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Abstract: Fusarium pseudograminearum causes destructive crown disease in wheat. The velvet pro-
tein family is a crucial regulator in development, virulence, and secondary metabolism of fungi.
We conducted a functional analysis of FpVelB using a gene replacement strategy. The deletion of
FpVelB decreased radial growth and enhanced conidial production compared to that of wild type.
Furthermore, FpVelB modulates the fungal responses to abiotic stress through diverse mechanisms.
Significantly, virulence decreased after the deletion of FpVelB in both the stem base and head of wheat.
Genome-wide gene expression profiling revealed that the regulation of genes by FpVelB is associated
with several processes related to the aforementioned phenotype, including “immune”, “membrane”,
and “antioxidant activity”, particularly with regard to secondary metabolites. Most importantly,
we demonstrated that FpVelB regulates pathogen virulence by influencing deoxynivalenol production
and modulating the expression of the PKS11 gene. In conclusion, FpVelB is crucial for plant growth,
asexual development, and abiotic stress response and is essential for full virulence via secondary
metabolism in F. pseudograminearum.
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1. Introduction

Fusarium crown rot (FCR), primarily caused by the soil-borne fungal pathogen Fusar-
ium pseudograminearum, is a widespread and destructive disease that affects cereal crops,
particularly wheat and barley [1]. This chronic soil-borne disease is notorious for its ability
to inflict substantial yield losses and economic damage. Losses in yield due to this disease
are as high as 10–35% under natural inoculum levels in Australia and the Pacific North-
west of the USA [2]. The prevalence of F. pseudograminearum has increased sharply in the
Henan, Hebei, and Shandong provinces, which are the main wheat-producing areas in
the Huang–Huai region of China [3–5]. Typical symptoms of FCR include crown, foot,
and root rot. After infection, the coleopedia, bottom leaf sheath, and base stem of wheat
show successive browning. Heavily infected plants produce white heads with no or few
full seeds [6]. In addition to production loss, the pathogen can threaten human and animal
health by contaminating food with the producing mycotoxins, such as deoxynivalenol
(DON) and nivalenol (NIV) [7].

Plant pathogens can produce cell wall-degrading enzymes, secondary metabolites
(SMs), and other pathogenic substances that participate in pathogenic diseases. F. pseu-
dograminearum successfully infects and colonizes host tissues by producing certain SMs,
such as the trichothecene toxin DON because the deletion mutants of the TRI5 gene exhibit
reduced virulence in wheat [8–10]. In addition, a gene cluster encoding a cytokinin-like
metabolite has been identified in F. pseudograminearum. Fusarium cytokinins have been
shown to activate cytokinin signaling in plants both in vitro and in vivo to help pathogens
infect host plants [11]. In a recent study, the deletion of the nonribosomal peptide-coding
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gene FpNPS9 compromised DON production and virulence in F. pseudograminearum. Fur-
ther analysis revealed at least 16 nonribosomal peptide synthetases and 14 polyketide
synthases (PKSs) in the genome of F. pseudograminearum. These synthases play important
roles in the secondary metabolic synthesis pathway [12]. Therefore, other SMs likely affect
the pathogenicity of F. pseudograminearum [8,13]. In view of the important role of SMs in
F. pseudograminearum infection, the study of these regulatory mechanisms of SMs may help
the understanding of virulence mechanisms and provide an important reference for resis-
tance breeding and disease control [7]. The regulatory mechanisms of SMs in fungi involve
multiple processes such as signal transduction pathways and environmental factors. These
regulatory factors can be divided into global regulators, pathway-specific modifications,
and epigenetic modifications [14]. Among these, the light response-related velvet family
proteins are important global regulators of SMs in fungi [15].

The velvet protein family comprises a class of fungal transcription factors sharing a
common velvet domain. The four members—VeA, VelB, VelC, and VosA—have been well
identified and characterized [16]. Among these, VeA was the most intensively studied
protein that regulates development and SMs in a variety of fungi [15]. VelB, which can
assemble into a heterotrimeric velvet complex with VeA, is involved in multiple regulatory
processes in several filamentous fungi [17]. This complex plays an important role in conidi-
ation and virulence by regulating the transcription factor VmCmr1, which is involved in
melanin synthesis and in controlling the expression of pectinase genes in Valsa mali [18].
In addition, the lack of VelB hinders both conidiation and aflatoxin production in Aspergillus
flavus [19]. VelB is crucial for the development, pathogenicity, and SM of Penicillium ex-
pansum [20]. VelB can also form a complex with VosA. This complex affects the growth,
development, and SMs of A. nidulans in different ways and to different degrees [21–23].
The velvet complexes are present in the Fusarium genus. The VelB subunits within these
complexes interact to control the biosynthesis of deoxynivalenol, fumonisin, and beau-
vericin in addition to governing aspects of the development, pathogenicity, and virulence
of F. graminearum, F. verticillioides, and F. oxysporum [24–26]. In F. pseudograminearum, FpVeA,
a key member of the velvet family, was identified via map-based cloning and regulates the
virulence of F. pseudograminearum [27]. However, the function and regulatory mechanism
of VelB remain poorly understood when SMs, key virulence factors, are regulated by VelB,
as is the manner in which this regulation may occur.

In this study, we investigated the function of VelB orthologous protein, FpVelB, in the
development, virulence, and expression of SM genes of F. pseudograminearum. The deletion
of FpVelB led to notable differences in growth and conidiation. Furthermore, we observed
reduced virulence in the FpVelB deletion mutants. FpVelB has also been identified as a key
regulator of multiple metabolic pathway genes, particularly those associated with SMs.
Notably, DON production depends on FpVelB. Additionally, FpVelB positively regulates
another SM gene cluster associated with pathogenesis. These findings strongly suggest
that FpVelB is crucial for growth, asexual development, and abiotic stress responses and is
essential for full virulence via SMs in F. pseudograminearum.

2. Materials and Methods
2.1. Strains and Culture Conditions

Wild-type strains of Fusarium pseudograminearum 2035 were stored in the Laboratory of
Fungi Diseases, Institute of Plant Protection, Hebei Academy of Agricultural and Forestry
Sciences. All F. pseudograminearum strains were incubated on potato dextrose agar (PDA)
medium (potato extract 200 g, dextrose 20 g, and agar 15 g per litre) at 25 ◦C.

The growth rates of F. pseudograminearum strains were calculated using the colony
radius per day. Conidiation assays were performed using carboxymethyl cellulose sodium
(CMC) medium [28]. The conidial concentration of the various strains was assessed using
a hemocytometer following incubation in 100 mL CMC at 170 rpm and 25 ◦C for 4 d [29].
Complete medium (CM) supplemented with different inhibitors was used to assess the
stress responses of the various strains. The vital medium consisted of yeast extract (6 g/L),



Cells 2024, 13, 950 3 of 15

peptone (2 g/L), casein hydrolysate (6 g/L), sucrose (10 g/L), NaNO3 (12 g/L), KCl (1 g/L),
KH2PO4 (3 g/L), and agar (15 g/L). The inhibitors were supplemented with NaCl (0.7 M),
3 mM H2O2 (3 mM), Congo red (200 mg/L), or sodium dodecyl sulfate (SDS, 0.01%). TB3
medium, composed of yeast extract (3 g/L), casamino acids (3 g/L), sucrose (200 g/L),
and agar (15 g/L), was used for the recovery and selection of resistant transformants for
gene deletion or complementation procedures. Hygromycin B (250 µg/mL, Calbiochem,
LaJolla, CA, USA) and geneticin (250 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) were
selected as screening markers for gene deletion or complementation, respectively.

2.2. Gene Deletion and Complementation

The FpVelB gene was initially examined by conducting homology searches for the
genomic sequences of F. pseudograminearum (GenBank accession NC_031951.1) using the
VelB protein of A. nidulans as a reference [17]. Alignment of FpVelB with homologous
proteins was performed using ClustalW. Subsequently, a phylogenetic tree was constructed
using the neighbor-joining method included in MEGA software version 7.02 [30]. Gene
deletion constructs were created by substituting the full open reading frame (ORF) of target
genes. The upstream and downstream flanking sequences of the target genes were ampli-
fied from the genomic DNA of wild-type strain 2035 using 1F/2R and 3F/4R primer pairs,
respectively. Primer sets HYG/F and HYG/R were used to amplify fragments containing
the partial hygromycin phosphotransferase gene. The three fragments were assembled
using a double-joint overlapping PCR method [31]. The fusion replacement fragment was
introduced into 2035 strain protoplasts and mediated using polyethylene glycol method.
Protoplasts were prepared and transformed according to established procedures [32]. After
screening with hygromycin B medium, hygromycin-resistant transformants underwent
PCR screening with the primer pairs 5F/6R, H850F/H852R, 7F/H856R, and H855F/8R
to validate the gene replacement events. Putative gene deletion mutants were validated
through Southern blot analysis using an hph gene probe (designated as probe h). The pro-
cedure followed the manufacturer’s instructions (DIG-High Prime DNA Labelling and
Detection Starter Kit II; Roche, Penzberg, Germany). The target gene fragments were
amplified using primer pairs C-F/R from F. pseudograminearum genomic DNA. A gap
repair method targeting gene fragments was used, and the XhoI-digested plasmid pFL2
was co-transformed into the yeast strain XK1-25 to create complementation strains [33,34].
Following obtained from the Trp+ yeast medium, the fusion constructs transformants were
verified by sequencing and were subsequently introduced into the corresponding deletion
mutant. Complementary transformants with genetic resistance were identified by PCR
using the primer pairs 5F/6R. Supplementary Table S1 contains a list of all primers utilized
for deletion, complementation, and gene expression analyses.

2.3. Virulence Assays

The different strains were selected and inoculated on PDA plates for 3 days. Five
agar plugs (5 mm each) taken from the colony’s edge were placed in a 250 mL Erlenmeyer
flask containing 100 mL CMC. The Erlenmeyer flasks were stored at 170 r/min and 25 ◦C
for 5 days. the conidial precipitate collected by centrifugation was suspended in sterile
water at 105 spores/mL. The Shixin 828 cultivar (a susceptible cultivar) with full grains
was selected for infection testing. Seeds were disinfected using 1% sodium hypochlorite
for 5 min. After washing with sterilized water three times, they were immersed in the
configured conidial suspension for 5 min. A total of 20 immersed seeds were planted in
15 cm diameter pots containing sterilized soil. The pots were kept at a relative humidity of
60% ± 10% and a day/night temperature of 25/15 ± 5 ◦C. Disease severity was evaluated
21 days post inoculation (dpi) on a scale of 0 to 5 [35].

Floret injection was used for the wheat head infection test. The conidial suspension
was cultured as described previously. At early anthesis, 20 µL conidial suspension was
injected into a floret. Each treatment group was inoculated with 30 heads. Disease severity
was evaluated at 20 dpi on a scale of 0 to 4 [36].
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Both stem base and ear disease severities were represented as disease index (DI).
DI = [∑ (number of diseased plants in this scale × value of this scale)/(total number

of plants investigated × highest value of the scale)] × 100.

2.4. RNA-Seq and qRT-PCR Analysis

Mycelial samples were collected from colonies cultured on PDA surfaces. Mycelial
RNA was extracted using an RNA extraction kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. Sangon Biotech Co., Ltd. (Shanghai, China), performed the
library preparation and sequencing. The clean reads were aligned to F. pseudograminearum
CS3096 reference genome using TopHat 2.0.8 software with default parameters [37]. Gene
expression levels were determined using reads per kilobase per million (RPKM) reads
of the mapped sequences. Differences in gene expression between the mutant and wild-
type strains were assessed using HTSeq software (v0.9.1) [38]. Differentially expressed
genes (DEGs) were determined using DESeq2 software (v1.12.4) with a false discovery rate
(FDR)-adjusted p-value < 0.05 [39]. A log2 (fold change) exceeding 1.0, calculated based
on the RPKM values of the same gene, signified a fold change between the mutant and
wild-type strains. Gene ontology (GO) annotation was performed using GOseq package
software (1.54.0) [40]. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment was achieved using clusterProfiler v3.8.1 software with a significance threshold
of p < 0.05 [41].

Quantitative real-time PCR (qRT-PCR) was performed to assess the expression levels
of genes related to SM [42]. The mutant and wild-type strains were inoculated on stem
bases for 7 dpi, and stem base tissues were collected. Total RNA was extracted as described
previously. First-strand cDNA was generated from total RNA using the Fermentas 1st
cDNA Synthesis Kit (Hanover, MD, USA) according to the manufacturer’s guidelines.
The expression levels were normalized using the β-tubulin (TUB) gene [43]. Results were
computed using the 2−∆∆CT method [44]. Means and standard deviations were obtained
from three biological replicates. Supplementary Table S1 lists the primers used for gene
expression analysis.

2.5. Determination of DON Production

Inoculation comprised the placement of three agar plugs of mycelium, each with a
6 mm diameter in 30 mL trichothecene biosynthesis induction medium in a 150 mL Erlen-
meyer flask [45]. The Erlenmeyer flasks were agitated at 180 rpm and incubated at 28 ◦C
for 14 d. After processing through a 0.22 µm aqueous filter, the ultra-performance liquid
chromatography tandem mass spectrometry (UPLC-MS/MS) technique was employed to
analyze the filtrate obtained from the fermentation broth [46].

2.6. Data Statistics

Fisher’s least significant difference test was used SPSS software (v26.0.0, IBM, Armonk,
NY, USA).

3. Results
3.1. Construction of FpVelB Gene Deletion Mutant Strains

The F. pseudograminearum genome (accession number GCA_000303195.2) harbored a
single copy of VelB, which was identified as FpVelB (accession number: XP_009262923.1).

The FpVelB protein, with 460 amino acids (aa), exhibited 46.72% homology with A.
nidulans VelB. The positions aa 143–445 of this protein were predicted to constitute the vel-
vet domain through a CD Search on NCBI. The gene encoding FpVelB was interrupted by
five introns at positions 431–491, 548–603, 683–741, 1005–1062, and 1364–1427 bp. A phylo-
genetic tree was constructed using FpVelB and its orthologues from nine other filamentous
fungi. The results showed that FpVelB is a conserved homologue of the velvet protein in
filamentous fungi, closely related to F. graminearum (Figure 1A).



Cells 2024, 13, 950 5 of 15

We generated null-mutants in which the entire ORF of FpVelB was deleted to ex-
plore the functions of the FpVelB genes in F. pseudograminearum. Gene replacement con-
structs with hygromycin resistance were transformed into 2035 wild-type strain protoplasts
through polyethylene glycol-mediated protoplast transformation. Hygromycin-resistant
transformants were confirmed by PCR using four primers and Southern blot analysis.

No product was detected when the ORF primer (FpVelB-5F/6R) was used for the two
FpVelB deletion mutants (VDM-1 and VDM-2). The hygromycin gene was successfully
detected, and the upstream and downstream recombinations were successfully ampli-
fied (Figure 1B). Additionally, single-locus homologous recombination events occurred
in the two deletion mutants, as evidenced by the presence of a sole 5.3-kb fragment band
hybridized with the hph probe (probe h) in the genomic DNA of FpVelB mutant strains
(Figure 1C). Mutations in FpVelB were restored by reintroducing the wild-type allele at dif-
ferent genomic locations via genetic transformation, resulting in the generation of VDM-C
strains (Figure 1D).
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Figure 1. Phylogenetic analysis and mutant construction of FpVelB. (A) MEGA6 was used to compare
the homologous genes of FpVelB (Marked with a red dot) in Fusarium pseudograminis with those
in other fungi using neighbor-joining analysis with 1000 bootstrap replicates. The numbers on the
branches indicate the percentage of replicates. The bar indicates a sequence divergence of 20%.
(B) The target gene, hph, was denoted by the product of four primer pairs (5F/6R, H850F/H852R,
7F/H855F, and H856F/8R), representing the recombination of upstream and downstream regions,
respectively. (C) The Southern blots show that genomic DNA of ∆FpVelB, digested with HindIII,
exhibited bands that hybridized with the probe h. (D) The target fragment was verified by primer
5F/6R to prove the successful construction of the complementary strain VDM-C.

3.2. FpVelB Is Necessary for Normal Growth and Conidiation

We quantified the mycelial growth of different strains on PDA medium to assess the
function of the FpVelB gene in the development of F. pseudograminearum. The growth rate of
VDM-1 and VDM-2 were reduced. The mycelia of the two mutant strains became slender,
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and the colony color changed to yellow (Figure 2A,B). These findings suggest that FpVelB
plays a crucial role in vegetative growth of F. pseudograminearum. We further determined
the impact of the deletion of the FpVelB gene on conidiation. Conidial production increased
in the induced culture medium after the deletion of the FpVelB gene (Figure 2C). This result
indicated that FpVelB gene negatively regulated the conidiation of F. pseudograminearum.
The reversal of both growth and conidiation phenomena was observed after reintroducing
the FpVelB gene into the VDM-1.
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Figure 2. Effects of FpVelB on growth and conidia of F pseudograminearum. (A) Colony morphology of
wild type (WT), mutants (VDM-1 and VDM-2) and complemented (VDM-C) strains were observed
after three days culture. (B) Growth rates were calculated by measuring the variance in radial growth
between two and three days post-inoculation (dpi, growth radius per day). (C) The logarithm of the
conidia number per milliliter was assessed in the induced medium four dpi. Mean and standard are
given (n = 3). Asterisks denote a significant difference compared to the wild type (p < 0.05).

3.3. FpVelB Affects Responses of F. pseudograminearum to Abiotic Stress

We examined the inhibition of growth rate in wild-type and mutant strains on CM sup-
plemented with 0.5 M NaCl (osmotic pressure), 3 mM H2O2 (oxidative stress), 0.01% SDS
(cell membrane-damaging agent), or 200 mg/L Congo red (a cell wall inhibitor; Figure 3A)
to assess the involvement of FpVelB in abiotic stress response. These inhibitors led to
varying degrees of vegetative growth inhibition in all the strains; however, significant
differences were observed between the mutants and the wild type. The growth rate inhibi-
tion in VDM-1 and VDM-2 were more pronounced than in wild-type and complementary
strains when exposed to 0.5 M NaCl, 3 mM H2O2, and 0.01% SDS media, respectively. After
the deletion of FpVelB, the more sensitive to these three stressors, indicating that FpVelB
was involved in resistance to osmotic stress, oxidative stress, and cell membrane integrity in
F. pseudograminearum. The sensitivities of VDM-1 and VDM-2 were notably reduced when
200 mg/L Congo red was added to the medium (Figure 3B). This result shows that FpVelB
negatively regulated the integrity of cell wall synthesis. In addition, the reintroduction
of the FpVelB gene into the deletion mutant strain restored the observed phenomena to
resemble those observed in the wild-type strain.
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Figure 3. Impact of FpVelB gene inactivation on the stress responses of F. pseudograminearum. (A) The
wild type (WT), mutants (VDM-1 and VDM-2), and complemented (VDM-C) strains were grown
on CM. Three days post-inoculation (dpi), the colony morphology on various stress media was
recorded. (B) The inhibition rates under different stress conditions were compared to that in CM
without inhibitors. The bars represent the standard deviations of the mean calculated three replicates.
An asterisk indicates a statistically significant difference compared to the wild type (p < 0.05).

3.4. FpVelB Is Required for Full Virulence

To assess the potential role of FpVelB in disease development, virulence assays was
conducted on the basal parts of the stem and flowering head of wheat. The lesion size was
quantified, and the DI was calculated following artificial inoculation. At 20 and 21 days
post inoculation, the wild-type plants exhibited typical symptoms of crown rot and head
blight, respectively (Figure 4A). The FpVelB mutant strains led to a significantly reduced
DI at the stem base and head compared to that caused by the wild-type strain (Figure 4B).
To substantiate the role of FpVelB in F. pseudograminearum infection, the observation of
the infection process was conducted within wheat coleoptile cells by dyeing with wheat
germ agglutinin. The observations of the coleoptiles at the wheat seedling stage revealed
that those from the wild-type inoculation were filled with mycelia, causing the extensive
decomposition and breakage of most plant cells. In contrast, the coleoptiles of the mu-
tant showed only a few mycelia, with the majority of cells remaining intact (Figure 4C).
To validate these observations, a complementary study was conducted on the FpVelB gene.
These results demonstrated that reintroducing FpVelB into the mutant strain rescued the
previously observed phenotype. This clearly indicated the significant role of FpVelB in the
virulence of F. pseudograminearum.



Cells 2024, 13, 950 8 of 15
Cells 2024, 13, 950 8 of 15 
 

 

 
Figure 4. Phenotypes of stem bases and heads inoculated with FpVelB deleted mutants. (A) FpVelB 
mutant and its derivative strains were inoculated into the stem base and flowering heads of wheat 
to analyze its pathogenicity. (B) The disease index of stem base and ear of wheat in three test repeats 
were measured at 21 dpi and 20 dpi, respectively. An asterisk indicates a significant difference com-
pared to the wild type (p < 0.05). (C) The infected coleoptiles were dyed using wheat germ agglutinin 
(WGA). Micrographs of different strains on the base of the wheat stem were captured at 21 dpi. Scale 
bar = 100 µm. 

3.5. FpVelB Regulates Gene Expressions of SMs including DON 
We conducted genome-wide transcriptome analyses (through RNA-seq) between the 

wild-type and FpVelB deletion mutant VDM-1 to elucidate the regulation of the metabolic 
pathway influenced by FpVelB (raw RNA-seq data can be found in the NCBI Sequence 
Read Archive under the accession number PRJNA1058845). A total of 1324 genes exhibited 
significant changes in expression levels in the deletion mutants of FpVelB. Upon conduct-
ing an expression analysis with a significance level of p < 0.05 and log2foldchange > 1 or 
<−1, a total of 834 genes were found to be downregulated, whereas the expression of 490 
genes increased (Supplementary Figure S2A). A comprehensive GO database was used to 
elucidate the functions of DEGs. Approximately 60 terms are categorized into three main 
groups, i.e., “molecular function”, “cellular components”, and “biological process”. The 
DEGs enriched in cellular components were “membrane”, “membrane-enclosed lumen”, 
and “supramolecular fiber” categories, which may be associated with the involvement of 
FpVelB in the integrity of cell membrane and cell wall synthesis. In molecular function, 
the “antioxidant activity” function of DEGs was enriched (Supplementary Figure S2B). 
The GO analysis revealed that the most prominent functions of DEGs were enriched in 
immune-related metabolic pathways, including “response to host immune response”, 
“evasion or tolerance of host immune response”, and “active evasion of host immune re-
sponse” (Supplementary Figure S2C). These enriched DEGs may be associated with the 
involvement of FpVelB in the pathogenicity of F. pseudograminearum. In the KEGG path-
way analysis, the biosynthesis of SM DEGs was enriched. In total, 79 genes among 465 
significant DEGs were annotated as associated with “secondary metabolites biosynthesis, 
transport, and catabolism” pathways (Figure 5A). The number of downregulated and up-
regulated genes was 47 and 32, respectively (Figure 5B). The transcriptional levels of the 
genes in different expression modes were confirmed using qRT-PCR to validate the accu-
racy of the transcriptomes. The results indicated that the relative expression of the five 

Figure 4. Phenotypes of stem bases and heads inoculated with FpVelB deleted mutants. (A) FpVelB
mutant and its derivative strains were inoculated into the stem base and flowering heads of wheat to
analyze its pathogenicity. (B) The disease index of stem base and ear of wheat in three test repeats
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3.5. FpVelB Regulates Gene Expressions of SMs including DON

We conducted genome-wide transcriptome analyses (through RNA-seq) between the
wild-type and FpVelB deletion mutant VDM-1 to elucidate the regulation of the metabolic
pathway influenced by FpVelB (raw RNA-seq data can be found in the NCBI Sequence
Read Archive under the accession number PRJNA1058845). A total of 1324 genes exhibited
significant changes in expression levels in the deletion mutants of FpVelB. Upon conducting
an expression analysis with a significance level of p < 0.05 and log2foldchange > 1 or <−1, a
total of 834 genes were found to be downregulated, whereas the expression of 490 genes in-
creased (Supplementary Figure S2A). A comprehensive GO database was used to elucidate
the functions of DEGs. Approximately 60 terms are categorized into three main groups, i.e.,
“molecular function”, “cellular components”, and “biological process”. The DEGs enriched
in cellular components were “membrane”, “membrane-enclosed lumen”, and “supramolec-
ular fiber” categories, which may be associated with the involvement of FpVelB in the
integrity of cell membrane and cell wall synthesis. In molecular function, the “antioxidant
activity” function of DEGs was enriched (Supplementary Figure S2B). The GO analysis
revealed that the most prominent functions of DEGs were enriched in immune-related
metabolic pathways, including “response to host immune response”, “evasion or tolerance
of host immune response”, and “active evasion of host immune response” (Supplementary
Figure S2C). These enriched DEGs may be associated with the involvement of FpVelB in the
pathogenicity of F. pseudograminearum. In the KEGG pathway analysis, the biosynthesis of
SM DEGs was enriched. In total, 79 genes among 465 significant DEGs were annotated as
associated with “secondary metabolites biosynthesis, transport, and catabolism” pathways
(Figure 5A). The number of downregulated and upregulated genes was 47 and 32, respec-
tively (Figure 5B). The transcriptional levels of the genes in different expression modes
were confirmed using qRT-PCR to validate the accuracy of the transcriptomes. The results
indicated that the relative expression of the five upregulated and five downregulated genes
was consistent between the transcriptomes and qRT-PCR (Figure 5C).
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Since DON is an important toxin in F. pseudograminearum, we assessed the transcrip-
tional level of the TRI5 gene and the production of DON in the mutants and 2035 strain
under inducing medium conditions. The relative transcript level of TRI5 was reduced by a
factor of 50 in the VDM-1 and VDM-2 compared to that in the 2035 strain (Figure 5D). More-
over, in the VDM-1- and VDM-2-induced culture medium, the detections of DON were
negligible, whereas the 2035 strain showed a DON level of 1143 at this point (Figure 5E).
These findings imply that FpVelB is crucial for the regulation of DON production in
F. pseudograminearum.
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Figure 5. Differences in gene expression and DON production between FpVelB deletion mutant
and wild type. (A) The DEGs were categorized by Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway annotation. The DEGs were in log2 (fold change, FC) greater than 1.0 with a
threshold at p-value and corrected p-value < 0.05. (B) Heatmap illustrating differentially regulated
genes encoding secondary metabolites (SMs). (C) qRT-PCR was performed for ten differentially
regulated genes, comprising five upregulated genes and five downregulated genes, between FpVelB
mutants and the wild-type. The expression level of the TUB gene was used to normalize samples.
Transcript levels of the wild type were arbitrarily set to 1. (D) Relative transcript abundances of
the TRI5 gene in mycelium under inducing conditions were compared between the wild type and
FpVelB mutants at seven days post-inoculation (dpi). The expression level of the TUB gene was
used to normalize different samples, with the transcript levels of the wild type arbitrarily set to 1.
(E) The concentration of deoxynivalenol (DON) in the culture solution under inducing conditions
was measured. The means and standards are given (n = 3). The data from these replicates were then
analyzed using a protected Fisher’s least significant difference (LSD) test * p < 0.05.
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3.6. PKS11 Gene Regulated by FpVelB Is Involved in Virulence

In the comparison of gene expression between the FpVelB deletion mutant and the wild
type, we found that the gene encoding the polyketide synthase PKS11 was downregulated.
Twenty genes were identified within the SM gene cluster, containing PKS11. These genes
were involved in biosynthesis, transport, and other functions (Table S2). We examined the
expression patterns of all genes within this gene cluster throughout the infection process.
We observed that most genes within this gene cluster were downregulated during infection.
Among these, the most significantly downregulated gene was PKS11, which exhibited
nearly a 30-fold decrease in expression (Figure 6A). We constructed a deletion mutant of
this key synthase gene (Figure 6B–D). The phenotypic outcomes indicated that knockout
of the synthesis gene had no discernible effect on the growth of the pathogen but led to
a reduction in pathogenicity (Figure 6E,F). This suggests that the regulation of FpVelB
pathogenicity is linked to PKS11 or its gene clusters.
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Figure 6. Creating mutants with deleted genes and testing the virulence of the PKS11 gene in
F. pseudograminearum. (A) Conducting qRT-PCR to analyze the expression of genes within the SM
gene cluster, including PKS11, while infecting the wheat stem base in real-time. Samples were
collected three days post-inoculation. Transcript levels of the conidia inoculator were arbitrarily
set to 1. The means and standards are given (n = 3). (B) The PKS11 gene, hph, was designated as
the product of four primers (5F/6R, H850F/H852R, 7F/H855F, and H856F/8R), representing the
recombination of upstream and downstream regions, respectively. (C) The Southern blots revealed
that the genomic DNA of ∆PKS11, digested with HindIII, exhibited bands that hybridized with the
probe h. (D) The successful complementation was confirmed by detecting the 5F/6R product in
PDM-C. (E) FpVelB mutant and its derivative strains were inoculated into stem base of wheat, which
was replicated three times. Images were captured at 21 days. (F) The disease index of the wheat
stem base was assessed 21 days post-inoculation (dpi). An asterisk indicates that the mutant strain is
significantly different from the wild type (p < 0.05).

4. Discussion

Although velvet family proteins, such as VelB, have been characterized in numerous
species, their functions in Fusarium pseudograminearum are unclear. Our findings revealed
that F. pseudograminearum genome harbored a single copy of VelB. Furthermore, this gene is
evolutionarily conserved across various fungal species, implying that velvet family proteins
likely play crucial roles in fungi. We propose that FpVelB is crucial for growth. Among the
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closest relatives of F. pseudograminearum within the genus, the disruption of FgVELB also
resulted in reduced hyphal growth. Colonies of the deletion mutants are bright yellow [24].
This result serves as robust validation of the present findings. The same effect on growth
rate was observed in F. fujikuroi and Botrytis cinerea. FfVEL2 and BcVelB deletion mutants
display diminished aerial hyphal growth [47,48]. Nevertheless, the deletion of VelB in
Aspergillus flavus, V. mali, and Penicillium expansum had no effect on the vegetative growth of
these fungi. The accumulation of pigments continues to be affected [18–20]. These studies
suggested that the functions of the velvet family of proteins differ among fungi.

Conidiation plays a crucial role in the infection and life cycle of plant pathogenic
fungi in natural environments [49]. In the present study, FpVelB negatively regulated
conidial production. This mode of action is similar to that of VelB in several fungi including
F. graminearum [24], V. mali [18], and B. cinerea [48,50]. In contrast, VelB positively regulates
conidiation in A. nidulans [51], A. flavus [19], and P. expansum [20]. Therefore, the regulation
of conidiation by VelB is inconsistent among fungal species.

Response mechanisms to abiotic stress are critical for the survival of plant pathogens [52].
Regulation of different stresses is species-specific. In F. verticillioides, the transcription of
the catalase-encoding gene FvCAT2 was positively regulated by FvVelB. The resistance
of F. verticillioides to oxidative stress is reduced when FvVelB is deleted [25]. Additionally,
the lower basal accumulation of glycerol in Curvularia lunata leads to reduced resistance
of the ClvelB mutant to stressors [53]. VmVelB positively regulates sensitivity to osmotic,
oxidative, and cell wall inhibitor stresses in V. mali [18]. In the model fungus A. nidulans,
VelB regulates cell wall synthesis due to the binding to the promoter region of the β-glucan
synthase gene fsA [54]. The present study demonstrates that FpVelB positively regulates
sensitivity to osmotic, oxidative, and cytomembrane inhibitor stresses. The regulatory
effect on the cell wall synthesis inhibitor of FpVelB was negative. Because of the complex
form of regulation by VelB, the potential mechanism needs to be further elucidated in
F. pseudograminearum.

In pathogenic fungi, VelB can affect virulence through different mechanisms [48].
For example, this velvet protein plays a role in virulence because of its effect on oxalic
acid production in B. cinerea [48,50]. The virulence of M. oryzae is also regulated by its
participation in appressorial development [55]. Moreover, in V. mali, the regulation of
pectinase levels by VmVelB leads to virulence [18]. The main mechanism by which VelB
affects virulence is the regulation of SM. For example, the positive regulation of gibberel-
lic acid biosynthesis and the negative regulation of bikaverin biosynthesis by FfVel2 are
involved in the virulence of F. fujikuroi [47]. In F. graminearum, two crucial virulence fac-
tors, deoxynivalenol and trichothecenes, play important roles in virulence [24,56]. In the
necrotrophic fungus, P. expansum, the involvement of VelB in pathogenicity may be related
to the regulation of patulin, chaetoglobosin A, citrinin, and fumarylalanine [20]. In this
study, we used genome-wide expression analysis to explore the reason for the reduction in
virulence. The deletion of the FpVelB gene affected 10% of gene expression. There are twice
as many downregulated genes as that of upregulated. In the KEGG pathway analysis, the
biosynthesis of SM DEGs was enriched. In total, 79 genes among 465 significant DEGs
were annotated as associated with “secondary metabolites biosynthesis, transport and
catabolism” pathways. This regulatory result is similar to that seen in P. expansum, where
the Pe∆velB strain showed 1180 DEGs, of which 533 were up-expressed and 647 down-
expressed. The expression of several backbone genes, including non-ribosomal peptide
synthetases (NRPSs), polyketide synthases (PKSs), and dimethylallyl tryptophan synthases
(DMATSs) was different in the Pe∆velB strain [20]. More importantly, we demonstrated that
FpVelB not only influences virulence by regulating DON production but also participates
in virulence by regulating other secondary metabolic synthesis pathways such as PKS11.
Fungal PKSs are important in various cellular processes including cellular growth and
development, environmental adaptation, and virulence in several pathogenic fungi. PKS11,
a member of the PKS family, has been shown to be involved in responses to oxidation,
UV irradiation, high temperature, asexual development, and cell wall integrity in Beau-
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veria bassiana. In P. marneffei, the fungal virulence was reduced when pks11 was knocked
down [57]. In this study, the PKS11 gene was removed from the FpVelB regulatory gene,
and the deletion of PKS11 gene led to the weakening of pathogen virulence, indicating
that FpVelB involved in the virulence by regulating PKS11. The result provides a basis for
understanding the pathogenesis of F. pseudograminearum.

5. Conclusions

In conclusion, the results of this study show that the velvet family protein FpVelB reg-
ulates vegetative growth, conidiation, and abiotic stress responses in F. pseudograminearum.
Moreover, the regulation of virulence by FpVelB was associated with SMs such as DON
and the expression of polyketide synthase gene PKS11.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells13110950/s1. Figure S1: Comparison of VelB homology between
Fusarium pseudograminearum and Aspergillus nidulans and structures of FpVelB/FpVelB. (A) The
amino acid sequences were analyzed using blastp suite in NCBI. (B) The FpVelB protein and domains.
The location of the intron. (C) The schematic diagram of deletion mutant generation. Figure S2:
Differential expression genes and Gene Ontology (GO) profiles. (A) Volcano map of differentially
expressed genes. (B) The genes exhibiting differential expression (DEGs) were organized based on
their Gene Ontology (GO) annotations and sorted into three primary groups: biological process
(BP), cellular component (CC), and molecular function (MF). These DEGs demonstrated a log2 (fold
change, FC) exceeding 1.0, with significance determined by a p-value and corrected p-value both less
than 0.05. (C) The downregulated genes of FpVelB deletion mutant were organized based on their
Gene Ontology. Table S1: Primers used for deletion, complementation, and gene expression. Table S2:
The genes showing differential expression between the FpVelB deletion mutant and the wild type.
Table S3: The primary classifications of genes with differential expression based on Gene Ontology
annotations. Table S4: The pathway that is enriched among genes with differential expression based
on KEGG annotations.
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