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Abstract: The objective of this study was to develop a dried apple snack enriched with probiotics,
evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional
hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus
rhamnosus and dried at 45 ◦C using RWTM and CD and FD. Total polyphenol content (TPC), color
(∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 ◦C.
Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of
6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population
in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage.
Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented
lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the
highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother
surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective
moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As
a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC
retention comparable to FD.

Keywords: probiotics Lacticaseibacillus rhamnosus; Refractance Window (RWTM); dried apples;
vacuum impregnation

1. Introduction

Probiotics are defined as living microorganisms that, when ingested in sufficient quan-
tities, exert a positive effect on health and wellbeing, including balancing the intestinal
flora and enhancing the immune system [1,2]. The most commonly used microorganisms
with probiotic characteristics are lactic acid bacteria (LAB), particularly Lacticaseibacillus
species such as L. casei, L. plantarum, L. rhamnosus, and L. acidophilus [3–5]. Bifidobacterium
species (B. longum, B. animali, and B. lactis) are the other most known probiotic microorgan-
isms [3]. The most commonly used carrier matrices are dairy products, probably because
of their acidity and pH, which are the most suitable parameters for probiotics [6]. However,
an increasing interest in nondairy probiotic products can be attributed to several factors
reflecting both changing consumer preferences and broader industry trends. Some of the
key reasons for this are lactose intolerance, allergies, cholesterol content, cultural beliefs
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(strict vegan), and specific religious beliefs among certain communities [6–9]. On the
other hand, using nondairy food matrices as probiotic carriers can indeed offer several
advantages, such as the potential for these matrices to provide a protective environment
for probiotic bacteria [10]. This protection can reduce the exposure of these plants to harsh
gastrointestinal conditions, enhancing their viability and effectiveness [9]. In this respect,
fruits and vegetables have been studied as interesting alternative vehicles for probiotic use
since they already contain abundant bioactive compounds; thus, their use can be enhanced
by the incorporation of probiotics, resulting in the development of nutritious foods with
dual health-promoting benefits [8,11–13].

Vacuum impregnation (VI) can be used for the production of functional foods through
the impregnation of a liquid that is rich in bioactive compounds and specific minerals
that aid in nutritional quality [11]. The porous structure of fruits and vegetables, with
their intercellular spaces, allows them to be effectively impregnated with external solu-
tions. This process is valuable for developing high-quality food products with desired
attributes and characteristics [14,15]. Several investigations have used this technology
for the incorporation of probiotics in fruits, for example, in apples [16–20], murta [21],
melon [22], bananas [23], apricots [24], and Andean blackberries [25]. Additionally, drying
offers several advantages for preserving enriched fruit and vegetable snacks, including cost
savings in storage, packaging, and transportation, and extended shelf life [26,27]. In this
regard, the Refractance Window (RWTM) is a fourth-generation drying technology that has
gained much attention in recent years due to its several advantages [28,29]. The products,
either in the form of pulp, puree, paste, or sliced, are spread over a flexible polyester film
(e.g., Mylar), which is placed above hot water, and the drying process occurs by means of
conduction and radiation [30]. This is an efficient drying technology with a higher drying
rate and shorter drying time than other drying methods. Compared with hot air drying,
this new technology has a positive impact on the retention of bioactive compounds [28],
as demonstrated by the drying of apples [30,31], carrots [32], tomato paste [33], cherry
pulp [34], mangoes [35], blueberries [26], and kiwis [36], resulting in products obtained with
greater retention of nutrients and reduced drying time. However, it is worth pointing out
some disadvantages of RWTM, such as low production capacity and requiring the cleaning
of the belt before or after a new process. It is also not recommended for materials with high
sugar content due to the adhesive behavior of the pulp. Due to the low glass transition
temperature of the material, it is important to choose the appropriate material to dry and
select the film: the options are Mylar film or another material with a low glass transition
temperature (Tg), such as fiberglass coated with Teflon. This prevents the dry material from
sticking to the surface of the film [37,38]. In the last few years, fruits impregnated with
probiotics and dehydrated have been studied using hot air drying [11,16,39–42], vacuum
drying [16,21,43], freeze-drying [13,19,44], ultrasound drying [45], and infrared drying [46]
technologies. The results of these studies have shown, in general terms, that the survival of
probiotic bacteria in dehydrated products is on the order of 106 to 107 (CFU/g), indicating
greater survival in the freeze-drying process than in hot air drying and air-drying vacuum;
however, freeze-drying requires a long drying time, pretreatment (freezing), high-cost
equipment, and energy [47]. The intensified drying characteristics of RWTM may result
in the drying of probiotics as long-term heating operations are detrimental to living cells.
The RWTM drying of probiotics has been reported for powders [48] encapsulates [49,50],
and kefir [51]. Tontul et al. (2018) [52] studied the effect of (RWTM) drying in comparison
with that of freeze-drying, and the authors reported that the RWTM drying process pro-
duced better quality yogurt powder products than the freeze-drying process, except for
the color properties, while the survival of probiotics decreased inversely with temperature.
Despite the aforementioned advantages of RWTM, to the best of our knowledge, the use of
RWTM during the fruit probiotic carrier drying has not been reported. The purpose of the
present study was to evaluate the use of Refractance Window drying (RWTM) to produce
dry probiotic-enriched apple slices compared with air-dried (CD) and freeze-dried (FD)
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processes in terms of probiotic viability, color, texture, and total polyphenols. The study
included the effect of the drying process on the survival of bacteria during storage.

2. Materials and Methods
2.1. Materials

The raw material used was apples (cv. Granny Smith) obtained from a local market
in the city of Valparaíso, Chile, stored at 2 ◦C until use. The apples were washed with tap
water and dried. Slices 0.0041 ± 0.0003 m thick and 0.04 ± 0.0001 m in diameter were cut
using a cork borer. The samples were obtained only from the parenchymal tissue [53], and
each slice had an average weight of 0.0044 ± 0.00028 kg. To avoid enzymatic oxidation
during the process, the samples were blanched according to a previously described method
by [16] with some modifications by immersing the slices in hot water at 90 ◦C for 1 min.
Subsequently, the samples were placed in a cold-water bath (8 ◦C) for 1 min.

2.2. Impregnation of Probiotic Bacteria

In this work, Lacticaseibacillus rhamnosus derived from ATCC® 53103™* was isolated
from lyophilized commercial capsules (Microbiologics, MN, USA) and used as a probiotic
agent to inoculate apple slices. The L. rhamnosus probiotic culture was first cultured in
MRS broth (Biokar Diagnostics, Allonne, France) at 37 ◦C for 48 h. The broth was stored as
50% glycerol stocks at 0.5 McFarland turbidity in sterile cryogenic vials. Glycerol stocks
were stored at −80 ◦C until use. Prior to the experiments, the cultures were activated
in MRS broth at 37 ◦C for 48 h. After incubation, the inoculum solution was prepared
by transferring fresh MRS broth into commercial pasteurized apple juice (AFE Company,
Maule, Chile). The pH of the juice was adjusted with sodium bicarbonate to pH~5.4. The
targeted inoculation level was ~109 log CFU/mL. The apple/impregnation solution ratio
was 1:5 (w/v). The apple slices were soaked in impregnation solution applying a vacuum
pressure of 20 kPa according to the previously published method of [43], with modifications,
using a DVP-1 vacuum pump (Dosivac, Buenos Aires, Argentina) for 15 min, followed by
reestablishing atmospheric pressure by keeping the samples in the impregnation solution
for 15 min. At the end of impregnation with the probiotic, the samples had a weight
of 0.0041 ± 0.00044 kg.

2.3. Drying Process
2.3.1. Conventional Drying (CD)

The apple slicing and drying process was carried out in a convection oven (MEMMERT,
model UFB400, Büchenbach, Germany) until the samples reached an aw value of less than
0.4 [54]. The drying temperature was 45 ± 0.5 ◦C [16] for 330 min (the water activity
attained for the dried samples was 0.362 ± 0.021). Drying was performed in triplicate.
Likewise, the drying kinetics were evaluated using the loss of water from the samples over
time. The sampling period to measure the weight change was 10 min to weigh the samples
during drying, and a digital balance with a precision of 0.001 g (model JD400-3, Changzhou,
China) was used. Sampling was performed in triplicate.

2.3.2. Refractance WindowTM (RWTM)

A thermoregulated bath (MEMMERT, model WNB22, Büchenbach, Germany) with
distilled water at 45 ± 0.1 ◦C was used. A 0.1 mm thick plastic film (MYLAR, polyethylene
terephthalate) was placed in the thermoregulated bath in which the apple slices were
placed. Drying experiments were performed in triplicate. Drying was carried out until the
samples reached a water activity lower than 0.4 [54]. The drying time was 210 min (the
water activity attained for the dried samples was 0.344 ± 0.021). The sampling period used
to measure the weight change was 15 min. As in conventional drying, sampling over time
was performed in triplicate.
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2.3.3. Freeze-Drying (FD)

Freeze-drying of the apple slices was carried out in an Alpha 2-4 LSCplus freeze-
dryer (Martin Christ Gefriertrocknungsanlagen, Osterode, Germany), with an operating
temperature of 30 ◦C and a 0.3 mbar vacuum pressure for 24 h. The samples were frozen
at −85 ◦C in a freezer (Haier ULT Freezer, model DW-86W100J, Qingdao, China) for 24 h
before the freeze-drying process. The food was placed on three shelves (with an area of
0.021 m2 each), with a total load of 45 slices of apples. It is important to mention that the
shelves were controlled by a wireless temperature system, which allowed for monitoring
of shelf and food temperature during the drying process. The water activity attained for
the dried samples was 0.315 ± 0.052.

For the three drying processes, the dehydrated samples were stored in aluminized
Ziploc bags at 4 ◦C [12,55,56] for 4 weeks for the enumeration of microorganisms expressed
as a colony-forming unit in g dry matter (CFU/gdb), water activity, moisture content
(g water/g sample), and total color change (∆E). The analysis was performed weekly.

2.4. Plate Count Enumeration of L. rhamnosus

To enumerate L. rhamnosus colonies, 10 g of probiotic-impregnated apple was mixed
with 90 mL of sterile peptone water, homogenizing the mixture. Ten-fold serial dilutions
were prepared from the homogenized samples with peptone water. Appropriate dilutions
were inoculated in MRS agar (Biokar Diagnostics, Allonne, France), and petri dishes were
incubated at 37 ◦C for 48 h under aerobic conditions. At the end of the incubation, the
colonies of L. rhamnosus were counted (CFU/gdb).

2.5. Analytical Determinations: Water Activity and Color Change

The water activity (aw), moisture content, and color of the samples were measured
before and after drying. The water activity (aw) was determined using a Rotronic hygrom-
eter (HygroPalm HP23-AW-A, Bassersdorf, Switzerland). Measurements were conducted
during drying to specify the moment of the end of the process (aw < 0.4). The moisture
content of the samples was determined according to the Society of Official Analytical
Chemists by drying 5 g of the apple sample under vacuum conditions in an oven at 70 ◦C
for 24 h until a constant weight was obtained [57]. The initial moisture content of the
sample was 0.866 ± 0.002 g water/g sample. The change in color (∆E) experienced by
the apple slices during drying was measured using a CR-300 colorimeter (Konica Minolta,
Tokyo, Japan). The type of illuminant was D65, and the degree of the observer was 2◦.
The result was expressed according to the CIELAB color space: L* indicates luminosity,
a* corresponds to the red/green chromatic coordinate, and b* indicates the yellow/blue
chromatic coordinate. Measurements were conducted in triplicate, and values are expressed
as the average of three sample sites. Equation (1) [58] reports how ∆E is determined and
represents the change in color between impregnated/fresh and impregnated/dry samples.
Pathare et al. [59] indicated that for fresh and processed foods, perceptible differences in
color can be classified analytically, considering a ∆E > 3.

∆E∗ =

√
∆L∗2 + ∆a∗2 + ∆b∗2 (1)

2.6. Mechanical Properties

A puncture test measured the mechanical properties of dried apple slices. The mea-
sures were performed in a Texturometer (Brookfield, Model CT3, MA, USA) equipped with
a 2 mm diameter cylindrical puncture probe (TA-39) controlled by the software TexturePro
CT (version 1.6). Each apple slice was carefully placed and held on a special platform
while the measuring tip penetrated the slice’s center at a constant speed of 2.0 mm/s.
The thickness of the samples was measured in millimeters (mm), maximum force values
were recorded in newtons (N), and the crispness was represented by the distance to reach
the maximum force in millimeters (mm). The experiments were performed ten times for
each treatment.



Foods 2024, 13, 1756 5 of 17

2.7. Determination of Total Polyphenol Content (TPC)

Polyphenols were obtained by extracting two grams of ground sample (fresh, im-
pregnated, or dried) with 20 mL of an 80% methanol solution using a homogenizer at
room temperature and protected from light for 1 h. The supernatant was filtered through
Whatman paper No. 2 and stored at −20 ◦C.

The total polyphenol content in the extracts was determined using the Folin–Ciocalteu
method [60] and expressed as gallic acid equivalents (GAEs) in mg/g dry matter (mg/gdb).

The total polyphenol content was determined using a Genesys 5 spectrophotome-
ter (Spectronic Instrument, Inc., Model 336001, Rochester, NY, USA) by measuring the
absorbance at 765 nm. The analyses were conducted in triplicate.

2.8. Microstructural Analysis

To observe the impregnation of the probiotics in the apple slices, a structural anal-
ysis was performed using a Carl Zeiss EVO MA 10 scanning electron microscope (Carl
Zeiss SMT, Ltd.,Oberkochen, Germany) at a pressure of 6 × 10−6 mbar and a pressure
acceleration voltage of 10 kV. The dried samples by the three methods (CD, RWTM, FD)
were dewaxed, gold coated, placed on aluminum plates, and secured with double-sided
carbon tape.

2.9. Effective Moisture Diffusivity (Deff)

The most traditional mathematical model for describing the drying process is the
second Fick’s law model [61], which is used for an infinite slab and is represented by
Equation (2):

MR =
Wt − We

W0 − We
=

8
π2 ∑∞

i=1
1

(2i − 1)2 e(
−(2i−1)2 π2 De f f t

4L2 ) (2)

where MR is the moisture ratio, Wt is the moisture content at any time t (g water/g dry
basis), We is the moisture content at equilibrium (g water/g dry basis), W0 is the initial
moisture content (g water/gdb), Deff is the effective diffusion coefficient (m2/s), L is the
half-thickness of the slice (m), and t is the drying time (s). The value of We was obtained by
checking the asymptotical value of the moisture profile.

The drying process was also analyzed with an anomalous diffusion model based on
fractional calculus [62–64]. For one dimension, the model is represented by Equation (3)
as follows:

MR =
Wt − We

W0 − We
=

8
π2 ∑∞

i=1
1

(2i − 1)2 Eα
(
−(2i−1)2 π2D∗

e f f tα

4L2 ) (3)

where, D*eff is the moisture effective diffusion coefficient (m2/sα), t is the drying time (s),
L is the half-thickness of the slice (m) and Eα is the Mittag–Leffler function [25]. The α
value indicates the transport mechanism that dominates the mass transfer process. Then,
if 0 < α < 1, the diffusion mechanism can be assumed to be subdiffusive. In contrast, if
α > 1, the mechanism can be considered to be superdiffusive. If α converges to the unit, the
anomalous diffusion model converges to Fick’s second law.

Deff and D*eff were obtained by fitting the MR data with Equations (2) and (3), respec-
tively, by minimizing the sum of the square error using MATLAB R2019a software, version
9.6 (The MathWorks, Inc., Natick, MA, USA).

2.10. Statistical Analysis

The significance test of the results was performed with an analysis of variance
(ANOVA) and Duncan’s multiple range tests with a significance of 95%. This analysis was
conducted using STATGRAPHIC 18 Centurion XVIII software® (StatPoint Technologies,
Inc., Warrenton, VA, USA).
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3. Results and Discussion
3.1. Survival of Probiotics and Microstructure Analysis

The initial inoculation density was 8.53 ± 0.38 log CFU/gdb, indicating good adapta-
tion and attachment of bacteria on the apple surfaces. Table 1 shows the counts of probiotics
on dried apple slices and during storage for 4 weeks at 4 ◦C. At the beginning of storage,
the microbial contents of CD, RWTM, and FD were 6.30, 6.67, and 7.20 log CFU/gdb, re-
spectively. The results indicate that the bacterial cells attached to and survived better on
the FD-treated apple surfaces than on the CD- and RWTM-treated apple surfaces. Similar
results have been reported for CD in apple [19,40,65] and murta [43] where impregnation
and survival of microorganisms during drying ranged from 106–107 CFU/g. On the other
hand, the higher cell concentrations achieved after FD may be related to the mild conditions
of this technology compared with the CD and RWTM. In these, the heat treatment induces
more harmful effects on microorganisms, which can help the viability of the probiotics [52].
On the other hand, Betoret et al. [66] indicated that the inclusion of probiotics in the porous
structure of apples through vacuum impregnation could confer protection against cellular
damage caused by freezing and subsequent sublimation of frozen water. However, FD is a
very slow and expensive drying process: to achieve similar water activity (aw < 0.4), the
FD needed 24 h while the CD and RWTM took 5.5 and 3.5 h, respectively.

Table 1. Change in number (log CFU/gdb) of L. Rhamnosus of the apple slices during storage.

Day 0 Day 7 Day 14 Day 21 Day 28

CD 6.67 ± 0.25 a,A 6.49 ± 0.19 a,A 6.16 ± 0.22 a,A 6.40 ± 0.26 a,A 6.29 ± 0.19 a,A

RW 6.33 ± 0.21 a,A 6.42 ± 0.30 a,A 6.33 ± 0.21 a,A 6.44 ± 0.56 a,A 6.33 ± 0.29 a,A

FD 7.20 ± 0.16 b,A 6.67 ± 0.05 a,A 6.51 ± 0.12 a,A 6.37 ± 0.90 a,A 6.63 ± 0.07 a,A

Different uppercase letters in the same column indicate significant differences (p < 0.05). Different lowercase
letters on a row indicate significant differences (p < 0.05).

The physicochemical changes during the drying processes must be considered because
they affect the structure of the dehydrated apple matrix [67,68]. Several authors have
reported differences in the microstructure caused by different conditions and types of
drying [51,69–72]. Figure 1 shows the micrographs obtained from transverse and superficial
sections of dehydrated apple slices using CD (Figure 1a–c), RWTM (Figure 1d–f), and
FD (Figure 1g–i) methods. SEM micrographs of probiotic-enriched apple slices were
analyzed to observe the surface structure of the dried apples and the presence/attachment
of L. rhamnosus to the apple surface tissue. The SEM images demonstrate that cells were
successfully impregnated onto the apple surface by CD, RWTM, and FD drying and not
inside the matrix. This difference may be due to the size of the cells. These results show that
the apple surface tissues had an adequate structure and sufficient space for the attachment
of bacterial cells, which agrees with the findings of [16] and [73]. Figure 1a–c shows that
the apple slices dried by CD had a rough surface morphology, while the surfaces of the
RWTM samples (Figure 1d–f) were relatively smooth, which could be attributed to the apple
slices being in contact with Mylar film during RWTM drying. These results agree with
those of [26] and [74] who reported on RWTM drying of berries and mangoes, respectively.
Figure 1g–i shows that the apple slices dried by FD had a more porous structure; this
phenomenon can be explained by the nature of the FD process, in which the ice in the food
materials allows for the structure and shape to be preserved and helps prevent collapse, so
there are no significant changes in the volume [28,74].
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Figure 1. SEM micrographs of the probiotic-enriched apple slices dried using conventional drying
(CD) (a–c), Refractance Window drying (RWTM) (d–f), and freeze-drying (FD) (g–i) (magnification of
46X (h) 50× (b,e), 73X (i), 100X (f,c), 5330X (g) and 10,000X (a,d), 20 kV).



Foods 2024, 13, 1756 8 of 17

Another relevant factor is the viability of probiotics during storage and their rela-
tionship with the microstructure. Initially, it would be expected that greater porosity and
less shrinkage would result in greater stability of the probiotic bacteria in the samples
subjected to FD. However, the aw achieved in these samples was considerably lower com-
pared with the other drying methods evaluated. Moreover, for the case of FD, a significant
decrease (p < 0.05) in the microorganism content was observed with time. Similar results
were obtained by Betoret et al. [20] who studied the drying of L. salivarius spp. in apples
with a storage period of 28 days. In that case, the viability of the probiotics was 79.7%
for CD versus 45.1% for FD. This may be explained by the lower moisture content of the
FD product. Although Lactobacilli sp. can easily adapt to changes in their environment, a
lower water content leads to cell membrane contraction with decreased cytoplasmic pH
and an increase in the concentration of fruit acids [17]. In addition, Semyonov et al. [75]
reported that a significant loss of viability of probiotics can occur during drying and storage
due to changes in the physical state of membrane lipids or in the structure of cell protein
bacteria caused by high evaporation rates, thus affecting the cell integrity. In this sense,
controlled shrinkage may provide an additional barrier of protection to bacteria against
to the environmental conditions encountered during drying. This may favor a greater
survival in CD and RW compared with FD [76]. On the other hand, the glassy state is an
important factor for bacterial stability [28,77]. Tymczyszyn et al. [78] suggested that at
high drying rates and rapid diffusion of water occurring in CD samples, no decrease in the
probiotic population was observed during storage. These results are different from those
reported by [16] since they reported an approximately 1 log reduction in probiotic numbers
in apples dried via CD at the same temperature. This difference could be explained by
the fact that, in our study, apple juice was used as the impregnation solution, which could
have helped maintain the probiotic population during storage. Several factors affect cells
physiologically, and pH is one of the most important. Apple fruit had a pH between
3 and 4, and the optimal initial pH value for the growth of L. rhamnosus is in the range of
4.5 to 6.4 [79], so the juice that was used (pH~5.4) as a liquid vehicle for microorganism
growth, and their incorporation into the apple matrix could have helped to balance the
pH. Betoret et al. [76] reported that the use of juice seemed to confer some protection to
probiotic cells.

3.2. Water Activity and Moisture

Water activity (aw) is an essential parameter in drying because it is an indicator of
microbial and physicochemical changes in food products. Table 2 shows the changes in
water activity and moisture content of the probiotic-enriched dried apple samples. As
shown in this table, on day 0, the water activity and moisture content of the samples were
0.315 to 0.362 and 0.007 to 0.094 g water/g sample, respectively. Then, significant increases
(p < 0.05) in the aw and moisture content were observed from day 7 to day 14 in the case
of RW. The increase in moisture content in dehydrated snacks appears to be related to the
gradual migration of moisture into the packaging where an increase in the concentration
of reducing sugars is expected. Hydrophilic solutes strongly interact with water, altering
the structural associations and mobility of adjacent water. Therefore, the initial interaction
between the OH groups of the water in the package headspace and the sugars in the snack
could influence the absorption of water. This process is facilitated by the physical structure
of the snack (porous and nonhomogeneous), and it has been reported in apple snacks
dehydrated by hot air-drying processes [80]. On the other hand, the FD decreased the aw
value. The reduction in water content of freeze-dried apple slices during storage could
be attributed to the residual moisture present in the food matrix. This trapped water can
be released in an easier way than, as in the case of CD, during the storage period because
the structure of freeze-dried slices is more open and porous. This fact allows the water
molecules to move within the matrix and be released during storage. Similar results were
reported by Antal et al. [81] for the case of FD blueberries where the studies showed that
the moisture content decreased continuously during the storage period.
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Table 2. Change of aw, moisture, and color properties of the probiotic-enriched apple slices during
the 4-week storage period.

Dehydration
Methods Days aw L* a* b* ∆E

Moisture
(g Water/g
Sample)

CD

0 0.362 ± 0.021 a 84.94 ± 0.99 a −3.63 ± 0.70 a,e 27.98 ± 2.17 a - 0.084 ± 0.017 a,c

7 0.439 ± 0.015 b 82.50 ± 1.12 b −3.92 ± 0.56 a,e 28.10 ± 1.70 a 2.72 ± 0.79 a,c 0.093 ± 0.005 a,g

14 0.432 ± 0.046 c 82.50 ± 1.93 b −2.87 ± 0.97 b,d 26.54 ± 2.10 a,c 4.22 ± 2.02 a 0.081 ± 0.008 a

21 0.455 ± 0.013 b 82.70 ± 2.31 b −3.07 ± 0.79 a,d 25.73 ± 2.98 c 4.60 ± 1.52 a 0.094 ± 0.002 a,h

28 0.484 ± 0.028 b 80.32 ± 1.62 c −2.19 ± 0.64 c 24.87 ± 2.34 c,d 7.81 ± 2.94 b 0.093 ± 0.019 a,h

RW™

0 0.344 ± 0.021 a,f 83.64 ± 0.59 a,d −1.91 ± 0.40 c 25.71 ± 1.29 a,c - 0.054 ± 0.006 b,d,e

7 0.335 ± 0.006 a,f,h 85.03 ± 1.97 a,d −2.89 ± 0.10 d 21.52 ± 1.14 b,e,f,h 2.65 ± 1.83 a,c 0.058 ± 0.009 c,d,e

14 0.385 ± 0.004 a,c 83.63 ± 1.40 a,d −2.87 ± 0.53 d 23.35 ± 1.36 f 3.01 ± 1.86 a,c 0.077 ± 0.012 c,d,g,h

21 0.393 ± 0.003 e,c 84.17 ± 2.71 a,d −2.58 ± 0.49 d 23.22 ± 1.19 e,h 3.13 ± 1.18 a,c 0.073 ± 0.007 c,d,h

28 0.391 ± 0.011 c 84.84 ± 1.37 a −1.40 ± 0.60 c 19.26 ± 2.37 b,g,h 4.10 ± 1.81 a,c 0.082 ± 0.018 c,g,h

FD

0 0.315 ± 0.052 f 84.67 ± 2.71 a,d −3.93 ± 0.72 e 20.08 ± 2.51 g,h - 0.025 ± 0.005 e

7 0.281 ± 0.052 g 83.83 ± 1.08 a,d −3.45 ± 0.39 e 19.35 ± 1.29 g,h 1.87 ± 0.79 c 0.023 ± 0.002 e

14 0.245 ± 0.004 g 84.68 ± 1.27 a,d −3.34 ± 0.92 e 20.79 ± 2.96 g 2.04 ± 1.02 c 0.015± 0.003 f

21 0.248 ± 0.006 g 82.89 ± 1.16 d −3.96 ± 0.35 e 19.89 ± 1.62 g 2.15 ± 1.02 c 0.012 ± 0.006 f

28 0.286 ± 0.034 g,h 84.20 ± 1.06 a,d −3.63 ± 0.42 e 18.83 ± 0.84 g 2.29 ± 0.29 c 0.007 ± 0.000 f

Different lowercase letters in the same column indicate significant differences p < 0.05.

3.3. Color

The fresh apple slices had L* = 73.09 ± 1.44, a* = −6.48 ± 0.25 and b* = 22.14 ± 0.82,
similar to the findings of [17,30]; on the other hand, the impregnated apple slices had
L* = 69.92 ± 1.22, a* = −5.69 ± 0.32 and b* = 23.64 ± 1.08, with no differences observed
between the impregnated and fresh samples (p ≥ 0.05). Therefore, the impregnation solu-
tion did not significantly affect the color, as was also shown by [82] with L. rhamnosus
cultures added to peach jam. The color difference (∆E∗) was calculated by compar-
ing the treatments (day 0) with the impregnated sample. The values obtained were
16.09 ± 1.54, 14.51 ± 0.68, and 12.10 ± 1.03 for CD, RWTM, and FD, respectively. No signif-
icant differences were detected between CD and RW treatments (p ≥ 0.05); on the other
hand, significant differences were observed compared with those in the FD process, which
presented a lower color difference. These results agreed with the results reported by [83–85].
In general, it is clear from the literature that color changes in dried products can be affected
by many factors related to the processing steps, such as the drying method, and in this
sense, many studies have reported that RWTM produces better quality in terms of color
than CD drying [36,52,62,86]. This could be related to the longer drying time required for
CD drying; in this study, the duration of CD was 2 h longer than that of RW (5.5 and 3.5 h
for CD and RW, respectively).

On the other hand, during storage, the difference in color (∆E∗) between the samples
at the beginning (day 0) and for each week was determined, and the results are shown
in Table 2. Significant differences (p < 0.05) were detected between the CD treatment
and the other drying treatments (FD and RWTM), and greater color changes after 28 days
of storage were observed in the samples that were dried using CD. Akman et al. [16]
did not observe significant differences during storage, which could be explained by the
fact that unlike [16], in this study, apple juice was used as an impregnation solution.
In this sense, the combination of time and temperature promotes the development of
caramelization and Maillard reactions as a consequence of drying. The addition of apple
juice as an impregnation medium increases the content of reducing sugars available for the
development of non-enzymatic browning during the drying process, which concentrates as
dehydration progresses. Furthermore, the autocatalytic nature of these reactions leads to
the formation of pigments even during storage [87].

The L* value for CD-treated samples significantly decreased (p < 0.05) during storage.
This could indicate the browning process, but there was no significant difference (p >0.05)
between the RWTM and FD samples. An increase in the “a” value means a redder chroma,
which is also indicative of a browning reaction. In this study, the redness was relatively
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constant during storage for FD; therefore, there was a decreased loss of green color. How-
ever, in the case of CD and RWTM, a greater value was observed at the end of storage than
at the beginning (p < 0.05) because of oxidation. The chroma parameter b behaved similarly
to the redness parameter during storage and remained constant in FD samples during the
4 weeks of storage. The color stability could be explained by the fact that FD removes
water by sublimation of ice at low temperatures and is carried out under vacuum, which
reduces the oxygen content in the environment. Both conditions help prevent additional
occurrence of enzymatic browning reactions, resulting in the relative stability of the L, a,
and b color parameters [88]. Additionally, the non-enzymatic browning often is a result
of the severity of the thermal treatment. In this regard, it is expected that dehydration
performed with freeze-drying (FD) results in fewer color changes, followed by Refractance
Window (RWTM), and finally, convective drying (CD) leads to significant increases in color
change (∆E). This is consistent with previous studies on the dehydration of apple chips
using various technologies where, generally, CD causes visually noticeable changes in the
product’s coloration [69,89].

3.4. Textural Properties

The textural properties of a dehydrated product play an important role in its accept-
ability to the consumer. Textural properties depend mainly on the moisture content of
the product and are influenced by the type of drying technology [28]. Table 3 shows the
maximum force values, crispness, and thickness of apple slices dried by CD, RWTM, and
FD. It is observed that CD apple slices obtained the highest hardness and lower values of
crispness. This can be attributed to the shrinkage of the sample diameter [13], leading to
increased thickness and rubberiness; consequently, more force is required to pass through
the sample. In contrast, the RWTM drying resulted in apple slices with lower hardness
values than oven drying, aligning with previous research studies [35,36]. This difference
can be attributed to a lesser shrinkage, resulting in slices with a reduced thickness and
a more rigid and crispy matrix. FD samples exhibited the lowest hardness values but
higher crispness. Dadhaneeya et al. [90] reported that freeze-dried samples had the lowest
hardness values in comparison to RWTM, CD, and vacuum drying. This can be attributed to
minimal deformation, with the slices perforating almost immediately upon contact. The FD
process maintains the original structure of the sample, having the most significant thickness
among the samples.

Table 3. Textural properties.

Drying Method Crispness (mm) Thickness (mm) Force (N)

CD 7.46 ± 1.22 a 1.66 ± 0.18 a 27.94 ± 4.37 a

RW TM 4.41 ± 0.76 b 0.77 ± 0.09 b 9.26 ± 0.93 b

FD 2.77 ± 1.31 c 3.70 ± 0.21 c 3.44 ± 0.46 c

a, b, c: Different lowercase letters within the same column and experiment show that the results are statistically
significantly different (p < 0.05).

3.5. Total Polyphenol Content

The initial total phenolic content (TPC) of the fresh apples was 11.22 ± 0.47 mg
GAE/gdb, similar to that reported in [30] for Granny Smith apples. The TPC of the
CD, RWTM, and FD apple samples had average values of 3.85 ± 0.20, 4.64 ± 0.23 and
4.12 ± 0.13 mg GAE/gdb, respectively. Akman et al. [16] obtained similar results for CD
at 45 ◦C for 6 h; apple slices were impregnated with probiotics, for which a TPC of
3.41 mg GAE/gdb was obtained. Significant differences were evident between the treat-
ments. Compared with those of CD, the TPC of apple slices dried with RWTM increased
by 20.5% with respect to that of slices dried with CD, which can be attributed to the rapid
heating and the significant reduction in drying time of RWTM (3.5 h) compared with that of
CD (5.5 h). Rajoriya et al. [89] also found that RWTM-dried apple slices had a greater TPC
than CD-dried apple slices. An increase of 12.6% was observed when comparing RWTM
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treatment with FD treatment, and similar results were reported for dragon fruit by [90].
These results are similar to those of other studies [26,78,91], which shows that RWTM

technology allows for obtaining products in a significantly shorter time with attributes
similar to those of FD. This technology is also inexpensive and has a significantly lower
power consumption. That is, RWTM can consume one-third to one-half of the FD power
consumption [92]. The drying mechanisms involved in RWTM are conduction, radiation,
and convection. At the beginning of drying, the material to be dried has a high humid-
ity, which absorbs electromagnetic radiation. During the drying process, the humidity
decreases, which causes the infrared window to gradually close, and the infrared radiation
is refracted due to the refractive index of the material; therefore, conduction becomes the
predominant mode for heat transfer. Additionally, due to the convective cooling provided
by the ambient air flow over the material to be dried, the product temperature is relatively
low during RWTM drying, which also helps maintain quality [28].

3.6. Effective Moisture Diffusivity (Deff)

The effective diffusion coefficient (Deff) was obtained by fitting the drying data for
apple slices dried using either CD drying or RW™ to Fick’s second and anomalous dif-
fusion models (Figure 2). According to Table 4, the results show that the Fick diffusion
coefficient values are between 0.87 and 1.22 × 10−9 m2/s; on the other hand, the anomalous
model coefficient values are between 1.67 and 3.63 × 10−11 m2/sα. It can also be seen
that the order of magnitude for Deff values is lower for the anomalous model than for
Fick’s model. According to Rajoriya et al. [31], this difference can be explained by the
fact that Fick’s model does not consider a superdiffusive process to calculate Deff. This
indicates that the Fickian approach considers only an exponential type of response. The
anomalous model includes the superdiffusive process into Deff and α terms, which describe
a superdiffusion phenomenon (α > 1). This allows us to represent power law kinetics.
According to Simpson et al. [25], the time exponent can be related to the microstructure
of the food material. The RWTM values were higher than the corresponding values for
CD drying. These results could be explained by the smoother (uniform) microstructure
leading to easier and faster diffusion of moisture [31]; on the other hand, in the case of
the anomalous diffusion model, it can be observed that in both cases (CD and RW), an
α > 1 is obtained, which indicates that the diffusion that occurred during drying in the
apple slices was carried out via a superdiffusive process, as suggested by [93,94]. The
results showed that the anomalous diffusion model was a better fit (R2 > 0.982) than
Fick’s model (0.893 < R2 < 0.904) for both drying processes. Several studies have concluded
that the fit with the anomalous model is better than that with Fick’s model [31,54,62,93].
Vega-Castro et al. [95] concluded that the reason is that the anomalous model has a sound
phenomenological description of the process and a high capacity to adjust empirical data.

Table 4. Effective diffusion coefficients for CD and RW drying according to Fick’s second law and
anomalous diffusion models.

Drying Fick’s Second Law Anomalous Model

Deff(10−9m2/s) R2 Deff(10−11m2/sα) R2 α

RW 1.22 ± 0.134 a 0.904 3.63 ± 1.06 a 0.982 1.40 ± 0.02 a

CD 0.87 ± 0.05 b 0.893 1.87 ± 1.25 a 0.983 1.44 ± 0.07 a

Different letters in the same column indicate significant differences (p < 0.05).
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4. Conclusions

Apple slices impregnated with Lacticaseibacillus rhamnosus were evaluated and dried
using the Refractance Window technology (RWTM) to be compared with conventional
drying (CD) and freeze-drying (FD). Results indicate that vacuum impregnation with
L. rhamnosus was successfully achieved, reaching an initial inoculation density of 8.53 log
CFU/gdb. At the end of the drying processes, bacterial viability was best preserved in
samples treated by FD, followed by RWTM and CD.

Regarding microstructural changes, the RWTM technology exhibited a smoother sur-
face structure compared with conventional drying, which might facilitate lower mass
transfer resistance and more uniform moisture diffusion. These changes are crucial as they
directly affect the stability and viability of the incorporated probiotics. At this point, it
was found that the effective diffusion coefficient was significantly higher in RWTM drying
compared with CD, which can be attributed to the greater uniformity in the microscopic
structure observed in the former. The lower drying times of RWTW also yielded samples
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with a stable delta color during storage and the lowest loss of total polyphenols compared
with CD and FD.

Finally, this study provides solid evidence on the effectiveness of the RWTW as a drying
technique that not only preserves the viability of probiotics but also maintains structural
integrity and nutritional quality of nondairy probiotic foods. These findings contribute to
the development of new probiotic products in nontraditional matrices, expanding options
for consumers with dietary restrictions or vegan preferences. Future research should focus
on optimizing drying parameters, evaluating the long-term stability of probiotics under
various storage conditions, and studying in more detail the structural changes occurring in
the product during storage and the mechanisms behind them.
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