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Abstract: Tuberculosis (TB) is an infectious disease caused by Mycobacterium. It primarily impacts
the lungs but can also endanger other organs, such as the renal system, spine, and brain. When an
infected individual sneezes, coughs, or speaks, the virus can spread through the air, which contributes
to its high contagiousness. The goal is to enhance detection recognition with an X-ray image dataset.
This paper proposed a novel approach, named the Tuberculosis Segmentation-Guided Diagnosis
Model (TSSG-CNN) for Detecting Tuberculosis, using a combined semantic segmentation and adap-
tive convolutional neural network (CNN) architecture. The proposed approach is distinguished from
most of the previously proposed approaches in that it uses the combination of a deep learning seg-
mentation model with a follow-up classification model based on CNN layers to segment chest X-ray
images more precisely as well as to improve the diagnosis of TB. It contrasts with other approaches
like ILCM, which is optimized for sequential learning, and explainable AI approaches, which focus on
explanations. Moreover, our model is beneficial for the simplified procedure of feature optimization
from the perspectives of approach using the Mayfly Algorithm (MA). Other models, including simple
CNN, Batch Normalized CNN (BN-CNN), and Dense CNN (DCNN), are also evaluated on this
dataset to evaluate the effectiveness of the proposed approach. The performance of the TSSG-CNN
model outperformed all the models with an impressive accuracy of 98.75% and an F1 score of 98.70%.
The evaluation findings demonstrate how well the deep learning segmentation model works and the
potential for further research. The results suggest that this is the most accurate strategy and highlight
the potential of the TSSG-CNN Model as a useful technique for precise and early diagnosis of TB.

Keywords: tuberculosis; convolutional neural network; segmentation model; healthcare; deep learning

1. Introduction

Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB) [1]. Al-
though the renal system, spine, and brain may also be impacted, the lungs are the primary
organs. Because it spreads through the air when an infected person coughs, sneezes,
or talks, TB is incredibly contagious [2]. Despite its preventable and treatable nature, TB
remains a major global health concern, particularly in low- and middle-income countries
and among vulnerable populations, such those who are HIV/AIDS-positive [3]. TB can
have a serious negative impact on both human health and national health systems. Ex-
haustion, fever, weight loss, and coughing are common symptoms of the condition [4].

Diagnostics 2024, 14, 1174. https://doi.org/10.3390/diagnostics14111174 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14111174
https://doi.org/10.3390/diagnostics14111174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-2383-621X
https://orcid.org/0000-0001-5072-0434
https://orcid.org/0000-0003-2354-4409
https://doi.org/10.3390/diagnostics14111174
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14111174?type=check_update&version=2


Diagnostics 2024, 14, 1174 2 of 19

If treatment is not administered, TB can have serious implications, such as lung damage,
respiratory failure, and even death [5]. The fact that TB typically necessitates a protracted
course of antibiotics and may require multiple medications to combat drug-resistant strains
exacerbates treatment complexity and adherence concerns [6].

Global health concerns about TB are still significant, especially in areas where access
to healthcare resources is scarce [7]. Effective TB treatment and control depend on early
detection and accurate diagnosis. Chest X-rays are a commonly used diagnostic method
for TB screening, since they are inexpensive and easy [8]. It can be challenging to interpret
chest X-rays for the diagnosis of TB, especially in places with few resources and a lack of
radiology with the necessary training [9]. Recent advancements in deep learning techniques
have shown the promise for automated identification of TB from chest X-ray images [10].
This article proposes a novel approach integrating segmentation and classification models
to enhance the accuracy of TB detection employing chest X-rays. Specifically, X-rays were
used, as they are convenient to store, transmit, and analyze, plus they are easily accessible
and are cost-effective for every patient. By combining segmentation techniques to identify
areas of concern with algorithms for classification to distinguish between patients who are
TB-positive and those who are TB-negative, this combination strategy aims to improve TB
diagnosis sensitivity and specificity.

1.1. Motivation

This work is motivated by the need to improve TB diagnosis and screening, particularly
in impoverished areas where access to trained medical personnel is limited. Traditional
methods of TB detection that solely depend on the laborious, subjective manual analysis of
chest X-rays may lead to delayed therapy initiation and inaccurate diagnosis [11]. Moreover,
the majority of automatic TB detection systems now focus solely on classification algorithms,
neglecting the importance of accurately locating relevant regions within chest X-rays.
The objective of this research is to surmount these limitations and enhance the accuracy
and effectiveness of TB detection using chest X-ray images by merging segmentation
techniques with classification models. This work attempts to expand on prior research by
using knowledge from the literature study of deep learning-based TB detection methods to
create a more reliable and efficient strategy for TB prevention using sophisticated image
analysis techniques.

1.2. Contributions

• We propose a novel approach to tuberculosis diagnosis from X-ray images named
the Tuberculosis Segmentation-Guided Diagnosis model (TSSG-CNN) that combines
semantic segmentation and the adaptive CNN model. Such an approach is extremely
beneficial as compared to conventional segmentation and classification algorithms
that cope with the problem independently from each other; they improve the detection
of TB by directing attention to the concrete areas that are depicted on the image before
the classification process.

• We contribute towards detecting TB by improving accuracy through the cutting-edge
proposed segmentation model. A comparison between our model and newly emerging
algorithms like Incremental Learning-based Cascaded Models and explainable AI
(XAI) models proves that our model has better performance. The gains in accuracy
and F1-score over previous techniques confirm the efficiency and dependability of
the suggested TSSG-CNN for TB identification. The proposed model addresses the
limitations of the previous approaches by providing robustness and precision.

• After evaluation, the results demonstrated that TB can be detected with an accuracy of
98.75%. The test results on unseen images validate that the introduced deep learning
approach is the most effective and accurate.
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1.3. Organization

This paper is organized into five sections. Section 1 provides a brief introduction
to the topic, while Section 2 covers the literature review and the previous studies on TB
detection. Sections 3 and 4 elaborate on the proposed approach and the experimental
results gained from the study. Finally, Section 5 concludes the paper with future research
that can be conducted.

2. Literature Review

The authors in [12] presented a novel method for identifying TB in chest X-ray (CXR)
photos in response to the need for faster and more accurate diagnosis techniques. The
“Incremental Learning-based Cascaded Model” (ILCM), which they presented, offers two
crucial features: it can identify infected areas within the CXR picture and classify TB cases.
By automating these processes, the ILCM reduces the workload for medical staff and allows
for quicker TB patient discovery and treatment commencement. Both a benchmark golden
standard dataset and data from the local population are used to assess the model’s efficacy.
The ILCM obtains an F1 score of 97.23% and a remarkable overall accuracy of 93.20% on the
local data. For comparison, it obtains a remarkable 83.32% overall accuracy and 82.24% F1
score on the benchmark dataset. The calculation results show that the ILCM will produce a
high accuracy and F1 score. Still, the efficient performance can be affected by the better or
worse training datasets and the diversity levels. Choosing the individuals representative of
subpopulations or TB variants may limit the external validity of the model.

In order to identify TB in chest X-rays, Ref. [13] presented a novel method that blends
explainable Artificial Intelligence (XAI) techniques with the CNN framework. With CNNs,
the model can detect differences between TB-positive and TB-negative patients in medical
images, including chest X-rays. The accuracy falls between 98.7% and 99.1%. Additionally,
the use of XAI makes it easier to understand CNN’s decision-making process by making it
clear which features and regions of the X-rays are most important for the diagnosis of TB.
The study likely includes data collection from patients who have been diagnosed with TB
and a control group. The generated dataset is then used to train CNN, and XAI is included
for interpretability. The reliability of the high accuracy reported is often overestimated,
and the risk of overfitting is high, especially when the dataset is not diverse, either because
it is experimentally ineffective or the distribution of TB-positive TB-negative cases is
unbalanced. Also, the interpretability derived from the XAI might be bounded by a
challenge of the CNN architecture and the interpretability applicability.

In [14], a novel approach to feature optimization utilizing the Mayfly Algorithm (MA)
and Dual Deep Learning Features were presented for the detection of TB in chest X-rays.
Utilizing characteristics from previously trained models VGG16 and VGG19, the method
looks for intricate patterns in X-rays that are required for diagnosing TB. Next, the MA
selects and refines the most important features to increase the efficacy and precision of TB
categorization. The work uses a KNN classifier for TB detection and achieves remarkable
accuracy rates of 97.8% using a variety of procedures, including feature extraction, data
collecting, and optimization with the MA. The MA-based optimization of features in the
proposed method is dataset and model-type dependent. It should also be noted that the use
of a KNN classifier also poses limitations to the scalability and efficiency of the algorithm
in terms of the design of a real-world application with a large number of objects.

A novel approach to early TB diagnosis through deep learning integration into an Inter-
net of Things (IoT)-based healthcare application is presented in the paper [15]. The primary
screening method, which uses chest X-ray images, acknowledges the significance of early
detection in TB therapy. The process includes data preparation, potential segmentation
using Adaptive Fuzzy C-means clustering, and deep learning-driven extraction of features
made possible by a Deep Belief Network (DBN) for classification. To optimize performance,
the paper employs the Adaptive Monarch Butterfly Optimization (AMBO) method. The
results offer promising outcomes, demonstrating the superiority of the DBN-AMBO combi-
nation over competing procedures and potentially improving the reliability of TB detection,
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even though the exact accuracy is not defined. A few potential limiting factors in relation
to the proposed IoT-based healthcare application include network connectivity, privacy
and confidentiality of data handling, and availability in different settings. Also, the use of
deep learning models for feature creation demands much computational time, thus making
their use impractical in environments with resource constraints.

The authors in [16] used deep learning techniques in a unique pipeline for automated
TB screening utilizing chest X-rays, offering a ground-breaking solution to the urgent global
problem of TB detection. The study tackled the subjectivity and time limits associated with
human interpretation of chest X-rays, especially in resource-limited situations, acknowledg-
ing the criticality of early identification in the fight against TB. To improve performance,
the pipeline that is being suggested combines three sophisticated deep learning architec-
tures and strategically applies methods, including picture pretreatment, augmentation,
genetic algorithm optimization, and model ensembling. The system outperforms current
techniques with an astounding 97.1% classification accuracy, and strong measures like
Youden’s index, sensitivity, and specificity confirm its efficacy even more. The high classifi-
cation accuracy is, however, dependent on the quality and resolution of input chest X-ray
images from deep pipeline definition. Secondly, the pipeline is computationally complex,
and thus, non-realistic for use in resource-limited environments.

The authors in [17] offered a novel deep learning model called CBAMWDnet (Con-
volutional Block Attention Module Wide Dense Net), designed especially to use chest
X-ray (CXR) pictures for the early identification of TB. Convolutional Block Attention
Module (CBAM) and Wide DenseNet (WDnet), two essential components, are combined
by CBAMWDnet to improve its capacity to identify critical characteristics in CXR pictures
that are necessary for TB identification. Comprehensive information extraction is ensured
by the WDnet, which effectively learns characteristics through dense connections, while the
CBAM prioritizes pertinent information across various regions of the CXR. It is noteworthy
that CBAMWDnet outperforms other models with an astounding 98.80% accuracy rate
in TB detection, and it performs admirably in terms of sensitivity, precision, specificity,
and F1 score, among other evaluation metrics. The training data size and diversity of the
training data also affect the training of the CBAMWDnet model, as well as the selection of
the hyperparameters during training. Moreover, the time required to train models and test
models further presupposes enormous computations that would be impossible to support
in resource-scarce environments.

The authors in [18] addressed the shortcomings of conventional methods that fre-
quently concentrate on individual diseases like pneumonia, COVID-19, and TB. Instead,
it proposes a novel way of detecting lung disorders using chest X-rays. A deep learning
model that can jointly diagnose these four lung disorders is shown in the suggested solution.
The model is trained on Kaggle datasets that are made publicly available, and it performs
remarkably well, diagnosing all four disease categories with an accuracy of 98.72%. It also
performs well in distinguishing specific disorders, as seen by recall scores higher than
96% for each. Experiments were conducted on data that were not seen to validate the
effectiveness of the model, surpassing existing methods in precision. This discovery signifi-
cantly enhances lung illness diagnosis over traditional single-disease-focused approaches,
offering a more efficient and probably more accurate approach. Deep learning, combined
with the detection of multiple lung disorders, has a bright future, but the performance
of the model may be impaired in cases of coexisting diseases or overlapping signs of dif-
ferent lung disorders. Second is the fact that such solutions rely on the Kaggle datasets,
and there is a danger of over-fitting and potential biases towards the representativeness of
the information.

The authors in [19] discussed the critical need for early diagnosis in high-burden
countries, particularly in situations when access to trained radiologists is scarce. They
introduced a novel computer-aided diagnostic (CAD) method for automated chest X-ray-
based TB identification. The technique blends manually created characteristics that are
recovered using Gabor filters—which are well-known for capturing specific textures and
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patterns—with deep features from pre-trained deep learning models. This combination
offers a comprehensive way of tuberculosis detection, reducing the requirement for valuable
personnel and perhaps enhancing efficiency as compared to manual screening approaches.
Robust examination of the system using k-fold cross-validation on two publicly available
datasets demonstrates its good performance. For both the Montgomery dataset and the
Shenzhen dataset, the evaluation produced remarkable areas under the receiver operating
characteristic curve (AUC) values of 0.97 and 0.99, respectively. The CAD method performs
well on open datasets. Still, in the real clinical world, this effectiveness can be affected by
data quality, patient demographics, and differences in various imaging protocols. Deep
learning, combined with the detection of multiple lung disorders, has a bright future.
Still, the performance of the model may be impaired in cases of coexisting diseases or
overlapping signs of different lung disorders. Second is the fact that such solutions rely on
the Kaggle datasets, and there is a danger of over-fitting and potential biases towards the
representativeness of the information.

To address the issue of class disparity in chest X-ray datasets used to diagnose TB,
this paper [20] focuses on the TBX11K dataset, which is prominent for having an uneven
distribution of instances that are TB-positive and TB-negative. To mitigate the effects of this
imbalance, the study looks at the effectiveness of the Synthetic Minority Over-sampling
Technique (SMOTE), a method for producing synthetic data points to balance the classes.
This study evaluates each model’s performance in terms of F1 score, accuracy, precision,
recall, and SMOTE augmentation. It employs the Random Forest (RF) and XGBoost (XGB)
models for classification. The results demonstrate that while SMOTE enhances the precision–
recall trade-off, the total accuracy of both models is somewhat worse. Despite a slight
decrease in accuracy, the outcomes demonstrate how effective SMOTE is in addressing
disparities in classes. The RF model without SMOTE is still the best option when overall
accuracy is the top priority, but the XGB model with SMOTE is recommended for TB case
identification. Class disparity in datasets is indeed important; however, the performance of
SMOTE augmentation might not be as expected, but it is dependent on the distribution as
well as the distinctive features that characterize it. What is more, results obtained from this
approach—along with any selected classification models—may not be applicable broadly
to other sets of data and people. For instance, different distributions could have different
modes or means; therefore, applying such a model could result in biases, especially towards
underrepresented groups.

The authors in [21] explored how deep learning models can be used to improve
chest X-ray quality control (QC) for TB testing in immigrants and refugees visiting the
US. Traditional quality control methods used by the US Centres for Disease Control and
Prevention (CDC) need to be more scalable. The proposed models demonstrate exceptional
performance in identifying anomalous X-rays and anomalies linked to TB, as demonstrated
by their outstanding area under the curve (AUC) of 0.97 for anomalies related to TB on
internal data, following their training on a large dataset. They also forecast the frequency
of aberrant X-rays with an accuracy and error margin of 2%. Performance is still good on
external datasets, with AUCs that range from 0.89 to 0.99. A few considerations that affect
the accuracy of deep learning algorithms in chest radiography quality assurance include
image resolution, inconsistency among imaging devices, and unrelated TB artifacts or irreg-
ularities. Moreover, more exploration is needed on how well these models can be applied
to various demographic patient populations and differing healthcare system contexts.

As summarized in Table 1, these findings demonstrate the immense potential of deep
learning in scaled and accurate TB diagnosis, which offers significant advantages in public
health screening programs for immigrant and refugee communities.
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Table 1. Summary of the related work.

Paper Key Findings

[12]
- Proposed the “Incremental Learning-based Cascaded Model” (ILCM) for TB identification in chest X-ray (CXR) photos.
- Automated identification of infected areas and classification of TB cases.
- Achieved an F1 score of 97.23% and overall accuracy of 93.20% on local data.

[13]
- Combined explainable Artificial Intelligence (XAI) techniques with CNN framework for TB detection in chest X-rays.
- Accuracy between 98.7% and 99.1%.
- Improved interpretability of CNN’s decision-making process.

[14]
- Utilized the Mayfly Algorithm (MA) and Dual Deep Learning Features for TB detection in CXR images.
- Achieved accuracy rates of 97.8% using the KNN classifier.
- Optimized feature selection and refinement using MA.

[15]
- Proposed an IoT-based healthcare application for early TB diagnosis using CXR images.
- Used Adaptive Fuzzy C-means clustering and Deep Belief Network (DBN) for feature extraction and classification.
- Performance improvement using Adaptive Monarch Butterfly Optimization (AMBO) method.

[16]
- Introduced a pipeline for automated TB screening in chest X-rays using deep learning.
- Combined three deep learning architectures and applied various techniques for improved performance.
- Achieved 97.1% classification accuracy and high evaluation metrics scores.

[17]
- Developed CBAMWDnet model for early TB identification using CXR images.
- Combined Convolutional Block Attention Module (CBAM) and Wide DenseNet (WDnet) for improved feature extraction.
- Achieved 98.80% accuracy and performed well on evaluation metrics.

[18]
- Proposed a deep learning model for joint diagnosis of lung disorders using chest X-rays.
- Trained on publicly available Kaggle datasets and achieved 98.72% accuracy.
- Outperformed existing methods in precision and diagnosis of specific disorders.

[19]
- Introduced a computer-aided diagnostic (CAD) method for automated chest X-ray-based TB identification.
- Combined Gabor filters and deep features from pre-trained models for comprehensive detection.
- Achieved high area under the curve (AUC) values on evaluation datasets.

[20]
- Addressed class disparity in the TBX11K dataset using the Synthetic Minority Over-sampling Technique (SMOTE).
- Evaluated performance of Random Forest (RF) and XGBoost (XGB) models with and without SMOTE.
- SMOTE improved the precision–recall trade-off, but slightly decreased overall accuracy.

[21]
- Explored deep learning models for chest X-ray quality control (QC) in TB testing.
- Demonstrated exceptional performance in identifying anomalous X-rays and anomalies related to TB.
- Good performance on external datasets.

3. Proposed Approach

This section outlines the steps of our proposed approach, including details on the
dataset, preprocessing, and the suggested Tuberculosis Segmentation-Guided Detection
Model (TSSG-CNN), which is based on a CNN-based segmentation model and classification
model. Figure 1 provides a graphic depiction of the suggested strategy. Firstly, the raw
X-ray images were masked to provide an image that the model could understand easily;
once completed, they were stirred and scaled before giving the images for segmentation.
After segmenting the images, they were classified through the CNN model, and finally,
a model was trained on this dataset to predict TB.
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Figure 1. Workflow of the proposed approach.

3.1. Dataset and Preprocessing

The Shenzen Hospital X-ray set’s manually categorized lung masks are included in the
Kaggle dataset that was used to build the model [22]. The dataset consists of 566 images
that were masked using lung segmentation that isolated the lung region within the X-ray
images for refining the model’s focus; also, rotations and flips are two examples of data
augmentation strategies that are highlighted for increasing dataset size and enhancing
model generalization [23]. The masked images are a binary class dataset further used for
detecting TB; masking helped to generate better results even with the small dataset with
less than 1000 images. The dataset images were kept in 18 batches, out of which 12 were
used for training, 5 for validation, and 1 for testing. Before giving this dataset as an input to
the model, data scaling was performed to range the images between [0, 1] by dividing every
image by 255, ensuring consistency for model training. Figure 2 represents the sample data
that is used for training the model.

Figure 2. Sample of the dataset.

3.2. Tuberculosis Segmentation-Guided Detection (TSSG-CNN) Model

The proposed TSSG-CNN model consists of a segmentation model and a classification
model that is then combined by a hybrid model as seen in Figure 3. Algorithm 1 explains
how to use TensorFlow and Keras to create and train a hybrid segmentation classification
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model. Convolutional layers for feature extraction and upsampling layers for segmentation
mask creation make up the segmentation model, which is first defined. Next, the convolu-
tional and dense layers that make up the classification model for image classification tasks
are defined. After that, the hybrid model is created by combining the segmentation and
classification models. Ultimately, training data are used to construct and train the hybrid
model, while validation data are used to track performance indicators. The methodology
offers an organized method for creating and honing a deep-learning model that can process
input photos for both segmentation and classification purposes.

Figure 3. Classification flow of the proposed model.

Algorithm 1 Creating and Training the Hybrid Segmentation-Classification Model

Require: Input Shape = (256, 256, 3)
1: Define Segmentation Model
2: inputs← Input(input_shape)
3: conv1← Conv2D(32, (3, 3), activation = ‘relu’, padding = ‘same’)(inputs)
4: pool1←MaxPooling2D(pool_size = (2, 2))(conv1)
5: up1← UpSampling2D(size = (2, 2))(pool1)
6: decoded← Conv2D(3, (3, 3), activation = ‘sigmoid’, padding = ‘same’)(up1)
7: segmentation_model←Model(inputs, decoded, name = ‘segmentation_model’)
8: Define Classification Model
9: inputs← Input(input_shape)

10: conv1← Conv2D(16, (3, 3), activation = ‘relu’)(inputs)
11: pool1←MaxPooling2D(pool_size = (2, 2))(conv1)
12: conv2← Conv2D(32, (3, 3), activation = ‘relu’)(pool1)
13: pool2←MaxPooling2D(pool_size = (2, 2))(conv2)
14: conv3← Conv2D(64, (3, 3), activation = ‘relu’)(pool2)
15: pool3←MaxPooling2D(pool_size = (2, 2))(conv3)
16: flatten← Flatten()(pool3)
17: dense1← Dense(256, activation = ‘relu’)(flatten)
18: output← Dense(1, activation = ‘sigmoid’)(dense1)
19: Combine Segmentation and Classification Models
20: input_tensor← Input(input_shape)
21: segmentation_model← create_segmentation_model()
22: segmentation_output← segmentation_model(input_tensor)
23: classification_model← create_classification_model()
24: classification_output← classification_model(segmentation_output)
25: hybrid_model←Model(inputs = input_tensor, outputs = classification_output, name

= ‘hybrid_model’)
26: Compile and Train the Hybrid Model
27: hybrid_model.compile(optimizer = ‘adam’, loss = ‘binary_crossentropy’,

metrics = [‘acc’])
28: logdir = ‘logs’
29: hist← hybrid_model.fit(train, epochs = 25, validation_data = val, callbacks = [tensor-

board_callback])
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3.2.1. Segmentation Model

The segmentation model consists of a convolutional neural network (CNN) encoder-
decoder architecture that is commonly used for image segmentation where the model itself
learns to assign labels to each pixel in the input image [24]. Convolutional layers are placed
in the “encoder” portion of the architecture, which is followed by pooling layers. These
layers extract high-level characteristics while gradually decreasing the input image’s spatial
dimensions. This process is reversed by the “decoder” in the architecture, which creates an
output map with the same spatial dimensions as the input image by upsampling the feature
maps that are produced by the encoder. Convolutional layers work by convolving filters
across the input image during the feature extraction process, locating specific patterns and
characteristics that are necessary for further analysis as presented in Equation (1):

convolution =
N

∑
i=1

(input× filter + bias) (1)

Then, non-linear transformations are introduced using activation functions like ReLU,
which improve the network’s ability to identify complex links in the data, as shown
in Equation (2). Then, by choosing the largest value inside each pooling region, max-
pooling layers minimize the spatial dimensions of the feature maps that are presented by
Equation (3):

ReLU(x) = max(0, x) (2)

MaxPooling(x) = max(Pooling_Region(x)) (3)

This efficiently summarizes the learned features and improves the model’s resistance
to spatial fluctuations in the input data. This multi-step procedure not only makes robust
feature extraction easier but also makes a big difference in how effective the model is
overall for tasks like segmentation and classification. In the Upsampling and Segmentation
Mask Generation stage, the decoder reverses the encoder’s downsampling procedure to
recover the spatial dimensions of the original input image. Methods like interpolation and
transposed convolutions are frequently employed for this. The final decoder layer uses
sigmoid activation to provide pixel-wise predictions or the likelihood of particular groups
or categories for each pixel. By creating segmentation masks, this procedure helps with
tasks like object detection and medical image analysis by defining zones of interest within
the input image.

3.2.2. Classification Model

A convolutional neural network (CNN) architecture specifically designed for image
classification problems is used in the classification model. This architecture makes it
easier to extract hierarchical characteristics from the input images by including numerous
convolutional layers, each followed by max pooling operations. Convolutional layers
efficiently detect local patterns and features, while feature abstraction and computing
efficiency are improved by max pooling, which decreases spatial dimensions. The learned
features are then represented as vector representations by flattening the feature maps,
which are subsequently run through several thick layers to carry out classification. Dense
layers—also referred to as completely connected layers—allow the model to represent
intricate feature interactions; Equation (4) represents the dense layer:

Dense(x) = σ(W · x + b) (4)

The output layer predicts the probability that an input image will belong to a spe-
cific class using the sigmoid activation function; the activation function is represented in
Equation (5):

sigmoid(x) =
1

1 + e−x (5)
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This produces a binary result that is commonly utilized for binary classification tasks.
With this all-encompassing method, the model can efficiently classify photos into different
categories according to learned features, which makes it appropriate for a range of image
classification uses.

3.2.3. Hybrid Model

Joint segmentation and classification tasks on input images are made possible by the
Hybrid Model, which combines the features of both the segmentation and classification
models. By examining the input images, the segmentation model first creates segmentation
masks, or boundaries, around particular regions or objects in the image. The classification
model then takes these segmentation masks as input, using the segmented regions to
perform binary classification tasks. By employing this technique, the model may consider
both the global context of the image and the segmented localized aspects. By integrating
segmentation and classification abilities, the hybrid model can provide comprehensive
insights into the presence or absence of specific features within the input images.

Additionally, the model is compiled using the binary cross-entropy loss function
and Adam optimizer to make it optimal for learning segmentation and classification
tasks. The accuracy assessment metric confirms that the model is effective in accurately
segmenting and classifying input images. For difficult image analysis tasks, the hybrid
technique offers a reliable and flexible solution, particularly when continuous segmentation
and classification are required.

3.3. Pseudo Code for TB Detection

Pseudocode in Section 3.3 of the proposed model explains the working of the model’s
input, its segmentation, its classification, and its results. The model accepts an input shape
of (256 × 256 × 3) that is given to the segmentation model, where the input image is
encoded using conv2D and maxpooling2D layers. Then, it is decoded using upsampling2D
and conv2D layers, and it provides the segmented images that are then given to the
classification model as input. The images are further classified using multiple conv2D
and maxpooling2D layers; furthermore, in the classification process, one flattened layer
and two dense layers are utilized to finalize the classification. Finally, a hybrid model is
designed using both segmentation and classification models.

1. Define input shape for images (256 × 256 × 3).
2. Create a segmentation model:

a. Input layer.
b. Encoder with Conv2D and MaxPooling2D layers.
c. Decoder with UpSampling2D and Conv2D layers.
d. Output layer with sigmoid activation.

3. Create a classification model:
a. Input layer.
b. Series of Conv2D and MaxPooling2D layers.
c. Flatten layer.
d. Dense layers with ReLU activation.
e. Output layer with sigmoid activation.

4. Combine models:
a. Use segmentation model output as input to the classification model.
b. Define the hybrid model.

5. Compile and summarize the hybrid model.

4. Experimental Analysis and Results

This section provides a comprehensive review of the assessment measures used to
evaluate the performance of the TSSG-CNN model. Evaluation metrics reveal how well a
model can recognize patterns and predict outcomes, making them crucial indicators of a



Diagnostics 2024, 14, 1174 11 of 19

model’s performance. The process of evaluating the TSSG-CNN model is a multimodal
analysis that evaluates the model’s overall performance using a variety of metrics.

Accuracy is a crucial parameter for evaluating classification models, since it measures
the overall reliability of predictions by calculating the ratio of correctly predicted instances
to all instances in the dataset. In unbalanced datasets, when one class is predominant
and more evaluations are needed, its value may be compromised. In scenarios like fraud
detection or medical diagnosis, where false positives can be costly, precision estimates the
proportion of true positive predictions among all positive predictions. The recall is an
estimation of the model’s ability to identify real positive occurrences relative to all positive
instances, and it is important for situations that prioritize catching positive events. It goes
by the names true positive rate and sensitivity as well. The F1-score, which is a harmonic
mean of precision and recall, balances these two measures to give a comprehensive evalu-
ation of a model’s performance when both precision and recall are equally significant or
when class distributions are uneven. When combined, these metrics offer a comprehen-
sive understanding of a classification model’s capabilities, empowering academics and
practitioners to optimize model performance for a range of practical uses. The confusion
matrix provides a detailed investigation of the model’s predictions regarding ground truth
labels. Its four components are false positives (FP), false negatives (FN), true positives (TP),
and true negatives (TN). These components can yield a number of performance metrics,
including the F1 score, recall, and precision through the Equations (6), (7), and (8), respec-
tively. These metrics offer an in-depth assessment of the model’s accuracy, highlighting
its accuracy in recognizing instances that are both positive and negative. The accuracy
calculation is shown in Equation (9):

F1 Score = 2× Precision× Recall
Precision + Recall

(6)

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Loss curves, accuracy curves, Jaccard index curves, and Dice coefficient curves are
presented in Figure 4 for all the models utilized. Loss curves show how the model’s loss
function—such as cross-entropy loss—evolved throughout training epochs and provide
insights into the convergence and optimization process. The model’s accuracy curves
show the variations between the training and validation accuracy curves, which helps
indicate issues with the complexity of the model or dataset biases. The Dice coefficient is
also termed Dice’s Similarity Coefficient, symbolized as DSC, and is a statistical measure
used to compare a rate between sets. It is calculated as the extent of agreement of the
polarity between the segmentation and the ground truth in terms of area, estimated as
twice the surface area of the intersection of the predicted segmentation with the ground
truth, normalized with respect to the total number of pixels in both the predicted as well as
the ground truth segmentations. The size of the intersection set divided by the size of the
union set measures the Jaccard index or the Intersection over Union (IoU). It is measured
as the area of overlap between the predicted segmentation and the reference segmentation
divided by the area of the union of these two segments.

Every model’s loss curve, accuracy curves, Jaccard index curves, and Dice coefficient
curves are shown as a whole, e.g., Figure 4d presents all the four metrics curves that were
calculated during training of the TSSG-CNN model. The metrics show highly accurate
results for prediction by providing accurate graphs. On the other hand, DCNNs in Figure 4c
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show irregularity in the curves with low accuracy. The Jaccard index and Dice coefficient
curves show low curves.

(a) CNN (b) BN-CNN

(c) D-CNN (d) TSSG-CNN

Figure 4. Accuracy, loss, Dice coefficient, and Jaccard index curves for training and testing data.

Table 2 provides an overview of the metrics employed for the accuracy, precision,
recall, and F1-score evaluations of the TSSG-CNN model. Specifically, the TSSG-CNN
model achieved an exceptional training accuracy score of 98.75%, outperforming previous
approaches in the field. Following training, a thorough evaluation of the model’s robustness
and generalization capacity was conducted using previously encountered images. Even
with these new images offering accurate predictions for TB, the TSSG-CNN model sur-
prisingly demonstrated amazing predictive accuracy. This illustrates how well the model
generalizes to new data, which is crucial in real-world scenarios where seeing unusual
events is frequent.

The remarkable accuracy of the TSSG-CNN model in training and testing indicates
how well it addresses the underlying issue and increases the likelihood that it will be
helpful in practical settings. These results validate the effectiveness of the TSSG-CNN
model and emphasize its significance in pushing the boundaries of the current state-of-the-
art in the area. The classification model performs admirably across two classes, as seen by
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the confusion matrix in Figure 5d. The model correctly classifies 38 examples as falling into
the first class and 41 instances as belonging to the second class, demonstrating its ability to
distinguish between the two classes. The relatively low number of class misclassifications
by the model serves as additional evidence of its efficacy. On the other hand, CNN and
D-CNN models in Figure 5a,c were not able to differentiate between the two classes and
generated false results; meanwhile, BN-CNN in Figure 5b was able to differentiate between
them, but its results were not as accurate, since it misclassified instances.

Table 2. Evaluation results on validation data.

Model TSSG-CNN

Accuracy 98.75%

F1-Score 98.70%

Precision 97.43%

Recall 100%

Dice coefficient 98.75%

Jaccard index 95.33%

(a) CNN (b) BN-CNN

(c) D-CNN (d) TSSG-CNN

Figure 5. Confusion matrix of the proposed models.
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The same was performed with Receiver Operating Characteristic (ROC) curves, just
as confusion matrices were used to examine the poor-performing classes out of the target
column. The Receiver Operating Characteristic (ROC) curves are presented in Figure 6 to
draw the true positive rates against false positive rates. The model TSSG-CNN represented
in Figure 6d developed curves of good model performance in the new environment. At the
same time, BN-CNN represented in Figure 6b also presented good outcomes. However,
Figures 6a,c of both the CNN and the D-CNN have plotted relatively less accurate curves,
which signify the poor performance of these models.

(a) CNN (b) BN-CNN

(c) D-CNN (d) TSSG-CNN

Figure 6. ROC curves of the proposed models.

The evaluation results of different deep learning models are presented in Table 3,
along with the performance metrics used for evaluation consisting of accuracy, F1-score,
precision, and recall. Four models were evaluated on this dataset: a basic convolutional
neural network model, a batch normalization CNN model, a multi-modal CNN and Dense
Layer model, and the TGSD that consists of a segmentation and a classification model;
these models achieved accuracies of 50.63%, 79.38%, 42.5%, and 98.75% respectively.

The evaluation of these models showed that the TSSG-CNN and BN-CNN models
performed well, while the other two models, CNN and DCNN, produced poor results.
Furthermore, in the testing phase, the newly proposed model TSSG-CNN performed better
than BN-CNN, which is evident in Figure 7.
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Table 3. Evaluation results.

Model CNN BN-CNN DCNN TSSG-CNN

Accuracy 50.63% 79.38% 42.5% 98.75%

F1-score 67.22% 74.81% 59.65% 98.70%

Precision 50.63% 100% 42.5% 97.44%

Dice coefficient 49.73% 97.37% 52.29% 98.75%

Jaccard index 34.55% 65.29% 36.69% 95.33%

(a) Contagious (b) Normal

(c) Contagious (d) Contagious

(e) Normal (f) Normal

Figure 7. Prediction results on both classes.

For TSSG-CNN robustness, we experimented with various segmentation and classi-
fication model sizes, as shown in Table 4. To determine the optimal architecture for the
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hybrid model, an ablation study was conducted by testing four different configurations:
some of the techniques involved are small, medium, and large. The image set included
566 images, and the distribution to training, validation, and testing sets was eight-zero-one,
six-zero-one and six-five-six, respectively. In the smallest model, the layers and the filters
were comparatively less, and in the second model, there were a moderate number of layers
and filters, while in the third largest model, the layers and the filter were the maxima. These
findings further indicate that as the model complexity increases, the likelihood of a correct
classification increases as well, meaning that the architectural design of a deep learning
model is crucial in improving the efficiency of medical imaging solutions.

Table 4. TSSG-CNN implemented models.

Model Accuracy

Small 50.00%

Medium 85.71%

Large 57.14%

Originally used 98.75%

For a better understanding of health professionals about the dataset and its results,
the Grad-cam visualization technique was used as shown in Figure 8. Grad-CAM (Gradient-
weighted Class Activation Mapping) is an innovative strategy that helps increase the
interpretability of deep learning approaches, primarily in the area of image classification
and segmentation. Destined to become increasingly popular in the course of deep learning,
Grad-CAM can help to understand which areas of an input image the model pays the most
attention to. This technique quantifies the feature maps of the final convolutional layer by
computing gradients of the predicted class with regard to these maps. Grad-CAM then
places these importance scores on top of the original image, allowing it to produce heatmaps
that show where the various components attend. Grad-CAM helps explain the proceedings
of an intricate neural network as it generates outcomes that are easier for other users to
comprehend and, therefore, relies more on the model’s credibility. Such interpretability is
especially important in the medical field, where knowledge and transparency of the AI
output are crucial for doctors to understand what an AI model is thinking and to come up
with the best diagnosis/treatment plans.

Figure 8. Grad-cam visual representation.
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Discussion and Comparison

Four distinct deep-learning models were evaluated using an image dataset of 558 im-
ages of X-rays of lungs collected for Shenzen Hospital. The evaluation results for the
TSSG-CNN Model are presented in Tables 2 and 3, presenting the results of all the models;
the TSSG-CNN Model provided an accuracy of 98.75%, surpassing the baseline approach
with a margin of 4.3%. The evaluation was based on accuracy, precision, recall, and F1-score.
Table 5 represents the comparison between the proposed approach of this paper and the
baseline approach.

Table 5. Performance comparison with [12].

Reference Accuracy

[12] 93.20%

TSSG-CNN 98.75%

The TB Segmentation-Guided Detection (TSSG-CNN) model was tested using a set
of never-before-seen images after being trained on a dataset comprising images of both
contagious and normal cases of TB. To assess the model’s capacity for generalization
and precise TB case classification, a set of carefully chosen images representing a range
of situations and settings was fed into the model. The TSSG-CNN model performed
remarkably well, efficiently differentiating between typical cases and those that suggested
TB transmission, as seen in Figure 7. The model demonstrated its effectiveness in real-world
circumstances outside of the training dataset by effectively utilizing learned features to
identify important patterns and traits indicative of TB infection through the use of deep
learning architecture.

The application of the TSSG-CNN model for clinical use has to address a number of
different aspects to enable integration and efficiency. In the world of computing, high-
end GPUs like NVIDIA Tesla or A100, fast multi-core CPUs of the Intel Xeon family,
at least 16 GB of RAM and enough SSD space are required. The software stack should
contain TensorFlow/Keras (specifically preferred for Linux for better GPU support) and
all the required libraries and dependencies. PACS should comply with existing healthcare
systems’ data sharing standards—HL7 and DICOM, data encryption requirements and
regulations such as GDPR and HIPAA. A graphical user interface through which the
machine segmentation process can be linked with the electronic health records (EHR)
and visualization of segmentation is also necessary. The use of real clinical information,
support for decisions on a larger scale, and training/implementation assistance for clinical
personnel are also crucial. Regarding ethical and legal issues, algorithmic transparency
addressing biases will have to be addressed so as to deliver the levels of reliability and
validity needed in clinical practice.

5. Conclusions and Future Scope

This paper suggested a deep-learning CNN model for the detection of TB through
X-ray images. The proposed approach, named TSSG-CNN, consists of a segmentation
model followed by a classification model for prediction. The extensive evaluation provided
informative data regarding the TB Detection system’s reliability and usefulness. It gave
us better results than the previous approaches, with an increase of 5.55% in accuracy
and 1.5% in F1-score, providing this paper with 98.75% accuracy and 98.70% F1-score.
It also provided higher Jaccard index and Dice coefficient values of 95.33% and 98.75%,
respectively. When tested on unseen images, the model’s performance was confirmed to
be durable, and it kept proving to be incredibly accurate and efficient. These outcomes
highlight the model’s ability to generalize over a wide variety of data. The evaluation
results imply that the proposed approach can generate better results on the available
dataset. Additionally, we plan to investigate the incorporation of multimodal data sources,
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including genetic data or clinical metadata, which may help develop more sophisticated
diagnostic tools and provide a more thorough understanding of TB detection.
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