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Abstract: Deep learning (DL) models for medical image classification frequently struggle to generalize
to data from outside institutions. Additional clinical data are also rarely collected to comprehensively
assess and understand model performance amongst subgroups. Following the development of a
single-center model to identify the lung sliding artifact on lung ultrasound (LUS), we pursued a
validation strategy using external LUS data. As annotated LUS data are relatively scarce—compared
to other medical imaging data—we adopted a novel technique to optimize the use of limited external
data to improve model generalizability. Externally acquired LUS data from three tertiary care
centers, totaling 641 clips from 238 patients, were used to assess the baseline generalizability of
our lung sliding model. We then employed our novel Threshold-Aware Accumulative Fine-Tuning
(TAAFT) method to fine-tune the baseline model and determine the minimum amount of data
required to achieve predefined performance goals. A subgroup analysis was also performed and
Grad-CAM++ explanations were examined. The final model was fine-tuned on one-third of the
external dataset to achieve 0.917 sensitivity, 0.817 specificity, and 0.920 area under the receiver
operator characteristic curve (AUC) on the external validation dataset, exceeding our predefined
performance goals. Subgroup analyses identified LUS characteristics that most greatly challenged
the model’s performance. Grad-CAM++ saliency maps highlighted clinically relevant regions on
M-mode images. We report a multicenter study that exploits limited available external data to
improve the generalizability and performance of our lung sliding model while identifying poorly
performing subgroups to inform future iterative improvements. This approach may contribute to
efficiencies for DL researchers working with smaller quantities of external validation data.
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1. Introduction

Deep learning (DL) has proven superior to standard computer vision techniques
for various medical imaging tasks including disease classification, segmentation, and
image enhancement across several imaging modalities such as CT, MRI, ultrasound, and
histological images [1]. The power of DL in medical imaging stems from automated
feature extraction of complex images by leveraging large datasets [2]. As the pace of DL
research for medical imaging accelerates, an abundance of single-center trained models are
being developed [3–5]. The challenges of obtaining and working with high-quality, external
imaging data often stunt models from gaining the necessary validation required for eventual
clinical deployment. Furthermore, even when external data are available, performance
degradation is routinely observed when models are tested against external datasets [6–9].
Point-of-care ultrasound data presents additional unique challenges including various
manufacturers, scanning presets, and probe types used based on individual institutional
practices. Thus, there is an urgency to optimize the use of external datasets that serve
both as validation data, as well as a substrate for fine-tuning to maximize performance on
holdout data.

Presently, the issue of poor generalizability in the face of scarcely available labelled
medical data is addressed by utilizing transfer learning techniques and data augmenta-
tion [10]. Initializing model weights using datasets such as ImageNet [11] leverages learned
features to reduce inference times and improve generalizability. However, features learned
from natural images may not necessarily reflect medical images. In fact, images from
ImageNet demonstrate the most dissimilarity to point-of-care ultrasound images compared
to other medical imaging modalities [12]. Alzubaidi et al. [13] address this problem by
investigating in-domain transfer learning in which model weights are initialized using
related medical images (skin cancer) before fine-tuning on a target domain (diabetic foot
ulcers). They were able to demonstrate improved model performance.

Significant train and test set performance differences are observed with single random
splitting of datasets, which is exacerbated in smaller datasets [14]. K-fold cross validation
is a popular resampling method that maximizes the use of a dataset splitting by fitting and
averaging the performance of k models [15]. Despite its purported benefits of reducing
overfitting, k-fold cross validation has been demonstrated to introduce biases with small
sample sizes [16]. To address this, methods such as nested cross validation have been inves-
tigated and exhibit more robust performance by uncoupling the process of hyperparameter
optimization and model selection [16].

Our group previously developed DL classifiers to evaluate lung ultrasound (LUS)
clips for several respiratory pathologies, including the detection of lung sliding [17,18].
The lung sliding artifact is used to assess for the potentially life-threatening condition
pneumothorax (PTX) and presents an opportunity for decisive clinical utility if its detection
can be automated and validated [19–22]. Our previously developed lung sliding classifier
achieved desirable performance on a 540-clip holdout set (0.935 sensitivity, 0.873 specificity,
and 0.973 AUC), improving upon existing work that focused on animal models [23,24]
and small, homogeneous human datasets [25]. Although our model was trained using a
comparably large dataset for LUS research, the data used for training was sourced from
a single institution. At this time, the performance of our model on LUS clips acquired at
other institutions is unknown.

We present a multicenter study that aims to: (1) investigate a new approach for dataset
splitting to optimally leverage scarcely available external data to improve the generaliz-
ability of our lung sliding classifier and (2) utilize important metadata to identify poorly
performing subgroups that may inform future iterative improvements. Our contributions to
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the field offer an alternative strategy, in addition to the traditional methods of data augmen-
tation, transfer learning, and k-fold cross validation, with variable-sized dataset splitting
to improve the generalizability of deep learning models that have limited availability of
external datasets.

2. Materials and Methods

Our project received research ethics board approval from Western University (REB
116838) on 28 January 2021.

2.1. Dataset Description and Preparation

The external dataset described in this work was collected from three partner institu-
tions located in Edmonton, Canada (D462); Santiago, Chile (D117); and Ottawa, Canada
(D62). The nomenclature (Dx) is based on the number of clips x that each institution con-
tributed to the combined dataset. The creation of this database and our LUS labelling
workflow have been detailed previously [17]. Given the paucity of absent lung sliding
clips at some institutions, all datasets were combined to form a composite external dataset
(Dall) to be used to fine-tune the model originally trained on data collected in London,
Canada. LUS clips obtained using a linear ultrasound probe were excluded, given the
lack of linear clips in the original training set (<5%) [18] and the significant differences
in acquisition physics (higher frequency and shallower penetrance) [26]. LUS clips were
preprocessed into 3-second (s) segments and resized to 224 × 224 pixels for standardization
of the model’s input. The total dataset consisted of 6413 s clips—557 with lung sliding and
84 without lung sliding. Detailed dataset characteristics are provided in Table 1.

Table 1. Ultrasound data characteristics between all data sources. The characteristics of the original,
locally sourced holdout set from our previous work are also provided for comparison.

Local Data
External Data

D462 D117 D62 Dall

Sliding Absent Sliding Absent Sliding Absent Sliding Absent Sliding Absent

Patients
By source 122 163 53 22 238

By class 88 36 154 36 48 6 21 7 223 49

Sex

Male 46
(37%)

25
(20%)

75
(39%)

22
(12%)

25
(46%)

5
(9%)

9
(32%)

3
(11%)

109
(40%)

30
(11%)

Female 42
(34%)

11
(9%)

47
(25%)

12
(6%)

23
(43%)

1
(2%)

9
(32%)

2
(7%)

79
(29%)

15
(5%)

Unavailable 0
(0%)

0
(0%)

32
(17%)

2
(1%)

0
(0%)

0
(0%)

3
(10%)

2
(7%)

35
(13%)

4
(1%)

Age
Mean (std) 60.0

(17.3%)
64.9

(13.9%)
56.4

(16.4%)
58.5

(13.1%)
55.9

(22.0%)
43.3

(20.8%)
56.8

(16.7%)
50.5

(19.1%)
56.3

(18.0%)
55.5

(16.1%)

Unavailable 0
(0%)

0
(0%)

32
(17%)

2
(1%)

0
(0%)

0
(0%)

2
(7%)

2
(7%)

34
(12%)

4
(1%)

Clips
By source 540 462 117 62 641

By class 402
(74%)

138
(26%)

404
(88%)

58
(12%)

107
(91%)

10
(9%)

46
(74%)

16
(26%)

557
(87%)

84
(13%)

Machine
Vendors

Phillips 0
(0%)

2
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

24
(39%)

9
(15%)

24
(4%)

9
(1%)

Sonosite 395
(73%)

96
(18%)

398
(86%)

58
(13%)

0
(0%)

0
(0%)

13
(21%)

0
(0%)

411
(64%)

58
(9%)

Mindray 7
(1%)

40
(7%)

0
(0%)

0
(0%)

107
(91%)

10
(9%)

6
(10%)

5
(8%)

113
(18%)

16
(2%)

Unavailable 0
(0%)

0
(0%)

6
(1%)

0
(0%)

0
(0%)

0
(0%)

3
(5%)

2
(3%)

9
(1%)

2
(0%)
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Table 1. Cont.

Local Data
External Data

D462 D117 D62 Dall

Sliding Absent Sliding Absent Sliding Absent Sliding Absent Sliding Absent

Probe

Phased
Array

366
(68%)

118
(22%)

337
(73%)

52
(11%)

65
(56%)

3
(3%)

20
(32%)

1
(2%)

422
(66%)

56
(9%)

Curved
Linear

32
(6%)

14
(3%)

67
(15%)

6
(1%)

42
(36%)

7
(6%)

26
(42%)

15
(24%)

135
(21%)

28
(4%)

Location

ED 122
(23%)

12
(2%)

0
(0%)

0
(0%)

107
(91%)

10
(9%)

24
(39%)

13
(21%)

131
(20%)

23
(4%)

ICU 274
(51%)

124
(23%)

401
(87%)

58
(13%)

0
(0%)

0
(0%)

19
(31%)

1
(2%)

420
(65%)

59
(9%)

Unavailable 0
(0%)

0
(0%)

3
(1%)

0
(0%)

0
(0%)

0
(0%)

3
(5%)

2
(3%)

6
(1%)

2
(0%)

Imaging
Preset

Abdominal 373
(69%)

104
(19%)

194
(42%)

21
(5%)

45
(38%)

4
(3%)

20
(32%)

13
(21%)

259
(41%)

38
(6%)

Cardiac 14
(3%)

4
(1%)

23
(5%)

0
(0%)

20
(17%)

2
(2%)

4
(6%)

0
(0%)

47
(7%)

2
(0%)

Lung 11
(2%)

24
(4%)

178
(39%)

37
(8%)

42
(36%)

4
(3%)

16
(26%)

1
(2%)

236
(37%)

42
(7%)

Unavailable 0
(0%)

0
(0%)

9
(2%)

0
(0%)

0
(0%)

0
(0%)

6
(9%)

2
(3%)

15
(2%)

2
(0%)

Depth

<6 cm 14
(3%)

8
(1%)

4
(1%)

0
(0%)

2
(2%)

0
(0%)

4
(6%)

0
(0%)

10
(2%)

0
(0%)

6–20 cm 382
(71%)

130
(24%)

395
(85%)

58
(13%)

104
(89%)

10
(9%)

40
(65%)

16
(26%)

539
(84%)

84
(13%)

>20 cm 6
(1%)

0
(0%)

5
(1%)

0
(0%)

1
(1%)

0
(0%)

2
(3%)

0
(0%)

8
(1%)

0
(0%)

For the purposes of this study, clips were assigned to the positive class if they exhibited
absent lung sliding (i.e., suggestive of PTX) and to the negative class if they exhibited the
presence of lung sliding and/or lung pulse (i.e., ruling out PTX).

Images and texts extraneous to the ultrasound beam were removed from all clips
using a dedicated deep learning tool (Automask, WaveBase, Inc., wavebase.ai accessed
on 10 November 2023, Waterloo, ON, Canada). A previously trained pleural line object
detection model isolated the pleurae of the first frame from each LUS clip, which guided M-
mode extraction. This workflow is described in our previous work [18] and is summarized
in Figure 1. To address the class imbalance disfavoring the absent lung sliding class, we
upsampled examples during training experiments. Ten M-mode images were gathered
from each absent lung sliding B-mode clip in our dataset during preprocessing. The M-
mode image created from the column with the brightest pixel intensity was then selected
for inclusion in the main dataset. The nine other images were sequestered into a separate
pool of examples available to be randomly sampled from during training, as needed, to
balance the class distribution. Note that the additional M-mode images vary from the
original because they are produced using different columns with bright pixel intensities.
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(f) Final model output representing probability of absent lung sliding.
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Figure 1. Schematic representation of our methods for data preprocessing through to M-mode
creation and subsequent model development. (a) Frames in a 3 s LUS clip. (b) Vertical slice selection
(red), restricted by pleural line ROI (green). (c) Vertical slicing across all frames. (d) Concatenating
slices to form an M-mode image. (e) Obtaining the model’s prediction for the M-mode input image.
(f) Final model output representing probability of absent lung sliding.

2.2. Model Fine-Tuning

We propose Threshold-Aware Accumulative Fine-Tuning (TAAFT), an approach to
determine the minimum amount of data required to attain predefined performance metrics
on datasets from different distributions. This approach allows us to (1) determine the
minimum amount of external data that is required to attain targeted performance met-
rics and (2) evaluate our models on a more representative sample of the entire dataset
(the variable-sized validation set), while maintaining the ability to directly compare each
model’s performance on the same dataset (the fixed-size validation set).

In each TAAFT trial, the dataset was randomly divided (with a patient-wise split)
into 2k folds that each contain approximately 1

2k of the dataset. Each unique patient only
existed in either the training or the validation set. k ∈ {1, 2, 3, . . .} is a variable chosen
based on how many differently sized training sets the developer would like to consider
during a fine-tuning experiment. For the experiments in this study, we set k = 3. A minimal
fixed-size validation set proportion of 1

2 was chosen in this work, given the small size of
the dataset to be used for fine-tuning and the sparseness of positive class examples. The
mean characteristics of the folds used during all fine-tuning experiments described in this
work are given in Table 2.

Table 2. Summary characteristics of the folds used (a) during the 5-trial TAAFT experiment (mean ±
standard deviation) and (b) for fine-tuning the final model. The individual folds used in each of the
TAAFT trials comprising (a) are detailed in e-Table 1.

Data
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

Sliding Absent Sliding Absent Sliding Absent Sliding Absent Sliding Absent Sliding Absent

(a)
Patients 36 ± 3

(83 ± 5%)
7 ± 2

(17 ± 5%)
38 ± 3

(84 ± 2%)
7 ± 1

(16 ± 2%)
37 ± 2

(82 ± 3%)
8 ± 2

(18 ± 3%)
36 ± 3

(78 ± 4%)
10 ± 3

(22 ± 4%)
39 ± 4

(86 ± 2%)
6 ± 2

(14 ± 2%)
37 ± 2

(80 ± 4%)
10 ± 2

(20 ± 4%)

Clips 85 ± 6
(88 ± 5%)

11 ± 5
(12 ± 5%)

89 ± 6
(88 ± 4%)

12 ± 5
(12 ± 4%)

98 ± 8
(88 ± 3%)

12 ± 4
(12 ± 3%)

94 ± 6
(84 ± 5%)

18 ± 7
(16 ± 5%)

100 ± 15
(89 ± 2%)

12 ± 4
(11 ± 2%)

91 ± 8
(84 ± 5%)

16 ± 5
(16 ± 5%)

(b)
Patients 30

(80%)
9

(20%)
37

(80%)
9

(20%)
42

(81%)
10

(19%)
35

(90%)
4

(10%)
36

(82%)
8

(18%)
38

(81%)
9

(19%)

Clips 92
(88%)

13
(12%)

67
(86%)

11
(14%)

108
(87%)

16
(13%)

71
(91%)

7
(9%)

106
(82%)

24
(18%)

113
(90%)

13
(10%)
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The training set is initially empty, and the original model [18], henceforth referred to as
M0, is evaluated on both the entire dataset (the variable-sized validation set) and the union
of the last k folds (the fixed-size validation set). Following iteration 0 (Figure 2), a fold is
added to the training set (now 1

2k of the entire dataset) and removed from the variable-sized
validation set (now 2k−1

2k of the entire dataset). This training set is used to fine-tune M0,
and the performance of the resultant model (M1) is evaluated on both the variable-sized
and the fixed-size validation set. This marks the completion of iteration 1, following which
another fold is added to the training set (now 1

k of the entire dataset) and removed from
the variable-sized validation set (now k−1

k of the entire dataset). M0 is fine-tuned once
again using the new, larger training set and its performance is evaluated on both validation
sets. This process is repeated in subsequent iterations, until the training set encompasses
half of the entire dataset and the variable-sized and fixed-size validation sets are identical.
During a single TAAFT trial, k new models are produced that are each trained on a different
proportion ptrain of the dataset ( 1

2k , 1
k , 3

2k , . . ., 1
2 ). Each model is then evaluated on the most

representative sample of the dataset that is available (the variable-sized validation set)
as well as a consistent (fixed-size) validation set to facilitate metric comparisons. Each
fixed-size validation set within a single TAAFT trial contains the same images to maintain
consistency and to limit variance, allowing for direct comparison between iterations.
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Figure 2. Dataset splits and fine-tuned models for a single trial of the TAAFT method. Data are
incrementally added to the training set used for fine-tuning (green) and removed from the variable-
sized validation set (light blue) while maintaining a fixed-size validation set (dark blue). This process
continues until the two validation sets are the same. Three new models (M1, M2, and M3) are
produced, each being fine-tuned using a different proportion of the dataset and evaluated on each
validation set (variable-sized and fixed-size).

To avoid favorable dataset splits biasing our results, 5 TAAFT trials with k = 3, each
with different patient-wise folds, were completed on the external dataset. In total, 15 fine-
tuned models, 5 at each training set proportion (ptrain = 1

6 , 1
3 , and 1

2 ), were produced during
each fine-tuning experiment. An experiment was deemed successful if the mean trial-wise
performance of at least one training proportion exceeded the predefined performance goals.

To fine-tune the final model, an optimal training set proportion was first selected
by comparing the mean trial-wise sensitivity and specificity for absent lung sliding of a
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successful TAAFT experiment at that proportion to the average performance of the original
model on locally obtained data. As in our previous work [18], sensitivity was chosen as
the priority metric over specificity, given that a false negative (prediction of present lung
sliding when no sliding is apparent) may lead to more patient harm compared to false
positives. Specifically, we aimed to meet or exceed the lower bound of the mean ± standard
deviation interval of our original cross validation experiment (0.901 sensitivity and 0.793
specificity [18]) on at least the variable-sized validation set, on average, at any training
proportion. The smallest proportion meeting these predefined performance goals was
then used to construct the final model’s training set. The remaining data were used for
validation. The characteristics of the folds used to fine-tune and validate the final model
are given in Table 2.

Prior to fine-tuning, each TAAFT training set underwent a random, patient-wise,
80/20 training/secondary validation set split. Data augmentation was applied to the
training set as described in previous work [18]. Furthermore, to ensure the same class
distribution as our original training set [18], absent lung sliding examples were upsampled
from the sequestered pool of extra M-mode images.

The model used in this study is a customized EfficientNetB0 [27], as described in
previous work [18]. The TAAFT experiment was also evaluated on two additional common
model architectures, ResNet18 [28] and MobileNetV3 [29]. A hyperparameter search was
performed with learning rate, learning rate decay, drop out, and focal loss parameter. The
code for all experiments along with hyperparameter search parameters is available via our
GitHub repository.

2.3. Explainability and Error Analysis

The results of the final model were analyzed with respect to LUS metadata to identify
performance differences that may guide future data collection. The subgroups considered
included the machine vendor, probe type, imaging preset, depth, and institution. A chi-
squared test for independence and a one-way analysis of variance (ANOVA) test were
performed on each data characteristic to determine whether the correctness and error of the
model’s predictions depend on that subgroup, respectively. Separate tests were performed
on all ground-truth positive examples and all ground-truth negative examples in the dataset
to study the effect of the subgroup on model sensitivity and specificity, respectively. Of
the metric–subgroup combinations that met statistical significance (p ≤ 0.05) using the
chi-squared test of independence, a within-subgroup fragility index was computed as a
way to measure robustness and analyze within-subgroup dependencies.

We applied the Grad-CAM++ method [30] to visualize which components of the
input M-mode images were most contributory to the model’s prediction. The results are
conveyed by color on a saliency map, overlaid on the original input images. Blue and red
regions correspond to the lowest and highest prediction importance, respectively.

False negative and false positive results from the final model were visually reviewed
by clinicians to determine which features at the B-mode clip or the M-mode image level
may be contributing to performance.

3. Results

The results of our five-trial TAAFT experiments are displayed in Figure 3. Performance
on the variable-sized validation sets (solid curves) and fixed-size validation sets (dashed
curves) were comparable at each ptrain ( 1

6 , 1
3 , and 1

2 ). Without any fine-tuning, the original
model (ptrain = 0) yielded an overall sensitivity of 0.917 and an overall specificity of 0.741 on
the entire dataset. Fine-tuning improved detection of present lung sliding, with specificity
increasing with the size of the training set (Figure 3a). Sensitivity remained nearly stable
(Figure 3b) for smaller training proportions (ptrain = 1

6 and ptrain = 1
3 ), but not for larger

training proportions (ptrain = 1
2 ), where a drop in performance on the positive class was

observed. Fine-tuning on one-third of the external dataset yielded metrics exceeding our
predefined performance goals, with mean specificity and sensitivity of 0.795 and 0.903,
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respectively, for absent lung sliding on the variable-sized validation set. The individual
and mean trial-wise performance metrics yielded by the five models trained on one-third
of the dataset on the variable-sized validation set are provided in Table 3.
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Figure 3. Specificity (a) and sensitivity (b) results of the successful five-trial TAAFT fine-tuning
experiment. The mean (thick line) and individual (thin line) trial-wise metrics observed on the
variable (solid) and fixed (dashed) sized validation sets at each training set proportion (ptrain) are
shown. The predefined performance goals (sensitivity ≥ 0.901, specificity ≥ 0.793; shaded grey
region) are met, on average, on the variable-sized validation set when M0 is fine-tuned on 1

3 of the
external dataset.

Table 3. Metrics for a successful fine-tuning experiment with five TAAFT trials, as computed on the
variable-sized validation set at the optimal training proportion ( 1

3 ). Mean sensitivity and specificity
exceeded the predefined performance goals (sensitivity 0.901, specificity 0.793).

Trial Sensitivity Specificity AUC Accuracy

1 0.912 0.777 0.919 0.798
2 0.922 0.769 0.911 0.787
3 0.838 0.819 0.908 0.822
4 0.943 0.797 0.942 0.814
5 0.905 0.810 0.912 0.824

Mean 0.903 0.795 0.918 0.809
(STD) (0.035) (0.019) (0.012) (0.014)

The final model was fine-tuned on one-third of the dataset using a different patient-
wise split, which yielded a 0.917 sensitivity, 0.817 specificity, and 0.920 area under the
receiver operator characteristic curve (AUC) on its variable-sized validation set. The final
model’s performance was also evaluated on the original local holdout set [18] to assess
for model drift from fine-tuning on external data. New M-mode images were generated
from the original B-Mode LUS clips, and fine-tuning resulted in a 2.3% improvement in
specificity (M0: 0.868, final model: 0.891) and a maintained (−0.7%) sensitivity (M0: 0.949,
final model: 0.942) on the local holdout set. A full comparison of the original model (M0)
performance and the final model performance on the original local holdout set and the
final external variable-sized validation set can be found in Table 4. The receiver operator
characteristic curves (ROC) and confusion matrices for both the TAAFT experiment and
the final (external) variable-sized validation set are provided in Figure 4.
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Table 4. Comparing the performance of the original (non-fine-tuned) model (M0) and final (fine-
tuned) model on the final variable-sized external validation set and the original local holdout set [9].
The final model’s sensitivity and specificity for absent lung sliding, as evaluated on the external
validation set exceeded the predefined performance goals (sensitivity 0.901, specificity 0.793).

Dataset Model Sensitivity Specificity AUC Accuracy

External
Validation

Final 0.917 0.817 0.920 0.830

M0 0.919 0.761 0.914 0.782

Local
Holdout

Final 0.942 0.891 0.974 0.904

M0 0.949 0.868 0.973 0.889Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
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Figure 4. Receiver-operating characteristic (ROC) curves and confusion matrices for the five-trial
TAAFT experiment (mean ± standard deviation) and final model performance on the variable-
sized validation set at the optimal training proportion (ptrain = 1

3 ). (a) AUC of the five trial TAAFT
experiment fine-tuning on 1

3 of the external dataset with an average of 0.916 (standard deviation
represented by the light blue outline) and (b) the corresponding confusion matrix. (c) AUC of
inference of the final model yielded 0.920 and (d) the corresponding confusion matrix on its variable-
sized validation set.

Figure 5 and describe the subgroup-specific performance of our model. LUS clips
obtained using the cardiac preset demonstrated excellent specificity with respect to ab-
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sent lung sliding at the expense of notably reduced sensitivity (Figure 5a). Performance
was poorer overall on data collected from Ottawa (Figure 5b, D62). The chi-squared test
of independence identified exam preset (Figure 5a; p = 0.01), and institution (Figure 5b;
p = 0.006) as significantly impacting model specificity. Within subgroup fragility indices
highlighted clips acquired from cardiac presets, Chile (D117), and Mindray machines as
predominantly contributing to these effects. Given that all D117 examples are acquired from
Mindray machines, these results are highly correlated. The one-way ANOVA test identified
the same subgroup–metric dependencies. Full details are provided in e-Appendix 5.
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Saliency maps [30] for the final model’s variable-sized validation set were generated
and revealed appropriate regions of prediction importance, centered at and below the
pleural line where clinicians assess for the lung sliding artifact (Figure 6). This reflects the
region on the ultrasound image in which clinicians make an assessment for lung sliding,
enforcing biological correlation.
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Figure 6. M-mode and corresponding Grad-CAM++ [23] saliency map images from a (a) true positive
(D462) example and a (b) true negative (D117) example taken from the final model’s variable-sized
validation set. Highly important features relating to model prediction are highlighted in red, which
correspond to regions clinicians asses for lung sliding.
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Examination of false negative examples revealed LUS clips that (1) were inappro-
priately included in the dataset or (2) that were poorly acquired by the operator. One
clip was noted to be inaccurately labelled as absent lung sliding when lung sliding was
indeed present. A LUS clip containing a lung point and another of a pleural LUS view
were also inappropriately included in the dataset, both of which met exclusion criteria
based on our previous work [18]. Finally, two LUS clips demonstrated significant probe
movement during image acquisition, which may mimic lung sliding, leading to incorrect
model prediction.

Several false positive examples had saliency maps that were focused above the pleural
line on subcutaneous tissue that does not move with respiration, producing an M-mode
that mimics absent lung sliding (Figure 7). Other false positive clips were noted to be
acquired at greater depths.
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Figure 7. M-mode and corresponding Grad-CAM++ [27] saliency map image from a false positive
prediction. The saliency map highlights the subcutaneous tissue above the pleural line that does not
move with respiration, thus mimicking an absent lung sliding pattern. The significant depth at which
this LUS clip was acquired likely contributed to the model’s incorrect prediction as well.

4. Discussion

We report successful multicenter validation of our lung sliding classifier using a fine-
tuning method that directly addresses the challenge of utilizing scarcely available external
data to improve model generalizability. Optimally allocating limited external data for
both fine-tuning and validation is crucial to balance learning new feature representations
and evaluating model performance. Our methods provide a framework to evaluate and
improve single-center-trained DL models for broader use and iterative enhancement.

Medical imaging datasets are small in comparison to traditional computer vision
datasets [31], a challenge that is compounded in the field of LUS [32–34]. Although some
DL models for medical image classification have demonstrated performance comparable
to radiologists [35–37], it is estimated that only 6–13% of these studies include an external
validation set [38–40]. Furthermore, 81% of these studies using external data demonstrate
performance degradation [41]. Our TAAFT method addresses both issues of limited data
availability and poor model generalizability in the context of external datasets, while
allowing for flexibility in maximizing a desired performance metric. We demonstrate a
5.6% improvement in our model’s specificity while maintaining (−0.2%) sensitivity in a
largely unbalanced dataset. This aligns with the clinical emphasis on the sensitivity of
PTX, as missing this lethal diagnosis could delay life-saving procedures. We found that
fine-tuning using one-third of our particular dataset yielded the best results. However, the
TAAFT method can be customized using varying values of k to tailor this method to other
applications depending on the amount of data available and the priority metric (sensitivity
vs. specificity). Examination of false negative predictions revealed image acquisition-
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related issues affecting image preprocessing, which may reflect an expected degree of
operator dependency with point-of-care imaging during real-world use. The pronounced
class imbalance disfavoring the positive class may also stunt improvements in sensitivity.
We employed several mitigating factors, such as upsampling, data augmentation, and
use of a class-weighted loss function. However, there should be future efforts to obtain
more examples to balance the class representation. Saliency maps confirmed biological
plausibility for model predictions by highlighting anatomically relevant regions. Finally,
binary cross-entropy often struggles with imbalanced datasets [42] and further investigation
of more adaptable loss functions under these circumstances is warranted.

Presently, DL studies in the medical domain only provide a static representation of
model performance without offering strategies for further improvement. Machine Learning
Operations (MLOps) provides a framework for continual quality assurance and model
improvement [43]. A clinical parallel can be made with the PDSA cycle in the Quality
Improvement methodology [44], where feedback from workflow adjustments informs
system changes in a cyclic manner. Currently, MLOps workflows are primarily deployed
in industry applications, such as automated defect inspection in factory settings [45]. Tar-
taisco et al. [46] have prototyped a cloud-based machine continual learning framework
for automated detection of valvular disease using heart sounds. Our work demonstrates
a framework for MLOps practices and a data-centric approach for identifying areas for
iterative model improvement in medical image classification. Metadata collection facili-
tated analysis and identification of poorly performing subgroups, which can serve to direct
targeted data collection and further fine-tuning to better incorporate poorly represented
features. This information can guide implementation of upstream metadata-aware pre-
processing methods to optimize model inputs. Continual learning methods incorporating
MLOps principles can be used to defend against biases from small datasets that do not
represent features found in other datasets.

The success of our fine-tuning approach has yielded an absent lung sliding detec-
tion model with enriched diagnostic performance and generalizability. Such a system
could be paired with portable ultrasound hardware to permit non-traditional users of
ultrasound (e.g., paramedics, respiratory therapists, and military personnel) to assess for
a life-threatening PTX virtually anywhere. With the maturation of wearable ultrasound
devices [47,48], eventual automated and real-time monitoring of PTXs at the bedside is also
conceivable.

5. Limitations and Future Directions

We acknowledge there are limitations to our work. We attempted to mitigate con-
founding variables in our heterogeneous data by describing the meta-data. However,
further efforts to collect clinical descriptors such as diagnoses may strengthen correlations
between model predictions and ground truth labels. Additionally, while we described
several ultrasound-specific variables such as probe preset and manufacturer, we excluded
all examples of linear probes. Targeted collection and fine-tuning using LUS images cap-
tured using linear probes will be prudent in further improving the generalizability of our
model. Lastly, our model’s performance was only assessed on retrospective data. As such,
future efforts should move towards prospective validation with comparison to expert
annotations [49].

Future work by our group will investigate additional techniques to combat against
poor generalizability of DL models in the setting of scarcely available labelled medical
data. One area of interest is using self-supervised pretraining, which has demonstrated
promise in improving task performance compared to full supervised learning for multiple
medical imaging modalities including ultrasound [50]. This technique is particularly useful
in the case when unlabeled examples vastly outnumber labelled examples. Preliminary
studies have demonstrated improved performance, generalizability to external datasets,
and inference time [51,52]. This technique could be leveraged to capture hardware vari-
ances amongst external centers, including different ultrasound manufacturers, probes, and
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presets. Deliberate focus on improving model generalizability has ethical implications,
such as ensuring proper representation of patients from various demographic backgrounds.
Striving to collect and annotate metadata will provide crucial transparency in DL models
to identify and work towards eliminating model bias.

6. Conclusions

An absent lung sliding detection model was successfully validated on multi-institutional
data. We improved the performance and generalizability of our EfficientNetB0 lung sliding
classifier by employing our proposed TAAFT method to fine-tune with one-third of the
available dataset. Poorly performing subgroups were also identified via subgroup analyses
and serve as targets for future data collection. This work demonstrates the benefits of data-
centric practices and collaboration between clinicians and engineers for iterative model
improvement.
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