group
with 125 µg/mL added extract than those in the group at the highest tested concentration,
1000 µg/mL. Although the Kruskal–Wallis/ ANOVA analysis showed no statistically
significant differences between groups with added extract at different concentrations
for the indices Eg (p = 0.1346), RSG (p = 0.6138), PI (p = 0.5312), G (p = 0. 613), and
SL (p = 0.559), slightly lower values were observed at 1000 µg/mL and higher values at
125 µg/mL compared to the control. As an exception, the mean germination energy was
slightly higher in the group with the highest extract concentration than in the control, and
the mean germination rate showed close values at all concentrations. Our results showed
that the root length was more affected by the extract concentration, compared to the aerial
part length.

All Spearman’s correlations in the L. esculentum seed germination test were positive
and significant (p < 0.05), as shown in the correlogram of Figure 5. The strongest statistically
significant correlations were found between the RRG and GI (R2 = 0.97, p < 0.01), and
between the GI and RL (R2 = 0.95, p < 0.01). The weakest significant correlation was
identified between the RSG and VI (R2 = 0.54, p = 0.0370). All correlations of the Eg
parameter were not statistically significant.
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In the study of Heisey and Heisey (2003) [58], the compound ailanthone isolated from
A. altissima, which was applied to the tomatoes in the field, did not significantly influence
the production of tomatoes or their biomass.

Parsley Seed Germination Test

Parsley (Petroselinum crispum (Mill.) var. crispum) represents an important herb for
the food industry and gastronomy [59,60], known as a fast-growing species [61]. Most
reported studies have focused on improving its germination characteristics because of the
low germination rate of these seeds [62–64].

Similarly to the experimental runs on the tomato seed germination test, two concen-
trations (125 and 1000 µg/mL, respectively) of ethanolic leaf extract of A. altissima were
investigated for their potential inhibitory activity on parsley seed germination. The results
are presented in Table 4, comparatively to those for the control.

Table 4. Parsley seeds germination and growth parameters in the presence of A. altissima ethanolic
leaf extract and in the control sample.

Physiological
Parameters *

Leaf Extract Concentration (µg/mL)
Control

125 1000

G (%) 52.50 ± 0.05 50.00 ± 0.17 56.00 ± 0.11
RL (cm) 1.05 ± 0.18 1.24 ± 0.66 1.47 ± 0.55
SL (cm) 0.77 ± 0.25 0.85 ± 0.65 0.90 ± 0.22
RRG (%) 71.52 ± 0.31 80.65 ± 0.44 100.00 ± 0.00
RSG (%) 88.01 ± 0.08 86.67 ± 0.23 100.00 ± 0.00
GI (%) 37.46 ± 0.16 43.19 ± 0.32 56.00 ± 0.11
VI (%) 73.94 ± 0.12 81.54 ± 0.44 92.64 ± 0.36
PI (%) 78.90 ± 0.43 84.36 ± 0.66 100.00 ± 0.00

* G—germination rate; RL—root length; SL—shoot length; RRG—relative root growth percentage; RSG—relative
seed germination; GI—germination index; VI—vigor index; PI—influence index on the aerial part; Data are shown
as the mean ± standard deviation.
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All the investigated germination parameters in samples with added leaf extracts were
lower than those in the control sample.

A boxplot representation of four germination/growth indices (RRG, RSG, GI, RL) in
relation to extract concentrations and the control is shown in Figure 6.
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As shown in Figure 6, no statistically significant differences (p > 0.05) were found
between values of the investigated germination indices between control and groups with
added leaf extracts, and within groups with different concentrations of extracts, by using
ANOVA and Kruskal–Wallis tests. Despite the lower values of germination indices in the
presence of the plant extract, compared to those in the control, no significant inhibitory
effect of ethanolic extract of A. altissima leaves was identified on parsley seed germination.

All Spearman’s correlations in the parsley seed germination test were significant and
positive (Figure 7). The strongest significant correlations were found between the RRG
and PI (R2 = 0.98, p < 0.01), and between the GI and SL (R2 = 0.94, p < 0.01). The weakest
significant correlation was found between the RRG and RL (R2 = 0.59, p = 0.0414).

The effect of A. altissima extracts on parsley seed germination has not been reported so
far. Therefore, our results could not be compared to other similar ones.

Regarding the effects of different concentrations of A. altissima leaf extract on the
germination of seeds used in agricultural crops (wheat, tomato, parsley), our results indicate
an inhibitory effect of the extract at the highest tested concentration (1000 µg/mL) on wheat
germination (only marginally significant results, 43–51% for the GI and VI) and tomato
germination (statistically significant, 67–72% for the RRG, GI, VI, RL) compared to the
control, while no statistically significant effects were found using the parsley germination
test. The statistically significant decrease in germination indices (RRG, GI, VI, RL) of
the tomato with increased extract concentration might be due to the fact that tomatoes
behave like bioindicators and are much more sensitive to the presence of allelochemicals
than wheat, as shown by Vidotto et al. (2013) [65]. At the highest investigated extract
concentration, the development of seedlings of the three crop plants was also altered,
showing a more negative impact on the growth of the root than that of the aerial part. This
observation has been also reported by Asgharipour and Armin (2010) [66], in their study on
an aqueous extract of Sorghum halepens, which inhibited to a greater extent the root growth
of Ocimum basilicum than the shoot length. Using the tomato and wheat germination test,
we observed a slight stimulatory effect of 7–8% with respect to the germinative energy in
the presence of A. altissima leaf extract.
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2.2.2. Inhibitory Effects of A. altissima Leaf Extract on A. salina Hatching

The ecotoxicity of products towards aquatic organisms is usually tested against crus-
taceans, e.g., D. magna, Daphnia pulex, Scapholeberis kingi or A. salina [20], being regulated
for the risk assessment of chemicals and materials by international organizations such
as the American Society for Testing and Materials (ASTM), the OECD and EU [67–69],
or for acute toxicity evaluation by the US-EPA [70]. Originally described by Meyer et al.
(1982) [71], the brine shrimp larvae (BSL) test becomes over time an easy-to-assess standard
technique with promising results in detecting the toxicity and anti-proliferative activity of
plant extracts [72–75] to be applied in the pharmaceutical industry [76].

To further investigate the ecotoxicity of A. altissima leaves, we performed the assay on
brine shrimp. The results regarding the evolution of the mortality rate of A. salina larvae
incubated with different concentrations (250–2000 µg/mL) of A. altissima leaf extract are
presented in Figure 8.
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Throughout an incubation period of 48 h, no A. salina individual died in the negative
control group, so that no correction by Abbott’s formula was required [77]. The extract
concentration of 2000 µg/mL determined the shortest time to onset toxic effects, after
3 h of exposure, followed by the concentration of 1000 µg/mL, at which the larvicidal
effects appeared after 5 h. Lower concentrations of extract (250 and 500 µg/mL) produced
mortality only after 24 h of exposure.

The values of the median lethal concentration (LC50, µg/mL) of the leaf extracts on
BSL using the Log Concentration by Probit analysis are presented in Table 5.

Table 5. LC50 values of the brine shrimp exposed to different concentrations of A. altissima leaf extract,
determined using the Log Concentration.

Concentration
(µg/mL)

Concentration
Logs (X)

Number of
Organisms

Mortality Rate
(%)

Probit
(Y)

Probit
(Y) Corrected *

LC50
(µg/mL)

24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h

250 2.40 10 0 17.00
± 0.05 2.60 4.05 3.04 * 4.05

951.04
± 28.26

420.65
± 8.56

500 2.70 10 0 57.00
± 0.05 2.60 5.18 3.04 * 5.18

1000 3.00 10 37.00
± 0.06

100.00
± 0.00 4.67 7.40 4.67 6.96 *

2000 3.30 10 100.00
± 0.00

100.00
± 0.00 7.40 7.40 6.96 * 6.96 *

* corrected values of probit for mortality rates of 0% or 100% according to the method of Miller and Tainter
(1944) [78] explained by Randhawa (2009) [79].

We found a strong positive correlation between the mortality rate and the extract
concentration (R2 = 0.8684, p = 0.0681) after 24 h of exposure. The median lethal concentra-
tion (LC50) of A. altissima leaf extract, corresponding to a Log concentration of 2.9782, was
951.04 ± 28.26 µg/mL (24 h of exposure). As shown in Figure 9, the equation of the linear
regression of the mortality rate expressed in probability units (Probit) against the logarithm
of the concentration was Y= 4.4481X − 8.2472.
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The lower the LC50 value is, the more toxic the compound/extract is [77]. The toxicity
of the ethanolic extract of A. altissima leaves on A. salina at 24 h was low, according to Clark-
son’s toxicity criterion: extracts with LC50 > 1 mg/mL, non-toxic; LC50 = 0.5–1 mg/mL,
low toxicity; LC50 = 0.1–0.5 mg/mL, medium toxicity; and LC50 = 0–0.1 mg/mL, highly
toxic [80].
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We also found a strong positive correlation between the mortality rate and the extract
concentration (R2 = 0.8999, p = 0.0514) after 48 h of exposure. The median lethal concentra-
tion (LC50) of A. altissima leaf extract, corresponding to a Log concentration of 2.6239, was
420.65 µg/mL (48 h), corresponding to a medium toxicity according to Clarkson’s toxicity
criterion [80]. As shown in Figure 10, the equation of the linear regression of the mortality
rate expressed in probability units (Probit) against the logarithm of the concentration was
Y = 3.4913X − 4.161.
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To our knowledge, no study regarding the A. altissima toxicity towards A. salina has
been published so far. The toxicity of fresh A. altissima leaves litter extracts has been tested
towards another aquatic invertebrate, D. magna, showing a median effective concentration
(EC50) of 10.1 g/L of air-dried leaf, at 96 h [27]. In our study, the sensitivity of A. salina to A.
altissima extract increased with time, the highest one being registered after 48 h, similar to
other studies on natural extracts but from different species, e.g., from marine organisms [81].
The mortality of A. salina individuals was positively correlated with the concentration of
the extract to which they were exposed, similar to that reported in the study of Krishnaraju
et al. (2016) [82] on aqueous extracts of some Indian medicinal plants, including the species
Ailanthus excelsa.

2.3. Cytotoxicity of A. altissima Leaf Extract

The study of the interaction between lipid membranes and bioactive molecules or
natural extracts allows one either to identify their potential inhibitory effect on microbial
and cancer cells, or to evaluate their cytotoxic effects [83]. Hereby, we investigated the in-
teraction of leaf extracts with different cells (erythrocytes, fibroblasts, cancer cells) and with
animal cell model membranes, considering it a key initial step to evaluate extract toxicity.

2.3.1. Hemolytic Activity

The effect of different concentrations of A. altissima leaf extract ranging from
125 to 1000 µg/mL, on sheep erythrocyte membrane, was investigated using the erythro-
cyte viability assay, frequently applied to test the safety of drugs and medicinal
nanoparticles [84–86]. The results are shown in Figure 11.
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The hemolytic activity, HC50, calculated as the value at which 50% of erythrocytes are
lysed in the presence of the extract [87], was determined. Based on a regression calculation,
according to the equation Y = 0.0067X + 0.414 from plotting hemolysis versus concentration,
the HC50 value was 7400.9 µg/mL (equivalent to 7.4%, w/v).

Increasing the concentration of the leaf extract will increase hemolysis. None of the
investigated concentrations of leaf extract produced a significant hemolytic activity. The
highest hemolysis (6.95 ± 1.04%) occurred in the presence of 1000 µg/mL.

There are no guidelines on the hemolytic properties of natural extracts, but the
hemolytic properties of materials used in medical devices, such as nanomaterials, are
regulated according to the ASTM based on the percentage of human erythrocyte lysis:
<5% (no hemolysis), 5–10% (low hemolysis) >10% (marked hemolysis) [88]. Translating
these to A. altissima leaf extract, our results indicate a non-hemolytic limit concentration
of 500 µg/mL. No hemolytic studies have been reported for A. altissima. In the study of
Silva et al. (2023) [89], the synthetic pure coumarin D, a chemical compound found in A.
altissima bark being of interest for its antifungal properties, showed a low hemolytic effect
(<5%), while several analogs of it determined even less hemolysis. However, the authors
indicated that the results cannot exempt the extract from showing toxicity towards other
types of cells in the human body. More than being low hemolytic, some natural compounds
in particular polyphenols displaying antioxidant properties, showed protective effects on
induced erythrocyte hemolysis [84,90]. Caffeic acid and tannins, which are polyphenolic
compounds frequently found in plants including A. altissima leaves [5,91], have revealed a
strong capacity to inhibit induced hemolysis [92,93].

2.3.2. In Vitro Biocompatibility and Cytotoxicity of Leaf Extract at Different Concentrations

Cell viability experiments are important tests in toxicity studies offering information on
the cellular response to a toxicant. MTS—a tetrazolium salt-based colorimetric assay—was
used in the present study to evaluate the proliferation activity of cells after 24 h incubation.

The results regarding the biocompatibility test of A. altissima leaf extracts in the
concentration range 10–500 µg/ mL performed on human gingival fibroblast (HGF) are
presented in Figure 12.



Int. J. Mol. Sci. 2024, 25, 5653 14 of 26

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 14 of 26 
 

 

There are no guidelines on the hemolytic properties of natural extracts, but the 
hemolytic properties of materials used in medical devices, such as nanomaterials, are 
regulated according to the ASTM based on the percentage of human erythrocyte lysis: 
<5% (no hemolysis), 5–10% (low hemolysis) ˃10% (marked hemolysis) [88]. Translating 
these to A. altissima leaf extract, our results indicate a non-hemolytic limit concentration 
of 500 µg/mL. No hemolytic studies have been reported for A. altissima. In the study of 
Silva et al. (2023) [89], the synthetic pure coumarin D, a chemical compound found in A. 
altissima bark being of interest for its antifungal properties, showed a low hemolytic effect 
(<5%), while several analogs of it determined even less hemolysis. However, the authors 
indicated that the results cannot exempt the extract from showing toxicity towards other 
types of cells in the human body. More than being low hemolytic, some natural 
compounds in particular polyphenols displaying antioxidant properties, showed 
protective effects on induced erythrocyte hemolysis [84,90]. Caffeic acid and tannins, 
which are polyphenolic compounds frequently found in plants including A. altissima 
leaves [5,91], have revealed a strong capacity to inhibit induced hemolysis [92,93]. 

2.3.2. In Vitro Biocompatibility and Cytotoxicity of Leaf Extract at Different 
Concentrations 

Cell viability experiments are important tests in toxicity studies offering information 
on the cellular response to a toxicant. MTS—a tetrazolium salt-based colorimetric assay—
was used in the present study to evaluate the proliferation activity of cells after 24 h 
incubation. 

The results regarding the biocompatibility test of A. altissima leaf extracts in the 
concentration range 10–500 µg/ mL performed on human gingival fibroblast (HGF) are 
presented in Figure 12. 

 
Figure 12. Biocompatibility of A. altissima leaf extracts on human fibroblasts (HGF) after 24 h; 
data were represented as means ± standard error of the mean. 

In this study, A. altissima leaf extract was biocompatible up to 500 µg/mL. The level 
of fibroblast viability decreased by increasing the concentration of A. altissima extract. The 
extract at 10 µg/ mL showed the highest percentage of HGF cell viability at 24 h, 104%. 
The lowest cell viability value (86%) was registered in the presence of 500 µg/ mL extract. 

To our knowledge, this is the first report on the influence of Ailanthus altissima leaf 
extract on the viability of HGF cells. 

Our further cytotoxic study was extended to target organisms and performed on 
hepatocellular carcinoma (HepG2) and malignant melanoma (MeWo) cells. The results 
are presented in Figure 13. 

Figure 12. Biocompatibility of A. altissima leaf extracts on human fibroblasts (HGF) after 24 h; data
were represented as means ± standard error of the mean.

In this study, A. altissima leaf extract was biocompatible up to 500 µg/mL. The level of
fibroblast viability decreased by increasing the concentration of A. altissima extract. The
extract at 10 µg/ mL showed the highest percentage of HGF cell viability at 24 h, 104%.
The lowest cell viability value (86%) was registered in the presence of 500 µg/ mL extract.

To our knowledge, this is the first report on the influence of Ailanthus altissima leaf
extract on the viability of HGF cells.

Our further cytotoxic study was extended to target organisms and performed on
hepatocellular carcinoma (HepG2) and malignant melanoma (MeWo) cells. The results are
presented in Figure 13.
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The extract had no cytotoxic effect on HepG2 and MeWo cells’ viability over 24 h
incubation, indicating no anti-proliferative properties at tested concentrations and on the in-
vestigated cell lines. We calculated the half-maximal inhibitory concentration value, IC50, of
the extract from the MTS assay for HepG2 and MeWo cells by using the regression equation.
IC50 for HepG2 cells was 2441.63 µg/mL, while for MeWo cells it was 5124.07 µg/mL.

Mohamed et al. (2021) [32] also observed a weak cytotoxic effect of the methanolic
fraction of a crude extract from A. altissima leaves after 72 h of exposure on HepG2 cells, all
the other tested fractions (EtOAc and n-BuOH fractions) exhibiting lower effects than those
of doxorubicin, a standard drug [32]. According to the classification proposed by the U.S.
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National Cancer Institute (NCI) and Geran protocol, which the authors employed in their
paper, a half-maximal inhibitory concentration (IC50) between 200 µg/mL and 500 µg/mL
was associated with a weak citotoxicity [32]. In the study of Gao et al. (2022) [94], a
new steroid with the molecular formula C24H34O4 isolated from leaves of A. altissima
demonstrated an important antiproliferative effect on HepG2 cells, with an IC50 = 4.03 µM,
more effective than the antiproliferative drug sorafenib. To our knowledge, no studies
reported any investigation of A. altissima leaf extract on MeWo cells, but published research
showed that quercetin, a polyphenolic compound of flavonoid class, inhibits the signaling
and expression of the c-Met receptor in wild-type melanoma MeWo [95].

2.3.3. Model Membrane-Modifying Properties of A. altissima Leaf Extract

A simple and relatively stable lipid membrane model of artificial liposomes can be used
instead of living cells for studying the interaction of natural extracts with lipid vesicles of
various sizes e.g., small unilamellar vesicle (SUV, 20–50 nm in diameter), large unilamellar
vesicle (LUV, 100–500 nm in diameter), giant unilamellar vesicle (GUV 10–100 µm in
diameter), multilamellar vesicle (MLV, >500 nm in diameter) and multivesicular vesicle
(MVV, >500 nm in diameter) [29,30].

In order to corroborate our findings presented above, the permeability of lipid mem-
branes prepared of 1,2-dioleyl-sn-glycero-3-phosphocholine and cholesterol (7/3) was
investigated in the presence of different concentrations (125–1000 µg/mL) of A. altissima
leaf extract by measuring the induced release of a fluorescent dye (carboxyfluorescein,
CF) from small unilamellar liposomes. These liposomes represent a valuable model for
eukaryotic cell membranes. The phospholipid concentration was kept constant (0.06 mM)
and increasing [extract]/[lipid] molar ratios were obtained by adding aliquots of extract at
concentrations between 125 and 1000 µg/mL. The results are presented in Figure 14.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 16 of 26 
 

 

constant (0.06 mM) and increasing [extract]/[lipid] molar ratios were obtained by adding 
aliquots of extract at concentrations between 125 and 1000 µg/mL. The results are 
presented in Figure 14. 

 
Figure 14. Leaf extract-induced leakage of carboxifluorescein (CF) trapped within 
phosphatidylcholine/ cholesterol SUVs at 20 min for different [extract]/ [lipid] fractions. 

Under the explored conditions, the A. altissima leaf extract did not exhibit any 
capability to alter or disrupt liposomes within the tested concentration range, even at the 
highest tested fraction (200 µg) when 6.83% of CF was released. The obtained results 
indicate a low toxicity of the extract on the investigated liposomal model, a eukaryotic 
cell-mimicking membrane. No other published papers studying the effect of A. altissima 
leaf extract on liposome leakage have been identified so far. However, changes in 
liposome permeability using calcein leakage assay have been recently reported for testing 
the toxicity of pesticides [96]. 

One reason why the membrane of liposomes deteriorates is the lipid oxidation [97]. 
However, the presence of large amounts of polyphenols in the natural extract is not 
sufficient to explain their possible protective effects on liposomal membranes, according 
to the observations made by Rodrigues et al. (2016) [98]. Among various phenolic 
compounds, the leaves of A. altissima contain gallic acid [22,99,100], which has a good 
capacity to protect membranes from oxidative stress [97]. 

3. Materials and Methods 
3.1. Plant Material and Extract Preparation 

Leaflets of A. altissima were collected in the autumn from Vâlcea county, Romania 
(45°6′34″ (N), 24°22′42″ (E)). The voucher specimen of this plant was deposited at the 
Herbarium (No. HFS 23 1053, Faculty of Sciences) of the “Lucian Blaga” University of 
Sibiu. The collected leaves were subjected to hot-air drying with forced air circulation 
(UFE 400, Memmert, Schwabach, Germany) at 50 °C such as to reach a final moisture 
content of 5–6% as measured using a moisture analyzer (Mac 210/NP Radwag, Radom, 
Poland). Dried leaves were ground using a knife mill (Grindomix GM 200, Retsch, Haan, 
Germany), sieved through a standard sieve (pore size 700 µm) and stored at 4 °C until 
analysis. 
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Under the explored conditions, the A. altissima leaf extract did not exhibit any ca-
pability to alter or disrupt liposomes within the tested concentration range, even at the
highest tested fraction (200 µg) when 6.83% of CF was released. The obtained results
indicate a low toxicity of the extract on the investigated liposomal model, a eukaryotic
cell-mimicking membrane. No other published papers studying the effect of A. altissima
leaf extract on liposome leakage have been identified so far. However, changes in liposome
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permeability using calcein leakage assay have been recently reported for testing the toxicity
of pesticides [96].

One reason why the membrane of liposomes deteriorates is the lipid oxidation [97].
However, the presence of large amounts of polyphenols in the natural extract is not suffi-
cient to explain their possible protective effects on liposomal membranes, according to the
observations made by Rodrigues et al. (2016) [98]. Among various phenolic compounds,
the leaves of A. altissima contain gallic acid [22,99,100], which has a good capacity to protect
membranes from oxidative stress [97].

3. Materials and Methods
3.1. Plant Material and Extract Preparation

Leaflets of A. altissima were collected in the autumn from Vâlcea county, Romania
(45◦6′34′′ (N), 24◦22′42′′ (E)). The voucher specimen of this plant was deposited at the
Herbarium (No. HFS 23 1053, Faculty of Sciences) of the “Lucian Blaga” University of
Sibiu. The collected leaves were subjected to hot-air drying with forced air circulation (UFE
400, Memmert, Schwabach, Germany) at 50 ◦C such as to reach a final moisture content
of 5–6% as measured using a moisture analyzer (Mac 210/NP Radwag, Radom, Poland).
Dried leaves were ground using a knife mill (Grindomix GM 200, Retsch, Haan, Germany),
sieved through a standard sieve (pore size 700 µm) and stored at 4 ◦C until analysis.

Ethanolic crude extracts of dried leaves were prepared by soaking the powdered plant
sample into 70% aqueous ethanol solution at a sample/solvent ratio of 1/10 (w/v), for 6 h
at r.t. in darkness. The mixture was centrifuged at 8000 rpm (Universal 320, Hettich, Berlin,
Germany) for 10 min at 4 ◦C. The obtained supernatant was further concentrated using a
centrifugal vacuum concentrator (RVC 2-18 CD plus, Christ, Munich, Germany) such as to
obtain a soft extract (moisture < 15%).

3.2. Characterization of A. altissima Leaf Extract

The extract was subjected to chemical analysis of polyphenols, such as total phenolics
using the Folin–Ciocalteu method [101], total condensed tannins by the vanillin assay [102],
and carotenoids [103]. Antioxidant capacity was determined as well, using the Ferric
Reducing Antioxidant Power (FRAP) assay described by Benzie and Strain [104].

HPLC-DAD analysis: the polyphenols’ separation and identification were achieved us-
ing an Agilent 1260 Infinity Series (Agilent Technologies, Santa Clara, CA, USA), equipped
with a UV-Vis DAD detector and a binary pump. The compounds separation was performed
using a Mediterranea Sea 18 column (4.6 mm × 150 mm, 5 µm particle size) (Teknokroma
Analitica S.A., Barcelona, Spain) and a gradient elution was applied (Table 6) by using
0.1% (v/v) formic acid in water (mobile phase A), and acetonitrile (mobile phase B) (both
purchased from Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), at 0.8 mL/min
flow rate. 20 µL of each sample and standard was injected and the separation process was
monitored by UV-VIS DAD detector at 280 nm. Fifteen polyphenolic compounds (gallic
acid, protocatechuic acid, catechin, vanillic acid, epicatechin, caffeic acid, syringic acid,
rutin, ferulic acid, p-coumaric acid, hesperidin, rosmarinic acid, salicylic acid, quercetin,
kaempferol, all purchased from Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany)
were used as standards, from which 0.5 mg/mL stock solutions were prepared and injected
both separately and as a mixture. The mixture was prepared by adding 100 µL of each
stock solution, thoroughly homogenized and injected as such.

Table 6. Gradient elution of the polyphenols separation method using Agilent 1260 Infinity system.

% B 1 5 20 45 70 100 1 1

Time 0 2 10 40 55 75 80 90
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3.3. Determination of Ecotoxicity of A. altissima Leaf Extract
3.3.1. Germination Bioassay of Wheat (Triticum aestivum L.) Caryopsis

T. aestivum organic seeds (Pronat, Romania) were subjected to sterilization according
to the method described by Lindsey III et al. (2017) [105] and Dal Cortivo et al. (2017) [106]
with slight modifications. A total of 100 seeds were covered with 500 µL sodium hypochlo-
rite solution (50/50 v/v) for 5 min, after which they were rinsed seven times for 1 min
with distilled water. A standard germination test was conducted in five replicates for
each extract concentration and control. Ten wheat caryopses and 5 mL leaf extract of
different concentrations (soft ethanolic extract re-suspended in distilled water such as to
obtain 125, 250, 500 and 1000 µg/mL, respectively) were placed on a double layer of filter
paper (79.7 g/m2, 0.165 mm thickness) in a glass Petri dish of 6 cm diameter, which was
previously kept in a pre-heated oven at 140 ◦C for 30 min, in order to remove possible
contaminating microorganisms. The control sample was prepared by using 5 mL distilled
water. Incubation was conducted in an upright position of dishes at r.t. for 8 days, of which
6 days were monitored using the containers sealed with a tin foil, applied with the purpose
of limiting the degradation of the active compounds of extract and the water evaporation,
as suggested by Veisz et al. (1996) [107]. The measurements were made on the third day of
germination when the number of sprouted caryopses was noticed, and on the eighth day
when germinated seeds, root length and aerial length of seedlings were observed.

The following germination indices were evaluated: shoot length (SL, cm), root length
(RL, cm), seed germination energy (Eg, %) [108], relative root growth (RRG, %) [109],
influence index on the aerial part (PI, %) [110], vigor index (VI, %) and germination index
(GI, %) [111], relative seed germination (RSG, %) and germination rate (G, %) [112]. The
indices were calculated using the Equations (1)–(7):

Eg% =
the number o f germinated seeds in the third day

the total number o f seeds
(1)

G% =
the number o f germinated seeds

the total number o f seeds
× 100 (2)

RRG% =
average root length f or the sample
average root length f or the control

× 100 (3)

RSG% =
the number o f germinated seeds in the sample
the number o f germinated seeds in the control

× 100 (4)

GI = (G% × RRG%)× 100 (5)

VI = G% × (average root length + average stem length) (6)

PI =
G% sample − the average length o f the aerial part f or the sample

G% control − average aerial part length f or control
× 100 (7)

In case the groups contained fewer germinated caryopses than a minimum of three,
they were excluded from the evaluation.

The root length of a seedling was determined by measuring each root strand from the
root–shoot junction to the tip and calculated as an average value. The shoot length was
obtained in the same way, but the measurement was taken from the culm’s base to the tip
of a leaf.

3.3.2. Germination Bioassay of Tomato (Lycopersicum esculentum Mill.) Caryopsis

This bioassay has been performed under similar experimental conditions as described
for wheat caryopsis, with slight modifications: 3 mL leaf extract of two different concentra-
tions (125 µg/mL and 1000 µg/mL, respectively) was added to 10 tomato seeds (Starsem,
Universal, Romania) in the germination test. The measurements were made on the third
and sixth day of germination.
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3.3.3. Germination Bioassay of Parsley (Petroselinum crispum (Mill.) var. Crispum) Seed

This bioassay has been performed under similar experimental conditions as described
for tomato caryopsis. Parsley seeds from Starsen (Traditional) brand, produced by Agrosel
SRL. (Romania), were used in the experiments. The measurements were made on the sixth
day of germination, according to Ugolini et al. (2021) [113].

3.3.4. Brine Shrimp (Artemia salina) Assay

The brine shrimp larvae (BSL) test was performed according to the method described
by Apetroaei et al. (2018) [114]. For the experiment, commercially purchased Artemia salina
eggs (Artemia Hobby; Manufacturer: DAJANA PET) were used. The eggs were hatched
using a saline solution (38% w/v) according to McLaughlin et al. (1998) [74]. 500 mL saline
solution and 5 g of A. salina eggs were added to a system consisting of two transparent
plastic containers, the smaller one having a perforated base and being the one in which
the eggs were placed and kept at 24 ◦C under light over 48 h. Larvae were transferred to
identical transparent plastic containers from the hatching vessel using a pipette. Based on
the description of McLaughlin et al. (1998) [74], 10 individuals/test container were counted.
Although hatched larvae can survive 48 h without nutrient feeding [81], 50 µL of yeast
suspension was added to each sample to limit the risk of larval death due to starvation [115].
To the vials containing brine shrimp, aliquots of leaf extracts obtained from A. altissima
dried leaves were added at the following concentrations: 250, 500, 1000, and 2000 µg/mL.
Experiments were carried out in triplicate per vial. The mortality rate was recorded up to 8
h on an hourly basis, and at 12, 16, 24, and 48 h, respectively. Larvae that showed no move-
ment for at least 10 sec were considered dead, as suggested by Manfra et al. (2012) [116].
In the control group, the extract was replaced with distilled water, the experiments being
conducted in three replicates.

The mortality rate was calculated according to Lam et al. (2020) [117], using the
Equation (8):

Mortality rate (%) =
number o f the dead shrimps

total number o f experimental shrimps
× 100 (8)

The median lethal concentration (LC50) was calculated according to Pohan et al.
(2023) [118]. The transformation of mortality percentage into probability units (probits)
was performed using a Finney’s table as described by Nigar et al. (2021) [119]. The
transformation of 0% and 100% of mortality into probability units was carried out according
to Randhawa (2009) [79].

3.4. Determination of Cytotoxicity of A. altissima Leaf Extract
3.4.1. Hemolytic Activity Assay (Erythrocyte Viability)

The hemolytic activity of leaf extracts was determined according to the method de-
scribed by Yamada et al. (1994) [120]. The experiments were conducted on sheep red blood
cells (RBC) collected from farm animals of the Research and Development Institute for
Montanology, Sibiu, Romania. The experiments were approved by the Ethics Committee
for Scientific Research Involving Human Subjects and/or Animals, of the ”Lucian Blaga”
University of Sibiu (process number 21/2024). The whole blood sample was previously cen-
trifugated at 2500 rpm for 5 min to remove the plasma fraction and washed repeatedly with
phosphate buffer (PBS) pH 7.4, until the supernatant became colorless. To the resuspended
RBC in PBS buffer, aliquots of leaf extracts of different concentrations (serial dilutions of
soft extract in PBS such as to obtain: 125, 250, 500 and 1000 µg/mL, respectively) were
added. The samples were incubated for 2 h at 37 ◦C, then centrifuged at 2500 rpm for
5 min at r.t. A negative control sample (RBC in PBS) without extracts was used. Total lysis
was obtained by incubation of RBC with distilled water (positive control). Absorbance
of supernatants was measured at 576 nm using the spectrophotometer (Specord 200 Plus
UV-Vis, Analytik Jena, Germany).



Int. J. Mol. Sci. 2024, 25, 5653 19 of 26

Percentage of hemolysis was calculated using the Equation (9):

% hemolysis = 100 ×
Asample − Acontrol

A100 − Acontrol
(9)

where

Asample = absorbance of the test sample (RBC in the presence of extract)
Acontrol= absorbance of the control (RBC and PBS)
A100 = absorbance in case of total lysis (RBC and distilled water)

3.4.2. In Vitro Biocompatibility and Cytotoxicity Assessment (MTS Assay)

The in vitro assessment of biocompatibility of extracts was performed on human gin-
gival fibroblasts (HGF), while that of cytotoxicity was conducted on malignant melanoma
(MeWo) and hepatocellular carcinoma (HepG2), all from CLS Cell Lines Service GmbH,
Eppelheim, Germany, using the CellTiter 96® AQueous One Solution Cell Proliferation
Assay kit (Promega, Madison, WI USA). Cells were seeded in 96-well plates at 5 × 104

cells/well (HGF) or 105 cells/well (MeWo and HepG2) in alpha-MEM medium (PAN-
Biotech GmbH, Aidenbach, Germany) supplemented with 10% fetal bovine serum (FBS)
and 1% Penicillin-Streptomycin-Amphotericin B mixture (both from Gibco, Thermo Fisher
Scientific, Waltham, MA, USA) and allowed to adhere for 24 h. Samples of A. altissima leaf
extract were diluted in complete culture medium at 10, 50, 100, 250 and 500 µg extract/mL.
Cells were then incubated for 24 h versus control cells (untreated). Control cells were incu-
bated with a complete cell culture medium (considered 100% cell viability). An FLUOstar®

Omega microplate reader (BMG LABTECH, Ortenberg, Germany) was used to record the
MTS absorbance at 490 nm 3 h after addition of the reagent. The viability of cells treated
with different concentrations of the leaf extract was expressed as percentage (%) of the
viability of control cells (means ± standard error of the mean). Experiments were done
in triplicate.

3.4.3. Membrane Leakage Assay from Lipid Vesicle

The membrane permeability properties were determined by measuring the induced
leakage of 5(6)-carboxyfluorescein (CF) entrapped in small unilamellar vesicles (SUV) [121].

SUV Preparation

1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Avanti Polar
Lipids, Inc. (Alabaster, AL, USA), while cholesterol (Ch) was a Sigma-Aldrich (St. Louis,
MO, USA) product.

The lipid mixture DOPC/Ch (7/3) was dissolved in CHCl3 in a test tube, dried under
N2, and lyophilized overnight. The lipid film was reconstituted with a solution of CF in
30 mM Hepes buffer (pH 7.4) at r.t. for 1 h. To make SUVs, the resulting multilamellar
vesicle suspension was sonicated (GEX400 Ultrasonic Processor, Sigma) on ice until the
initially cloudy lipid dispersion became translucent. The excess of fluorescent dye was
eliminated by gel filtration on Sephadex G-75 (Sigma). SUVs were diluted to a concentration
of 0.06 mM with Hepes buffer (5 mM Hepes, 100 mM NaCl, pH 7.4). The SUVs were stored
at 4 ◦C and used within 24 h.

Leakage from SUV

The extract-induced leakage from SUVs was measured at 293 K using a CF-entrapped
vesicle technique and a spectrofluorometer (Perkin Elmer model MPF-66). The phospho-
lipid concentration was kept constant (0.06 mM) and increasing [extract]/[lipid] molar
ratios were obtained by adding aliquots of extract solutions. The membrane leakage prop-
erties were examined for leaf extracts at 125, 250, 500 and 1000 µg/mL, respectively. The
highest concentration (1000 µg/mL) was analyzed for two added volumes, 75 µL, inves-
tigated for all the concentrations, and 200 µL. After rapid and vigorous stirring, the time
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course of the fluorescence change corresponding to CF escape was recorded at 520 nm
(6-nm band pass) with λexc 488 nm (3-nm band pass). The percentage of released CF at time
t was determined according to formula (10):

% CF = 100 × Ft − F0

FT − F0
(10)

where

F0 = fluorescence intensity of vesicles in the absence of extract,
Ft = fluorescence intensity of vesicles at time t in the presence of extract,
FT = total fluorescence intensity determined by disrupting the vesicles by addition of 50 µL
of a Triton X-100 solution.

The kinetic experiments were stopped at 20 min.

3.5. Statistical Analysis

Experimental data with values expressed as mean ± SD were subjected to statistical
analysis using the R 4.3.1 program [122], ANOVA, Kruskal–Wallis test, Tukey’s test, Dunn’s
test for multiple comparisons/dunn.test package R Package Version 1.3.5. [123]. The
correlation analysis was performed using the rcorr function of the Hmisc package R Package
Version 5.1-0 [124]. The Spearman’s correlation was investigated for data which were not
normally distributed. The function ggboxplot of the ggpubr package R Package Version
0.6.0 [125] was used to create representative boxplot graphs, while the correlogram was
constructed using the corrplot.mixed function from the corrplot package Version 0.92 [126].
The LC50 values obtained from the brine shrimp (A. salina) assay were determined using
the Probit analysis [127], in order to evaluate the toxicity of the leaf extracts. The results
were considered statistically significant at p < 0.05.

4. Conclusions

The present study brings novelty and completes the existing information on potential
toxicity of A. altissima leaves by using a complex approach towards different target/non-
target organisms.

Extract of A. altissima leaves in ethanol solution showed a high content of compounds
of polyphenolic structure, and antioxidant activity.

The extract exhibited low ecotoxic effects towards wheat, tomato, and parsley up
to 500 µg/mL, and significant inhibitory effects on tomato germination at 1000 µg/mL.
Screening A. altissima for ecotoxicity towards brine shrimp indicated a low toxicity at
24 h of exposure (Clarkson’s toxicity criterion based on LC50 values), which increased
with exposure time and extract concentration. Cytotoxicity of the extract towards sheep
erythrocytes indicate non-hematotoxicity. Moreover, the extract was found biocompatible
with human gingival fibroblasts according to the MTS assay. Under the explored conditions,
the leaf extract did not exhibit any capability to alter or disrupt liposomes within the tested
concentration range, according to experiments on model lipid small unilamellar vesicles.

Toxicity tested against target organisms such as malignant melanoma and hepato-
cellular carcinoma indicates no anti-proliferative effect within the concentration range of
10 µg/mL to 500 µg/mL.

Given the low to moderate toxicity under the tested conditions, the autumn leaves
of A. altissina could find useful practical applications/biopesticides. However, some lim-
itations must be addressed, such as requirements for further studies on other cells than
erythrocytes or gingival fibroblasts, and in vivo studies to confirm their safety for humans.
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