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Abstract: Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development
processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content,
and biomass. While considerable advances in Cd uptake and detoxification of plants have been
made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This
review focuses on the relationship between Cd and plants and the prospects for phytoremediation
of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its
associated hazards, encompassing the sources and distribution of Cd and the risks posed to human
health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological
processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent
gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the
mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar
compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic
antioxidants; (4) the practical application of phytoremediation and the impact of incorporating
exogenous substances on the Cd tolerance of plants.

Keywords: cadmium transporter; cadmium toxicity; phytoremediation; cadmium-related genes;
cadmium transcription factor

1. Introduction

It is well known that the rapid evolution of modernized industrial and agricultural
practices has led to various environmental challenges. One of the prominent problems is
cadmium (Cd) pollution. Between 1950 and 1990, global cadmium production doubled,
reaching approximately 20,000 tons annually. Anthropogenic sources deposited an esti-
mated 900 to 3600 tons of Cd into aquatic environments [1], resulting in severe Cd pollution.
This pollution poses a significant threat to both human health and environmental safety.

Cd pollution is a global concern, evident in various regions. In the suburbs of Dera
Ismail Khan, Pakistan, vegetables cultivated using wastewater irrigation exhibited sig-
nificantly higher levels of Cd accumulation compared to those grown with freshwater
irrigation [2]. In southern China, tobacco–rice rotation causes soil pH to decrease, thereby
enhancing the flow of cadmium to crops [3]. Notably, the transfer of cadmium from the soil
to the human body through crops such as vegetables and rice can lead to a variety of health
problems, such as central nervous system depression and kidney and liver damage [4]. In
the last century, many people in Japan suffered immensely from Itai-itai disease due to
cadmium contamination of farmland and water sources [4].
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To cope with these formidable challenges, numerous scientists have dedicated their
efforts to environmental science research, trying to explore strategies for mitigating Cd
pollution through a variety of pathways, including physical, chemical, and phytoremedia-
tion. Based on previous studies, this review will focus on the mechanisms of Cd transport
by plants, the forms of Cd toxicity suffered/coped by plants, and the effects of exogenous
modes on phytoremediation.

2. The Pollution Status and Hazards of Cadmium

Cd is a rare dispersed element commonly found in soils and zinc (Zn) minerals in the
form of divalent cations (Cd2+) and soluble complexes with a variety of toxic effects. Cd
has an extremely long biological half-life, predominantly accumulating in the liver and
kidneys of the human body where it is difficult to eliminate [5].

2.1. Sources and Distribution of Cadmium

Cd levels vary in different countries around the world due to geographic location, lati-
tude and longitude, and environmental climate. Cd levels in soils are currently higher than
the original environmental background values in all countries as a result of atmospheric
deposition and overuse of phosphate fertilizers. For example, the average concentration
of Cd in European soils is 0.33 mg kg−1 [6], while in agricultural land in China, it is
0.19 mg kg−1, with an environmental background value of 0.097 mg kg−1 [7]. In the United
States agricultural soils, the average Cd concentration is 0.265 mg kg−1 [8].

Soil Cd comes from a wide range of sources and can be categorized into two main
sources, including natural and anthropogenic sources. The presence of Cd in natural soils
mostly originates from rock weathering and suspended soil particles transported through
the air. Soil particle sources encompass various natural occurrences such as forest fires,
volcanic emissions, and atmospheric dust [9]. In contrast, anthropogenic Cd emissions pre-
dominantly originate from activities like phosphate fertilizer application, tailings disposal,
metal industry practices, mining operations, and fossil fuel combustion [10,11]. Since the
Industrial Revolution, diverse industrial, mining, and agricultural activities worldwide
have led to substantial heavy metal diffusion into soils and water bodies (Figure 1). By the
beginning of the 21st century, global anthropogenic Cd production during the industrial
era had accumulated to 1.1 million tons, with the global per capita burden estimated at
0.18 kg [12].

2.2. Hazards of Cadmium on the Human Body

With the escalation of mining activities and metal smelting, there has been a corre-
sponding increase in Cd levels found in soil surfaces, air, and water sources. This raises a
significant hazard to the health of animals, plants, and human beings. Cd in animals and
humans mainly comes from drinking water, eating, and respiration, and a very small part
is absorbed through the skin and hair. When Cd enters the body through the gastrointesti-
nal or respiratory tract, it is transported into the bloodstream through erythrocytes and
albumin, and then accumulates in the kidneys and liver [5]. Of note, the biological half-life
of Cd in the kidney is 45 years [13].

To minimize the potential harm caused by exposure to or inhalation of Cd, individuals
should consume foods that are rich in polyphenols [14], such as mint and strawberries.
These foods possess antioxidant properties and can aid in chelating Cd2+. Additionally,
incorporating more seafood, legume products, melon seeds, and other foods with high
Zn content into one’s diet can help counteract the excessive accumulation of Cd in the
body. Collectively, these dietary measures operate through distinct mechanisms to support
overall physical well-being.
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Figure 1. Sources of Cd and its transmission pathways in the environment. This figure shows the 
process of Cd deposition, accumulation, cycling in the environment, and enrichment in plants, ani-
mals, and humans through the food chain. Cd exists in different chemical forms in each pathway, 
such as in water bodies, where it is mainly in the form of chloride [15], in coal combustion and dust 
formed in non-ferrous metal production, where it mainly contains CdS and CdSO4 [16], and in phos-
phorus fertilizers in the form of Cd(H2PO4)2 and CdHPO4 [17]. 

3. Mechanisms of Cadmium Uptake and Transport in Plants 
3.1. Forms and Bioavailability of Cadmium in Soils 

The chemical forms of Cd in different soils vary depending on conditions such as soil 
redox potential, moisture, texture, and inter-root environment. According to the five-step 
sequential extraction method proposed by Tessier et al. (1979), Cd in soils can be grouped 
into five forms: soluble and exchangeable state (Cd2+), carbonate-bound state (CdCO3), 
ferromanganese-oxidized state, organic-bound state, and residue [18], with soluble and 
exchangeable states dominating. 

Not all Cd in soils can be absorbed by plants. Plants mainly take up the exchangeable 
and carbonate-bound states of Cd. However, the bioavailability of Cd can also be influ-
enced by the soil’s properties. Among them, soil acidity and alkalinity will significantly 
affect the Cd solubility and morphological distribution in soils, and increasing soil pH is 
negatively correlated with the effectiveness of heavy metals in plants [19,20]. The main 
reason for the increased Cd pollution in recent years is soil acidification. In addition, soil 
properties are also a key factor influencing Cd morphology and utilization, and plants in 
sandy soils are more capable of Cd uptake compared with clay soils [21]. It is worth men-
tioning that the chelating agents such as ethylenediaminetetraacetic acid (EDTA) and ni-
trilotriacetic acid (NTA) can increase the effectiveness of Cd in soils, facilitate its move-
ment from roots to aboveground tissues, and increase Cd accumulation in leaves [22]. In 
addition to Cd bioavailability, Cd uptake and accumulation in plants are also influenced 
by other factors, such as plant species, genotype, inter-root environment, and mineral nu-
trients such as silicon (Si), selenium (Se), and iron (Fe) [23–26]. 

3.2. Mechanism of Cadmium Uptake by Plants 
Cd uptake and accumulation in plants mainly consist of the following physiological 

processes: uptake of Cd from the outside (soil or air), lateral and radial transport of Cd, 
and phloem-mediated aboveground redistribution (Figure 2). 

Figure 1. Sources of Cd and its transmission pathways in the environment. This figure shows
the process of Cd deposition, accumulation, cycling in the environment, and enrichment in plants,
animals, and humans through the food chain. Cd exists in different chemical forms in each pathway,
such as in water bodies, where it is mainly in the form of chloride [15], in coal combustion and
dust formed in non-ferrous metal production, where it mainly contains CdS and CdSO4 [16], and in
phosphorus fertilizers in the form of Cd(H2PO4)2 and CdHPO4 [17].

3. Mechanisms of Cadmium Uptake and Transport in Plants
3.1. Forms and Bioavailability of Cadmium in Soils

The chemical forms of Cd in different soils vary depending on conditions such as soil
redox potential, moisture, texture, and inter-root environment. According to the five-step
sequential extraction method proposed by Tessier et al. (1979), Cd in soils can be grouped
into five forms: soluble and exchangeable state (Cd2+), carbonate-bound state (CdCO3),
ferromanganese-oxidized state, organic-bound state, and residue [18], with soluble and
exchangeable states dominating.

Not all Cd in soils can be absorbed by plants. Plants mainly take up the exchangeable
and carbonate-bound states of Cd. However, the bioavailability of Cd can also be influenced
by the soil’s properties. Among them, soil acidity and alkalinity will significantly affect the
Cd solubility and morphological distribution in soils, and increasing soil pH is negatively
correlated with the effectiveness of heavy metals in plants [19,20]. The main reason for
the increased Cd pollution in recent years is soil acidification. In addition, soil properties
are also a key factor influencing Cd morphology and utilization, and plants in sandy soils
are more capable of Cd uptake compared with clay soils [21]. It is worth mentioning that
the chelating agents such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic
acid (NTA) can increase the effectiveness of Cd in soils, facilitate its movement from roots
to aboveground tissues, and increase Cd accumulation in leaves [22]. In addition to Cd
bioavailability, Cd uptake and accumulation in plants are also influenced by other factors,
such as plant species, genotype, inter-root environment, and mineral nutrients such as
silicon (Si), selenium (Se), and iron (Fe) [23–26].

3.2. Mechanism of Cadmium Uptake by Plants

Cd uptake and accumulation in plants mainly consist of the following physiological
processes: uptake of Cd from the outside (soil or air), lateral and radial transport of Cd,
and phloem-mediated aboveground redistribution (Figure 2).
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Figure 2. Pathways of Cd uptake and transfer by plants through roots, stems, and leaves. (A) The 
pathway of Cd uptake in plant roots from root hair cells in the maturation zone of the root tip, 
through the exodermis and endodermis to the stele (Xylem). (B) The translocation process of Cd to 
the aboveground parts through the xylem and phloem after reaching the stele. (C) Schematic dia-
gram of Cd uptake and transport by plant leaves under Cd stress. 

3.2.1. Pathways of Cadmium Transport from Soil to Root Epidermis 
The root is the first organ exposed to Cd in soils and the first barrier for plants to 

resist Cd toxicity. Plants absorb Cd from the soil through root hairs and epidermal cells in 
the mature zone of the root tip. 

The entry of Cd into roots mainly includes the following pathways: 
1. Cd2+ is exchanged with H+ produced during plant respiration and is thus adsorbed 

on the surface of root epidermal cells and then enters the cortex via the apoplast path-
way [27]. 

2. As Cd is a non-essential metallic element lacking a specific transporter in plants, its 
entry into plant tissues typically occurs through the symplast pathway. This process 
involves competing for binding sites on metal transporter proteins, including IRT1 (a 
bivalent iron transporter protein) and NRAMP5 (a manganese transporter protein) 
[28]. Additionally, Cd can also enter plants through ion channels of divalent metals 
such as calcium (Ca). 

3. To enhance ion utilization within the inter-root soil, certain low molecular com-
pounds, such as erucic acid and oxalic acid, are secreted by plant roots. These com-
pounds form metal–ligand complexes with Cd2+, thus facilitating Cd to enter the root 
epidermis as a chelate transported by yellow-stripe-Like (YSL) proteins [29]. 
Although Cd2+ binds to both organic ligands (such as dissolved organic substances 

like low-molecular-weight organic acids secreted by plant roots) and inorganic ligands 

Figure 2. Pathways of Cd uptake and transfer by plants through roots, stems, and leaves. (A) The
pathway of Cd uptake in plant roots from root hair cells in the maturation zone of the root tip,
through the exodermis and endodermis to the stele (Xylem). (B) The translocation process of Cd to
the aboveground parts through the xylem and phloem after reaching the stele. (C) Schematic diagram
of Cd uptake and transport by plant leaves under Cd stress.

3.2.1. Pathways of Cadmium Transport from Soil to Root Epidermis

The root is the first organ exposed to Cd in soils and the first barrier for plants to resist
Cd toxicity. Plants absorb Cd from the soil through root hairs and epidermal cells in the
mature zone of the root tip.

The entry of Cd into roots mainly includes the following pathways:

1. Cd2+ is exchanged with H+ produced during plant respiration and is thus adsorbed
on the surface of root epidermal cells and then enters the cortex via the apoplast
pathway [27].

2. As Cd is a non-essential metallic element lacking a specific transporter in plants,
its entry into plant tissues typically occurs through the symplast pathway. This
process involves competing for binding sites on metal transporter proteins, including
IRT1 (a bivalent iron transporter protein) and NRAMP5 (a manganese transporter
protein) [28]. Additionally, Cd can also enter plants through ion channels of divalent
metals such as calcium (Ca).

3. To enhance ion utilization within the inter-root soil, certain low molecular compounds,
such as erucic acid and oxalic acid, are secreted by plant roots. These compounds form
metal–ligand complexes with Cd2+, thus facilitating Cd to enter the root epidermis as
a chelate transported by yellow-stripe-Like (YSL) proteins [29].
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Although Cd2+ binds to both organic ligands (such as dissolved organic substances
like low-molecular-weight organic acids secreted by plant roots) and inorganic ligands (e.g.,
NO3−, Cl−) to form soluble complexes, subsequently enhancing the mobility of Cd to the
root surface, it is widely accepted that Cd2+ is the primary form of translocation through
the plasma membrane into the root tip cells [30].

3.2.2. Lateral Transport of Cadmium from Root Epidermis to Xylem

Cd is synergistically transported through both the symplast and the apoplast pathways
after entering the epidermal cells of the root hair zone (Figure 2).

In the symplast pathway, Cd is mainly transported by intracellular protoplasmic flow
and plasmodesmata channels between cells, first across the endodermis into the stele, then
through the pericycle sheaths into the parenchyma cell, and ultimately into the xylem
conductance ducts [31]. In the apoplast pathway, Cd enters the xylem along the apoplast
space such as the cell wall, cell interstitial space, intercellular layer, and conduit cavity. This
pathway is impeded by casparian strips through the endodermis. Additionally, a fraction
of the Cd2+ is sequestered into vacuoles through transporter proteins like OsHMA3 in
rice [32], redirected to the symplast pathway for Cd transportation to the xylem of the
stele [33].

Cd transport from the epidermis to the xylem completes within the root, and the entire
mechanism is mediated by transporter proteins in the plasma membrane, which directs the
ions to specific locations [34].

3.2.3. Radial Transport of Cadmium through the Xylem to Aboveground Parts

Upon Cd entering into roots, the xylem pathway subsequently plays a dominant role
in the long-distance transport of Cd from roots to aboveground (Figure 2), with the main
driving forces being transpiration pull and root pressure [35].

It is known that Cd accumulates mainly in the roots of plants and is partially translo-
cated from roots to aboveground parts. The efficiency of translocation depends on root
vacuole sequestration and xylem loading capacity [30]. The more vacuole sequestration
in the root, the less Cd2+ is transferred to the aboveground part. As documented, the
transporter proteins CAX2, CAX4, and HMA3 play key roles in chelating Cd to the vac-
uole [32,36,37]. In addition, the lignified casparian strips in the endodermis of plant roots
serve as a barrier, impeding the entry of Cd into the shoots. This may account for the higher
accumulation of Cd in the roots in comparison to the shoots [38].

3.2.4. Phloem Mediates Cadmium Redistribution

The phloem is mainly responsible for the redistribution of Cd in the aboveground part
based on studies in Arabidopsis thaliana [39] and rice [40].

Cd absorbed by plant roots is mainly translocated to the aboveground part through the
xylem and then to the rice grain through the phloem [41], suggesting that most of the Cd
needs to be translocated from the xylem to the phloem before it can be re-translocated to the
grain. In recent years, new insights into the process of Cd translocation from roots to stems
have been gained, suggesting that past studies have overlooked the value of long-distance
transport in the phloem [42]. It was found that the phloem is an important pathway for
Cd long-distance transport from root to leaf in eggplant and oilseed rape [35,43], and that
Cd-GS2 complexes contribute to Cd long-distance movement in the phloem [42].

3.3. Cadmium-Related Transporter Proteins in Plants

Cd is one of the non-essential metal ions; the uptake of Cd by plants from soils
must be mediated by transporter proteins for essential cations [44,45]. As shown in
Figure 3 and Table 1, the following protein families are commonly involved in Cd transport
or detoxification.



Cells 2024, 13, 907 6 of 30Cells 2024, 13, 907 6 of 31 
 

 

 
Figure 3. Schematic model of the major proteins/enzymes that are absorbed, transported, seques-
tered, and detoxified in plants. Red circles represent Cd2+ and [number] represents the serial num-
ber. Plants take up Cd and Cd chelates through NRAMP, YSL, ZIP families, and Ca2+ channels; ABC 
and PLAC8 families have been shown to function in effluxing Cd out of the plant; CDT1 and XTH 
can avoid Cd entry by binding Cd or by reducing the Cd-binding site; the DEFL family can bind to 
Cd and convert Cd ions into stable compounds; HMA, CaCA, and ABC families can transport Cd 
and chelates into vacuoles to alleviate the toxic effects; YSL and HMA can transport some Cd to 
xylem and transfer it to the aboveground part. [1–5] are proteins that have been reported to be re-
lated to Cd transport. [1] SpHMA6, SaPCR2, SlCNR8, PcPLAC8-10, OsCd1, OsHIR1, OsAAN4, and 
OsGLR3.4, respectively; [2] SlCNR8, OsZIP1, OsHMA9, HaMTP10, AtPDF2.5, OsCCX2 (OsCDT1), 
OsLCT1; [3] OsNRAMP2, AtNRAMP3, AtNRAMP4; [4] TmMTP1, TmMTP11, AtCAX2; [5] OsZIP7, 
OsCAL1. On the right is the Cd-induced ROS scavenging cycle. Cd enters the cytoplasm and stim-
ulates the synthesis of osmoprotectants, antioxidants, glutathione and phytochelatin, and metal-
lothionein. MT, GSH, and PC can bind to Cd to generate Cd-GS2, Cd-MT, and Cd-PC to alleviate the 
toxicity of Cd caused to the cells. ROS, reactive oxygen species; NRAMP, natural resistance-associ-
ated macrophage protein; YSL, yellow-stripe-1-like; ABC, ATP-binding cassette family; PLAC8, the 
placenta-specific 8-domain-containing family; ZIP, ZRT-IRT-like protein family; zinc-regulated; 
HMA, heavy metal ATPase; CaCA, cation/calcium superfamily; DEFL, defensin-like protein family; 
PCS, phytochelatin synthetase; Gly, Glycine; Glu, Glutamate; Cys, Cysteine; MT, metallothioneins; 
GSH, glutathione; PC, phytochelatin; NA, nicotianamine; DMA,2’-deoxymugineic acid. 

3.3.1. The Natural Resistance-Associated Macrophage Protein Family 
The natural resistance-associated macrophage protein (NRAMP) family has been 

identified in model plants such as Arabidopsis thaliana and rice. As revealed, NRAMP plays 
a key role in metal homeostasis. 

A total of seven NRAMP family members in rice have been functionally character-
ized. NRAMP1, NRAMP2, and NRAMP5 are involved in Cd transport [46]. OsNRAMP2 
is localized to the tonoplast and is primarily expressed in seeds, roots, and leaves [47]. 
Knockout of OsNRAMP2 resulted in a reduction in Cd translocation from vegetative tis-
sues to rice grains; conversely, overexpression lines of OsNRAMP2 exhibited a significant 
increase in grain Cd concentrations [48,49]. OsNRAMP5 is localized in the plasma mem-
brane and expressed in rice roots [50]. OsNRAMP5 serves as the primary transporter pro-
tein for manganese (Mn) and Cd, facilitating their translocation from soil solution to root 

Figure 3. Schematic model of the major proteins/enzymes that are absorbed, transported, sequestered,
and detoxified in plants. Red circles represent Cd2+ and [number] represents the serial number. Plants
take up Cd and Cd chelates through NRAMP, YSL, ZIP families, and Ca2+ channels; ABC and PLAC8
families have been shown to function in effluxing Cd out of the plant; CDT1 and XTH can avoid
Cd entry by binding Cd or by reducing the Cd-binding site; the DEFL family can bind to Cd and
convert Cd ions into stable compounds; HMA, CaCA, and ABC families can transport Cd and
chelates into vacuoles to alleviate the toxic effects; YSL and HMA can transport some Cd to xylem
and transfer it to the aboveground part. Refs. [1–5] are proteins that have been reported to be related
to Cd transport. Ref. [1] SpHMA6, SaPCR2, SlCNR8, PcPLAC8-10, OsCd1, OsHIR1, OsAAN4,
and OsGLR3.4, respectively; Ref. [2] SlCNR8, OsZIP1, OsHMA9, HaMTP10, AtPDF2.5, OsCCX2
(OsCDT1), OsLCT1; Ref. [3] OsNRAMP2, AtNRAMP3, AtNRAMP4; Ref. [4] TmMTP1, TmMTP11,
AtCAX2; Ref. [5] OsZIP7, OsCAL1. On the right is the Cd-induced ROS scavenging cycle. Cd
enters the cytoplasm and stimulates the synthesis of osmoprotectants, antioxidants, glutathione
and phytochelatin, and metallothionein. MT, GSH, and PC can bind to Cd to generate Cd-GS2,
Cd-MT, and Cd-PC to alleviate the toxicity of Cd caused to the cells. ROS, reactive oxygen species;
NRAMP, natural resistance-associated macrophage protein; YSL, yellow-stripe-1-like; ABC, ATP-
binding cassette family; PLAC8, the placenta-specific 8-domain-containing family; ZIP, ZRT-IRT-like
protein family; zinc-regulated; HMA, heavy metal ATPase; CaCA, cation/calcium superfamily;
DEFL, defensin-like protein family; PCS, phytochelatin synthetase; Gly, Glycine; Glu, Glutamate;
Cys, Cysteine; MT, metallothioneins; GSH, glutathione; PC, phytochelatin; NA, nicotianamine;
DMA,2’-deoxymugineic acid.

3.3.1. The Natural Resistance-Associated Macrophage Protein Family

The natural resistance-associated macrophage protein (NRAMP) family has been
identified in model plants such as Arabidopsis thaliana and rice. As revealed, NRAMP plays
a key role in metal homeostasis.

A total of seven NRAMP family members in rice have been functionally characterized.
NRAMP1, NRAMP2, and NRAMP5 are involved in Cd transport [46]. OsNRAMP2 is local-
ized to the tonoplast and is primarily expressed in seeds, roots, and leaves [47]. Knockout
of OsNRAMP2 resulted in a reduction in Cd translocation from vegetative tissues to rice
grains; conversely, overexpression lines of OsNRAMP2 exhibited a significant increase in
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grain Cd concentrations [48,49]. OsNRAMP5 is localized in the plasma membrane and
expressed in rice roots [50]. OsNRAMP5 serves as the primary transporter protein for
manganese (Mn) and Cd, facilitating their translocation from soil solution to root cells.
The knockout lines of OsNRAMP5 have a substantial reduction in Cd in rice, and over-
expressing OsNRAMP5 increases Cd uptake in roots, but Cd levels in shoots remain at
low levels [51,52]. OsNRAMP1 is localized in root and leaf cells and is a close homolog
to OsNRAMP5 (72.78% amino acid sequence similarity) with similar but non-redundant
functions [53–55]. Knockout of OsNRAMP1 or OsNRAMP5 results in reduced levels of Cd
in rice. Moreover, the loss of function of OsNRAMP5 has a greater impact than OsNRAMP1.
Further studies have revealed that double knockout mutants of these two genes have a
significant reduction in Cd [53]. This indicates that gene editing of OsNRAMP1 or/and
OsNRAMP5 can help in the breeding of low-Cd varieties of rice, especially by altering their
expression levels via editing the promoter sequence in the future. It must be pointed out
that the uptake of Mn is also impaired by the knockout of these two genes. As Mn is one of
the essential elements for plant growth and development, how to balance the relationship
between the two elements is an important goal for future investigations.

3.3.2. The Zinc/Iron-Regulated Transporter-like Protein Family

Lots of studies have demonstrated that the zinc–iron-regulated transport proteins
(ZIPs) family plays an important role in metal uptake in roots and distribution in plants.

To date, 15 ZIP family members have been reported in Arabidopsis thaliana [56]. AtIRT1,
the first identified ZIP family member in Arabidopsis thaliana, is mainly expressed in roots
and plays a key role in the uptake of divalent iron from the soil [57,58]. Moreover, AtIRT1
is involved in the transport of divalent cations such as Zn, Mn, cobalt (Co), and Cd [58–61].
Knockout of AtIRT1 results in lower accumulation of the heavy metal Cd [60]. Although
AtIRT2 shares phylogenetic similarity with AtIRT1, it is not directly responsible for Fe
uptake from soils. Instead, AtIRT2 collaborates with AtIRT1 to maintain Fe homeostasis
in plants [62,63]. Overexpression of AtIRT2 in Arabidopsis thaliana enhances the uptake of
metals such as Fe, Cd, and Zn. However, the sensitivity of yeast cells to Cd remains unaf-
fected when overexpressing AtIRT2 [62], possibly due to the indirect synergistic interaction
between AtIRT2 and AtIRT1 in response to Cd stress. AtZIP1 is a vacuole transporter
that transfers Mn [64]. AtZIP2 participates in the uptake of Mn and Zn [64]. Interestingly,
AtZIP1, AtZIP3, and AtZIP4 respond to Zn deficiency [65]. In addition, AtZIP2 and AtZIP4
are also involved in copper (Cu) transport [66]. In short, ZIP family members have versatile
roles in Mn, Zn, and Cd transportation.

There are 16 ZIP family members in rice [67]. OsIRT1 and OsIRT2 are mainly responsi-
ble for the uptake of Zn and Fe in the rice root system [68] and also play a role in Cd uptake
because of the similar physicochemical properties of Zn2+, Fe2+, and Cd2+ [69,70]. OsZIP1,
localized in the endoplasmic reticulum and plasma membrane, is a metal detoxification
transporter. Overexpressing OsZIP1 can reduce the overaccumulation of Zn, Cu, and Cd in
rice and promote rice growth [71,72]. OsZIP3 is preferred for Zn uptake over other divalent
cations such as Cd. OsZIP3 co-regulates Cd transport and uptake together with OsHMA2
and OsLCT1 [73,74]. Both OsZIP5 and OsZIP9 are redundantly involved in Zn and Cd
uptake. OsZIP9 is responsible for the broad regulation of Zn in roots and shoots, and
OsZIP5 fine-tunes Zn uptake to maintain Zn homeostasis. Accordingly, rice with a single
or both genes knocked out exhibits reduced uptake of Zn and Cd, whereas overexpression
of OsZIP5 or OsZIP9 has the opposite effect [75]. OsZIP6 demonstrates transport activity
for Fe2+, Cd2+, and Co2+, exhibiting the highest efficiency under acidic environmental
conditions [76]. OsZIP7 is expressed in parenchyma cells of vascular bundles in rice roots
and nodes and is involved in the transport of Zn and Cd. In line with this, the Cd levels in
the roots and internode of knockout lines of OsZIP7 are higher [77].

Different species have different expression patterns in Cd stress, Arabidopsis thaliana
up-regulates ZIP family genes in the roots, and rice mainly up-regulates aboveground ZIP
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family genes. It has been verified that AtIRT1, OsZIP1, and OsZIP3 play more important
roles in Cd uptake [78].

3.3.3. The Heavy Metal ATPases

Known as P1B-ATPase, heavy metal ATPase (HMAs) plays an important role in the
translocation or detoxification of heavy metals in plants [79], especially in hyperaccumu-
lators. These transporters are reported to exhibit variations in various aspects, including
subcellular localization and metal specificity. When plants are exposed to low concentra-
tions of Cd stress, only a limited number of HMA genes are up-regulated. The majority of
transporters are mobilized only in response to elevated concentrations [80].

The rice genome encodes nine heavy metal ATPases. OsHMA1 and OsHMA4 have
higher expression levels when stressed with Cd. Generally, OsHMA1 and OsHMA4 play
roles in maintaining homeostasis in plants under heavy metal stress [80], but their specific
biological functions remain to be explored. OsHMA2 is localized in the plasma membrane
of the root stele. OsHMA2 is mainly involved in mediating the xylem loading of Cd and
Zn, and the translocation to the shoots [69,81]. OsHMA3 is expressed in the vesicular
membrane of root cells and is responsible for chelating extra-membranous Cd and Zn to
the vacuole to prevent their translocation to the aboveground organs [32,45]. OsHMA9 is
expressed in root and mesophyll tissue and appears to be responsible for Cd, Cu, Zn, and
Pb efflux [82].

Arabidopsis thaliana genome encodes eight HMAs. AtHMA1 is localized in the chloro-
plast periplasm and has been found to transport not only Cu and Zn [83,84], but also Cd
and Ca after heterologous expression in yeast [85]. AtHMA2 and AtHMA4 are localized in
the plasma membrane and mediate the translocation of Cd from roots to shoots [86–89].
AtHMA3 showed similar properties to OsHMA3 and mediated the vacuole sequestration
of Cd in roots. Consistently, overexpression of AtHMA3 results in enhanced tolerance of
Arabidopsis thaliana to Zn, Co, Cd, and Pb [90].

In summary, the heavy metal ATPase family can be divided into two groups based on
the properties of the metal substrates; the first group is the Zn/Co/Cd/Pb subgroup as
exemplified by rice OsHMA1–OsHMA3 and Arabidopsis thaliana AtHMA1–AtHMA4, and
the second is the Cu/Ag subgroup, containing rice OsHMA4–OsHMA9, Arabidopsis thaliana
AtHMA5–AtHMA8 [91]. As the second group of HMA is not related to Cd, we do not
introduce them here.

3.3.4. Others

In addition to the above family of transporter proteins, there are many other trans-
porters also involved in the uptake, transport, and efflux of Cd (Table S1).

In rice, the common ones are Cd Accumulation in Leaves 1 (OsCAL1), Plant Cd Resis-
tance 1 (OsPCR1), Low Cd (OsLCD), Low-affinity Cation Transporter genes 1 (OSLCT1),
Cd transporter genes 1 (OsCd1) and Hypersensitive Induced Reaction Protein 1 (OsHIR1).
OsCAL1 is responsible for chelating Cd and exports it from the cytoplasm to the outside
of the cell, thus reducing Cd concentration in the cells [92,93]. OsPCR1 is involved in the
transport of rice from roots to aerial parts [94]. OsLCD is mainly expressed in roots and
leaves, and its absence reduces the accumulation of Cd in plants [95]. OsLCT1 is localized
at the plasma membrane and exhibits Cd efflux activity in yeast [96,97]. As reported,
knockout lines of OsLCT1 have lower Cd levels in phloem and grains [96,97]. OsCd1
belongs to the Major Facilitator Superfamily (MFS) family of transporter proteins. OsCd1
is localized in the plasma membrane of roots. OsCd1 is associated with Cd uptake in roots
and contributes to Cd accumulation in rice grains [93,98]. Heterogeneous overexpressing
OsHIR1 significantly reduces Cd and arsenic (As) accumulation, thus increasing plant
tolerance to Cd and As [99].
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Table 1. Gene family related to Cd uptake, transport and efflux.

Gene Family Plant Gene Expression Site Function Reference

The natural
resistance-associated

macrophage protein family
(NRAMP)

Oryza sativa L.
OsNRAMP1 Root cells and leaf

mesophyll cells Cd uptake and transport [53–55]

OsNRAMP2
Seeds, roots, leaf
sheaths and leaf

blades

Cd efflux, translocation and
distribution [47–49]

OsNRAMP5 Roots Cd uptake [28,50,51]

Arabidopsis thaliana

AtNRAMP1 Roots and aerial parts Cd entry and transport [100,101]
AtNRAMP3 Roots and aerial parts Cd transport [100,102,103]
AtNRAMP4 Roots and aerial parts Cd transport [103,104]
AtNRAMP6 Seeds and shoots Cd transport and distribution [105]

Nicotiana tabacum L.

NtNRAMP1 Roots Cd uptake and accumulation [106]

NtNRAMP3a Leaves Cd transport, tolerance and
accumulation [107]

NtNRAMP3b Leaves and roots Cd uptake, transport and
maintain homeostasis [108]

NtNRAMP5 Roots Cd transport [109]

NtNRAMP6a Roots, stems, leaves
and flowers Cd transport [110]

NtNRAMP6b Roots, stems, leaves
and flowers Cd transport [110]

The natural
resistance-associated

macrophage protein family
(NRAMP)

Sedum alfredii Hance
SaNRAMP1 Shoots Cd transport and

accumulation [111]

SaNRAMP3 vascular tissues Cd transport [112]

SaNRAMP6 Leaves and roots Cd transport and
accumulation [113]

Sedum plumbizincicola SpNRAMP5 - Cd transport [114]
Populus × canescens PcNRAMP1 Roots Cd uptake and transport [115]

Morus alba MaNRAMP1 Roots Cd transport [116]

Populus trichocarpa

PtNRAMP1 Leaves and roots Cd transport [117]
PtNRAMP2 Leaves and roots Cd transport [117]
PtNRAMP4 Leaves and roots Cd transport [117]
PtNRAMP9 Leaves and roots Cd transport [117]

PtNRAMP10 Leaves and roots Cd transport [117]
PtNRAMP11 Leaves and roots Cd transport [117]

Malus hupehensis MhNRAMP1 Roots Cd uptake and accumulation [118]
Malus baccata (L.)

Borkh MbNRAMP1 Roots Cd transport [119]

Noccaea caerulescens
(Thlaspi caerulescens)

NcNRAMP1 Roots Cd transport [120]

TcNRAMP3 Roots Cd accumulation and
homeostasis [121,122]

TcNRAMP4 Roots Cd transport [122]

The natural
resistance-associated

macrophage protein family
(NRAMP)

Brassica rapa L.
Chinensis. BcNRAMP1 Whole plant body Cd uptake and accumulation [123]

Brassica napus BnNRAMP1b Seedlings and
vegetative tissue Cd transport [124]

Triticum polonicum L. TpNRAMP5 Roots and basal
stems Cd transport [125]

Hordeum vulgare HvNRAMP5 Roots Cd uptake [126]

Spirodela polyrhiza SpNRAMP1
Roots, fronds and

joint between mother
and daughter fronds

Cd uptake and accumulation [127,128]

Vigna radiata VrNRAMP5 Roots Cd uptake [129]

The zinc/iron-regulated
transporter-like protein

family
(ZIP)

Oryza sativa L.

OsIRT1 Roots Cd uptake and transport [68,70,130]
OsIRT2 Roots Cd uptake [130,131]
OsZIP1 Roots Cd efflux [71,73]
OsZIP3 Nodes Cd transport and distribution [73,74,132]
OsZIP5 Roots Cd uptake [75]
OsZIP6 Shoots and roots Cd transport [76]
OsZIP7 Roots and nodes Cd transport [77]
OsZIP9 Shoots and roots Cd uptake [75]

Arabidopsis thaliana AtIRT1 Roots Cd uptake and transport [58–60,133]
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Table 1. Cont.

Gene Family Plant Gene Expression Site Function Reference

The zinc/iron-regulated
transporter-like protein

family
(ZIP)

Nicotiana tabacum L.
NtIRT1 Roots Cd uptake and accumulation [134,135]
NtZIP1

(NtZIP5B) Roots Cd uptake [136,137]

NtZIP4B Leaves and roots Cd transport [137]
Arabidopsis halleri AhZIP6 Leaves and roots Cd transport, tolerance [138]

Noccaea caerulescens
(Thlaspi caerulescens)

TcZNT1 Roots Cd uptake [139]
TcZNT5 Roots Cd transport [140]
TcZNT6 Shoots and roots Cd transport [140]

Sedum alfredii Hance SaZIP4h Shoots and roots Cd transport [141]

Morus alba
MaIRT1 Leaves Cd transport [116]
MaZIP4 Roots Cd transport [116]

Thlaspi japonicum TjZNT1 - Cd transport [142]
TjZNT2 - Cd transport [142,143]

Brassica chinensis L.
BcIRT1 - Cd transport [144]
BcZIP2 - Cd transport [144]

Avicennia marina
AmZIP1 Roots Cd transport [145]

AmIRT1 Leaves, stems, and
roots Cd transport [145]

Triticum polonicum L. TpIRT1A/B Roots, leaves, and
reproductive organs Cd uptake and transport [146]

The
heavy metal

ATPases
(The

P1B-type ATPases family)

Oryza sativa L. OsHMA9 Roots and mesophyll
tissues Cd efflux [82]

Arabidopsis thaliana AtHMA2
Vascular tissues of
roots, stems, and

leaves
Cd transport and homeostasis [86,87]

Arabidopsis halleri AhHMA4 Shoots and roots Cd transport [147]

Sedum alfredii Hance SaHMA3h Shoots and roots Cd transport and
sequestration within vacuoles [148]

SaHMA3n Shoots and roots Cd transport and
sequestration within vacuoles [148]

Sedum plumbizincicola SpHMA6 Leaves and roots Cd uptake, translocation and
distribution [149]

Noccaea caerulescens
(Thlaspi caerulescens) TcHMA4 Shoots and roots Cd transport [150]

Morus alba MaHMA3 Roots Cd transport [116]

Capsicum sp. CaHMA1 Pepper fruits Cd transport and
accumulation [151]

Glycine Max (L.)
Merr. GmHMA3w Roots

Cd transport and
sequestration within

endoplasmic reticulum
[152]

Triticum aestivum L. TaHMA2 - Cd translocation and
transport [153]

Avicennia marina AmHMA2 Roots, leaves, stems,
buds, and flowers Cd transport [145]

The yellow-stripe-like
transporter

(YSL)

Solanum nigrum SnYSL3 Roots and stems Cd-NA compound transport [154]
Brassica juncea BjYSL7 Stems Cd transport and tolerance [155]

Zea mays L. ZmYS1 - Cd-DMA compound
transport [156]

Vaccinium ssp. VcYSL6 - Cd-NA compound transport [157]

The ATP-binding cassette
transporter family

(ABC)

Oryza sativa L.

OsABCG36
(OsPDR9) Roots and shoots efflux of Cd and Cd chelates [158]

OsABCG43
(OsPDR5) Roots and shoots Cd transport and tolerance [159]

OsPDR20
(OsABCG53) Whole plant body efflux of Cd and Cd chelates [160]

Arabidopsis thaliana
AtPDR8

(AtABCG36) Roots Cd efflux [161]

AtATM3
(AtABCB25) Roots Cd chelates transport [162,163]

Populus tomentosa PtoABCG36 Leaves, stems and
roots Cd efflux [164]

Sedum plumbizincicola SpABCB28 - Cd transport into organelles [114]
Rehmannia glutinosa RgABCC1 Roots Cd transport [165]
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Table 1. Cont.

Gene Family Plant Gene Expression Site Function Reference

The placenta-specific
8-domain -containing family

(PLAC8)

Oryza sativa L.

OsPCR1
(OsFWL5)

Grains, roots, stems
and leaves

Cd accumulation and
transport [166]

OsPCR3
(OsFWL2)

Grains, roots, stems
and leaves

Cd accumulation and
transport [166,167]

OsFWL3 - Cd tolerance [168]

OsFWL4 - Cd transport and
translocation [168]

Populus euphratica PePCR2 Roots Cd efflux [169]
PePCR10 - Cd efflux [170]

Sedum alfredii Hance SaPCR2 Roots Cd uptake and accumulation [171]
Brassica napus BnPCR10.1 Whole plant body Cd transport [172]

Avicennia marina AmPCR2
Stems,

pneumatophores and
roots

Cd efflux [145]

Salix linearistipularis SlPCR6 Roots Cd transport [173]

SlCNR8 Roots Cd uptake, efflux and
accumulation [174]

Triticum aestivum TaCNR2 Leaves and
internodes Cd transport and tolerance [175]

Triticum urartu TuCNR10 Shoots and roots Cd transport [176]
Populus × canescens PcPLAC8-10 Roots Cd uptake [177]

The metal tolerance protein
family
(MTPs)

Oryza sativa L. OsMTP1
(OZT1)

Roots, seeds and
leaves Cd transport [178–180]

Helianthus annuus L. HaMTP10 - Cd efflux [181]

The defensin-like protein
family
(DEFL)

Oryza sativa L. OsCAL1 Roots Cd chelation and transport [92,93]
Arabidopsis thaliana AtPDF2.5 Roots Cd chelation and efflux [182]

The cation/calcium
superfamily (CaCA) Oryza sativa L.

OsCAX1a Roots Cd transport and tolerance [183]
OsCAX1c Roots and leaves Cd transport and tolerance [183]
OsCAX4 Roots and leaves Cd transport and tolerance [183]

The cysteine-rich peptide
family

(CYSTM)
Oryza sativa L. OsCCX2

(OsCDT1) Nodes Cd efflux [184–186]

The low-affinity cation
transporter family

(LCT)

Oryza sativa L. OsLCT1 Leaves and nodes Cd efflux and transport [97,187]

OsLCT2 Roots Cd transport [188]
The major facilitator

superfamily
(MFS)

Oryza sativa L. OsCd1 Roots Cd uptake [98]

The Proliferation, Ion and
Death superfamily (PID) Oryza sativa L. OsHIR1 - Cd uptake and tolerance [99]

- Oryza sativa L. OsAAN4 - Cd uptake [189]
- Oryza sativa L. OsGLR3.4 - Cd uptake [189]
- Sorghum bicolor L. SbEXPA11 - Cd uptake and transport [190]

“-” means unspecified.NA, nicotianamine; DMA,2’-deoxymugineic acid.

3.4. Cadmium-Related Transcription Factors in Plants

Apart from transporter proteins, transcription factors (TFs) also play crucial roles
in mediating plants’ responses to Cd stress. It has been reported that TF families such
as WRKY, MYB, and NAC play direct or indirect roles in regulating Cd tolerance in
plants [191–193]. This regulation is achieved through the control of Cd-related genes,
activation of specific signaling pathways, or interaction with other proteins.

The WRKY family is one of the largest families of TF in plants. A total of seven WRKYs
(AtWRKY12, AtWRKY13, AtWRKY18, AtWRKY33, AtWRKY40, AtWRKY45, and AtWRKY60)
related to Cd tolerance are currently reported in Arabidopsis thaliana [133,191,194–197]. In
particular, AtWRKY45 facilitated the synthesis of phytochelatins by activating AtPCS1 and
AtPCS2, thereby enhancing Cd tolerance in A. thaliana [191]. Moreover, there are many
other families of transcription factors (Table S2) that play important roles in the alleviation
of Cd stress. AtMYB49 regulates Cd accumulation through activation of the iron transport
protein IRT1 and the abscisic acid (ABA) signaling pathway [192]. AtbHLH38/AtbHLH39
increased the expression of NAS1 and NAS2 and reduced Cd accumulation. Collectively,
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these TFs alter plant sensitivity and tolerance to Cd in a manner that regulates downstream
genes or modulates signaling pathways.

TFs are widely involved in plant growth and development. However, the large number
of TF and the complex regulatory networks have led to the fact that fewer Cd-related TFs
have been identified. Deciphering the functions and regulatory networks of various types
of Cd-related TFs is an important goal, which can provide the basis for solving Cd pollution
at the molecular level.

4. Toxicity of Cadmium and Detoxification Mechanism of Cadmium in Plants
4.1. Toxicity of Cadmium to Plants

Excessive Cd usually negatively affects plant growth, development, and prolifera-
tive metabolism [198], such as plant biomass accumulation, germination rate, stomatal
conductance and transpiration rate (Figure 4). Potential hazards include inhibition of
photosynthetic pigment formation, reduction in photosynthetic efficiency, disruption of
cellular homeostasis, chromosomal aberrations, damage to mitochondria, disruption of
antioxidant mechanisms and metabolic pathways, and disruption of ATP synthesis [14,199].
Of note, the proton gradient generated by the electron transport chain and photochemical
reactions is the main source of ATP synthase [200]. Cd stress inhibits electron transfer
during the photoresponse by acting on different sites of the PSI and PSII electron transport
chain (oxygen-evolving complex on the electron donor side of PSII and sites such as QA
and QB on the electron acceptor side of PSII) [201,202], thereby affecting the synthesis of
plant ATPase and other physiological processes. In addition, Cd induces the production
of reactive oxygen species (ROS), leading to protein oxidation, DNA damage, malondi-
aldehyde (MDA) accumulation, and even damage to cell membranes [203]. Apart from
polluting the environment and poisoning plants and animals, Cd has been reported to act
as a “hormone”, i.e., at low concentrations, it activates plant defense mechanisms without
causing severe oxidative stress [29,204,205]. Currently, there are few studies in this area,
which need to be verified in different environments and plants.
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The toxic effects of Cd are manifested in physiological and ecological aspects, but the
degree of its toxic effects is related to Cd concentration and treatment time, plant species,
and cultivars [206]. For instance, a low Cd concentration of 100 nM affected the growth
of sunflower [207], while Sesuvium portulacastrum showed significant cellular damage
only after 300 µM CdCl2 treatment [208]. Furthermore, certain plants are classified as Cd
hyperaccumulators for their ability to accumulate Cd in their aerial tissues in excess of
100 mg Kg−1, showing high tolerance and uptake capacity [209,210].

Hence, when exploring the mechanism of plants to cope with Cd toxicity, researchers
use different concentrations of Cd in hydroponic or soil culture treatments to screen and
explore Cd high-tolerant plant species based on physiological data such as phenotype,
plant height, root parameters, and photosynthetic efficiency, and changes in antioxidant
enzyme activities.

4.2. Mechanisms of Plant Response to Cadmium Stress

To cope with the stress of the heavy metal Cd, plants have evolved elegant defense
mechanisms (Figure 4). Firstly, when confronting Cd in soils, the plant root system secretes
substances such as malic acid and citric acid, which bind to Cd2+ to prevent their uptake by
the root system [211]. Secondly, after entering into the roots, Cd binds to polygalacturonic
acid and pectin in the cell wall [212,213], thus reducing the amount of Cd in the cytosol.
On the other hand, the Casparian strips on the endodermis of the root also prevent Cd
from entering the cell [214]. Thirdly, chelation and vacuole isolation of Cd is also one of
the important detoxification pathways. On the one hand, free Cd2+ binds to glutathione
(GSH), phytochelatins (PCs), and metallothioneins (MTs) to form non-toxic complexes such
as Cd-GS2, PC-Cd, MT-Cd, and so on [29]. On the other hand, plants isolate Cd2+ and
complexes by transporting them from the cytoplasm to the vacuole through transporter
proteins, thereby reducing the toxic effects of Cd on plants and enhancing their tolerance to
Cd. Finally, plants keep more Cd in their roots by decreasing the long-distance transport of
Cd in the xylem from root to shoot, thus mitigating the negative effects of Cd on leaves or
productive organs.

When Cd crosses the barrier of plant cells, it will trigger a burst of ROS. Then the
activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase, (POD)
and increased production of non-enzymatic antioxidants tocopherol and flavonoids follow
(Figure 3). They are widely present in various organelles and act to eliminate the excessive
accumulation of O2-, H2O2 and malonaldehyde to maintain intracellular environmental
homeostasis. In addition, sugars, amino acids, and polyols, as an osmotic pressure regulator
in plants, can maintain intracellular balance and improve plant tolerance when plants
are subjected to abiotic stresses [215,216], and they can also inhibit the production of
oxyradicals, scavenge excess ROS, and mitigate oxidative damage in plants [217]. It is
noteworthy that salicylic acid (SA), gibberellin (GA), and ABA have been demonstrated to
play pivotal roles in mitigating Cd-induced oxidative stress [29,192,218,219]. While other
hormones appear to exert a regulatory influence, their specific mechanisms remain to be
thoroughly explored.

According to previous studies, the above-mentioned approaches can be classified into
two different strategies: avoidance and tolerance of Cd. The former is to prevent Cd from
entering the cells of plants to protect plants from Cd stress, and the latter is dependent on
the plant’s own tolerance and mitigation mechanisms to alleviate the negative effects of
Cd. The two strategies are complementary to each other and together constitute the plant’s
defense mechanism against Cd toxicity.

5. Effect of Exogenous Substances on Phytoremediation of Soil Cadmium Pollution

It is obvious that high levels of heavy metals negatively affect plant growth and devel-
opment. Under the strong selective pressures exerted by heavy metal in soils, many plants
have evolved sophisticated biological mechanisms for resisting, tolerating, or thriving
in metal-bearing soils, and are collectively referred to as heavy-metal plants [220]. Of
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these, those that can only survive in contaminated areas are known as obligate metallo-
phytes [221].

5.1. Status of Phytoremediation and Its Application

Phytoremediation is a remediation technique via plants or soil microorganisms to
reduce pollutants in the surrounding environment [222], which include heavy metals,
radionuclides, or organic pollutants such as polynuclear aromatic hydrocarbons (PAHs),
polychlorinated biphenyls (PCBs) and pesticides in soils or air [223]. Compared with
traditional physical and chemical methods, phytoremediation is green, low-cost, and highly
effective [224].

Currently, the most used plants for phytoremediation of Cd-excessive soils are hyper-
enriched plants, which accumulate more than 0.01 percent of Cd in their aboveground
dry weight [225]. Although more than 450 plant species have been identified as metal
hyper-enriched plants, only a few plant species are recognized as Cd hyper-enriched, such
as Solanum nigrum, Phytolacca acinosa, and Sedum plumbizincicola [226]. More interestingly,
these Cd-hyper-enriched plants were also Zn-hyper-enriched plants and vice versa [227].
The Cd extraction capacity of plants was different in soils, with the Cd bioconcentration
factor (BCF) of plant leaves being larger in acidic soils and smaller in alkaline soils [226].

In addition, woody plants are receiving increased attention as an alternative phy-
toremediation technique. Recently, it has been found that fast-growing woody plants can
accumulate high levels of heavy metals. For instance, a one-year-old willow can extract
17% of the Cd in soils [228], and a four-year-old Averrhoa carambola can remove 0.3% to
51.8% of the total Cd from soils at the surface of 20 cm [229]. This suggests that woody
plants have greater potential for absorbing and accumulating Cd.

However, plants are prone to toxicity during heavy metal uptake and growth is
affected. This greatly limits the efficiency of phytoremediation. With the deterioration of
the environment, staple food crops such as rice and maize are also at risk of exceeding the
heavy metal content standards. Therefore, enhancing plant tolerance and improving the
efficiency of phytoremediation through the addition of different exogenous substances, or
converting soil Cd into a non-absorbable form is a valuable approach in agriculture.

5.2. Effects of Adding Exogenous Substances to Plants

It has been verified that exogenous supplementation of beneficial elements, plant
growth regulators, or nanomaterials can alleviate the Cd stress, thus approaching normal
levels of plant height, leaf photosynthesis, and respiration rate [93,230–232].

Ca is essential for plant growth and development [233]. When used as an exogenous
substance, Ca can reduce Cd-induced physiological and biochemical disorders [234], and
also down-regulate Cd accumulation by decreasing the negative charge of the cell mem-
brane surface [235] in Salix matsudana [236] and Fagopyrum esculentum [237]. As one of
the beneficial elements, Se plays an important role in improving plant stress tolerance.
Low concentrations of Se can enhance antioxidant capacity and membrane stability and
reduce the uptake of heavy metals and the accumulation of ROS [238]. Se has been reported
to alleviate Cd stress in rice, oilseed rape, and sunflower by counteracting Cd-induced
nutritional changes and reducing oxidative stress [239–241]. It is worth noting that Se is
like a “rapier” in plants, with low concentrations producing beneficial effects and high
concentrations causing stress instead [230,238].

In short, when plants are subjected to Cd stress, if the exogenous elements are metallic
elements such as iron (Fe), Ca, and potassium (K), the mitigation mechanism may be
because they regulate the biochemical and physiological aspects of the plants, mitigate
toxicity, or compete with Cd to the transporter, thereby reducing the amount absorbed by
the plant. If non-metallic elements such as boron (B), Se, and Si, are added as exogenous
elements, the mitigation mechanism may be because these elements act as nutrients for
plants and enhance the tolerance of plants, or they may form complexes with Cd and
reduce the uptake of the plants.
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Polyamines, along with hormones like 1-naphthaleneacetic acid (NAA) and ABA,
serve as plant growth regulators for the modulation of plant development and the augmen-
tation of plant tolerance to Cd [232,242,243]. Wherein, supplementation of exogenous NAA
increases the content of Arabidopsis hemicellulose 1, which immobilizes more Cd in the
roots [243]. Exogenous application of polyamines, on the other hand, mitigates the adverse
effects of Cd contamination on wheat by activating antioxidant enzyme activities [242].
In addition, with the development of technology, nanomaterials and biochar materials
have also become ideal candidates for solving Cd pollution. Biogenic hydroxyapatite
nanoparticles effectively mitigate the toxicity of Cd to mung beans by adsorbing Cd2+ from
the environment and forming a protective layer on plant roots [231]. Biochar materials
reduce Cd availability and lignocellulosic biochar and herbaceous biochar have a broader
range of remediation applications than manure biochar [244].

Of note, in addition to the exogenous substances mentioned above, the addition of
melatonin, citric acid, and amino acids can also lead to higher Cd tolerance in
plants [245–247]. Therefore, exploring more beneficial exogenous substances, forms, and pro-
portions of additions are of practical significance to improve the efficiency of phytoremediation.

6. Conclusions and Perspectives

Cd initiates signal transduction cascades in plants. The exposure to Cd-induced
stress in Arabidopsis reduced endogenous auxin content. Concurrently, exogenous sup-
plementation with NAA enhanced the fixation of Cd to the cell wall through an elevation
in hemicellulose 1 levels in A. thaliana [243]. ABA mitigates oxidative stress following
exposure to Cd through the ABI5-MYB49-bHLH cascade, activation of the glutathione
pathway, and the formation of an apoplastic barrier [232,248]. In contrast to ABA, ethylene
amplifies the deleterious effects of Cd on plants in two distinct manners: by augmenting
the generation of reactive oxygen species via RBOHC or by impeding the establishment of
the apoplastic barrier through unidentified pathways [232,248]. Currently, the influences of
auxin, ABA, ethylene, and other hormones on Cd tolerance in plants have been initially
revealed [232], yet their molecular mechanisms and regulatory networks remain elusive.
Given that distinct hormones may elicit contrasting responses under Cd-induced stress,
how do they intricately interplay? How do hormone signals crosstalk when encountering
ROS or other signals? In addition to the aforementioned circumstances, plant roots may
experience heterogeneous Cd stress, characterized by intense pressure on one side and
minimal or absent pressure on the other. At this point, plants remodel the root structure and
avoid the side with the high level of Cd stress through the RBOH-ROS-growth hormone
signaling cascade [249]. The exploration of whether other signaling cascades exist in this
process and how they function necessitates further investigation.

A shows the screening of Cd-hyperaccumulator plants and fast-growing woody plants
that can accumulate large amounts of Cd. B shows the application of different exogenous
substances to plants or genetic modification to make plants have higher Cd tolerance.

Throughout plant evolution, certain species have developed robust resistance mech-
anisms as a result of prolonged adaptation to high Cd pollution. Therefore, these highly
tolerant plants can be regarded as potential candidates for mitigating excessive Cd pollution
in the environment. At present, Cd-hyperaccumulator plants, predominantly wild herbs,
are frequently employed in phytoremediation. However, due to their limited aboveground
biomass, the overall Cd absorption capacity remains relatively modest. Conversely, fast-
growing woody plants, such as poplars and willows, boast larger size, greater biomass, and
a swifter growth rate, thereby enabling them to absorb more Cd (Figure 5A). Phytoremedia-
tion technology has a broad application prospect in Cd-contaminated soil remediation, but
many aspects have not yet been clarified, and for Cd-hyperaccumulator plants, it is worth
exploring whether they can improve their growth rate, biomass and accumulated heavy
metal content, and stress resistance. For fast-growing woody plants, it is necessary to con-
tinue to explore their absorption mechanisms at the molecular level and apply transgenic
technology or gene editing to improve the uptake of Cd (Figure 5B).
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To optimize the efficiency of Cd pollution phytoremediation, we propose the supplementa-
tion of plant regulators (exogenous hormones or polyamines) and beneficial elements to plant
nutrition (Figure 5B). Studies have reported that employing this approach confers beneficial
effects on plant metabolic pathways and enhances stress resilience [232,236,240,242]. At present,
there are fewer studies on the compound addition of multiple substances, and it is worth-
while to explore in depth under what ratio different elements or hormones are added to
produce better results. In addition, the application of nanomaterials, biochar materials, and
microorganisms can effectively reduce the effectiveness of Cd in the soil, so the combina-
tion of nanomaterials/biochar, clumping rhizobial fungi, plant growth-promoting bacteria
with Ca, K, B, Si may be an effective way to reduce the uptake of Cd by plants [250]. In
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conclusion, the discovery of environmentally friendly, cost-effective exogenous substances
holds significance for crop and vegetable production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13110907/s1, Table S1: Gene family related to Cd Chelation,
accumulation, and detoxification. Table S2: Transcription factors (TFs) families related to Cd uptake,
transport, and tolerance. Refs. [251–335] are cited within.
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