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Abstract: Histones are keys to many epigenetic events and their complexes have therapeutic and
diagnostic importance. The determination of the structures of histone complexes is fundamental
in the design of new drugs. Computational molecular docking is widely used for the prediction
of target–ligand complexes. Large, linear peptides like the tail regions of histones are challenging
ligands for docking due to their large conformational flexibility, extensive hydration, and weak
interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods
often fail to produce complex structures of such peptide ligands at a level appropriate for drug design.
To address this challenge, and improve the structural quality of the docked complexes, post-docking
refinement has been applied using various molecular dynamics (MD) approaches. However, a final
consensus has not been reached on the desired MD refinement protocol. In this present study, MD
refinement strategies were systematically explored on a set of problematic complexes of histone
peptide ligands with relatively large errors in their docked geometries. Six protocols were compared
that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface
regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol
achieved a median of 32% improvement over the docked structures in terms of the change in root
mean squared deviations from the experimental references. The influence of structural factors and
explicit hydration on the performance of post-docking MD refinements are also discussed to help
with their implementation in future methods and applications.
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1. Introduction

Fast molecular docking methods are widely used tools of drug design and molecular
engineering [1]. The docking procedure aims to search the target–ligand conformational
space at a reasonable computational cost to predict the most probable binding mode
(position, orientation, and conformation) of ligands in the binding pocket of a target [2,3].
While docking is undoubtedly a leading technique, it still faces persistent challenges [4–9],
especially when it comes to large, flexible peptide ligands. However, peptides mediate
up to 40% of naturally occurring protein–protein interactions and play a central role
in various cellular processes, including signal transduction, transcriptional regulation,
immune response, and oncology [10–14]. Structural models of peptide–protein complexes
have been used to design inhibitory peptides and peptidomimetics that modulate protein–
protein interactions involved in various disease pathways [14–20]. In addition to their high
specificity and relatively low toxicity [21–24], peptides have been able to successfully target
protein complexes such as transcription factors, which were considered undruggable by
small molecules due to their huge structures and stable state [25,26]. Thus, a solution to the
peptide docking problem has the potential to foster a remarkably large number of drug
development projects.
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The problem of peptide docking originates from three main roots. Firstly, peptide-
mediated interactions are often transient and their strength is typically weaker than that of
protein–protein interactions since peptides bind to large, mostly shallow binding pockets
having high structural flexibility before complexation [11,27]. Secondly, peptides have
relatively large sizes and high conformational flexibility that require global search. Thirdly,
peptides have many hydrophilic regions, and, therefore, they are extensively hydrated
which further complicates the docking process [28–31]. Notably, the elucidation of the role
of hydration and water networks is a general problem in drug design that is not restricted
to peptide ligands [32–40]. However, incorporating explicit water molecules in molecular
docking is rather challenging [41–44]. Large complexes such as adenosine A2A [45] and
histone proteins [46] have been shown to be challenging due to their extensive water-
mediated H-bond network with their ligands. However, only a few refinement methods
are designed to incorporate experimental [47] or predicted [41] water molecules in their
protocol to assist the formation of accurate mediated interactions during simulations.

Unfortunately, the above-mentioned problems of peptide docking seem to persist even
in the cases of the latest methodologies based on artificial intelligence. The recent release of
DeepMind’s AlphaFold2 (version 2.1.0) (AF2) [48,49] and AlphaFold-Multimer (version
2.1.0) (AFM2) [50,51] has brought the accuracy of the computational modeling of proteins
to another level. Several studies have shown that both AFM2 and the input-manipulated
versions of AF2 are able to predict protein–peptide complexes with high accuracy [51–54].
However, they have several major limitations including their (i) protein-only predictions,
excluding cofactors, ions, or any post-translational modifications, (ii) inconsistency in the
prediction quality of secondary structures and other local conformations due to their over-
and under-representations during the training process [52,53], (iii) complete neglect of
the effect of critical water molecules at the binding interface, (iv) decreased prediction
accuracy for protein side-chains [54], and (v) inadequate modeling of conformational
flexibility [49,55] which is crucial for modeling ligand binding with induced fit. A recent
study also showed that despite the excellent structural agreement of their predicted ligand
bound conformation to the experimental one, deep learning-based docking methods often
produce physically implausible structures [56] and can be outperformed by standard,
physics-based docking methods.

Thus, physics-based refinement, like molecular dynamics (MD) simulations, can help
to fix the problems of structures generated by deep learning or other knowledge-based
methods [57–59]. There have been several attempts to improve the quality of AF2 and
AFM2 models using MD simulations [57,58] or applying their own recycling process when
the models are used as custom template inputs [60]. The recycling route of AF2 passes the
partially completed proto-model through the deep neural networks repeatedly (four times
by default) [49]. Although recycling significantly improved the model quality in most
cases, unrealistic atomic positions were observed [60] in the recycled models due to their
unrelaxed nature. Therefore, they also suggested the combination of MD protocols and the
AF2 recycling process to improve models for further applications, such as drug discovery.

Similarly, post-docking refinement steps have been also introduced in many docking
protocols (Table S1). A refinement step prior to ranking could introduce structural flexibility
and improve the energetics of the interface for proper scoring [61,62]. Refinements can
range from short energy minimizations [63,64] removing steric clashes to more sophisticated
methods that allow binding site flexibility upon ligand binding using MD [41,47,65–72]
or Monte Carlo simulations [73,74]. Refinement protocols or standalone tools often in-
clude energy minimization and much longer MD simulations in nanoseconds accompanied
by various optimized parameters of the simulation [41,47,68,70,71]. The docking scores
are often used for ranking the refined structures accompanied by structural clustering
simulation [41,47,63,64,68,70,71,73–75]. As MD-based protocols can effectively incorpo-
rate the effects of explicit water molecules and the flexibility of both protein target and
ligand [75,76], several studies have reported the use of MD simulations for improvement of
the docked poses of various ligands [41,69,70,77–79] including peptides [47,65,67–71,75,80].
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While MD has proved useful in the above-mentioned structural refinements, an
ultimate protocol has not been published that may be appropriate for any peptide ligands.
The large variability of peptide ligands necessitates the systematic investigation of various
MD parameters like simulation length, temperature, water model, restraints, clustering, etc.
In this study, we focused on histone H3 peptides in complexes with their reader proteins
that have crucial therapeutic, as well as diagnostic, importance in various cancers and
other diseases [81–93]. At the same time, histones are particularly challenging ligands
for molecular docking as they often interact with shallow binding pockets on the reader
proteins with weak interactions measured in micromolar binding constants [94]. Moreover,
their large conformational flexibility [24,95–99] and extensive hydration in such shallow
binding pockets further complicate the prediction of accurate binding modes [24,29,99,100].

2. Results and Discussion
2.1. Systems and MD Protocols

In a previous study [94], a set of ten histone H3 peptides (Table 1) in complex
with their reader proteins were used to measure the performance of eleven fast dock-
ing methods [63,64,66,73,75,94,101–107]. The comparison of the calculated (docked) ligand
structures with the respective experimental (reference) ligand structures resulted in large
root mean squared deviations (RMSD of all heavy atoms, see Section 3) of an average of
9 Å (Table S2) showing that the precision of fast docking methods is moderate for the
reproduction of the histone complexes.

Table 1. The target–histone H3 peptide systems.

PDB ID
(Apo)

Res
(Å)

PDB ID
(Holo)

Res
(Å) Target Histone H3 Peptide Sequence 1 Kd

(µM)
RMSDstart

(Å)

1xwh NMR 2 2ke1 NMR 2 AIRE PHD finger ARTKQTARKS 6.5 8.56
2fui NMR 2 2fuu NMR 2 BPTF PHD finger ARTKQTARKSTGGKA 2.7 17.75
2gnq 1.8 2co0 2.25 WDR5 ARTKQTARKSTGGKA 3.3 8.21
2mny NMR 2 2mnz NMR 2 KDM5B PHD1 finger ARTKQTARKS 6.4 18.33
2pv0 3.3 2pvc 3.69 DNMT3L ARTKQTA 2.1 9.51
3o33 2.0 3o37 2.0 TRIM24 PHD-Bromo complex ARTKQTARKS 8.6 27.18
3qln 1.90 3qlc 2.5 ARTX ADD ARTKQTARKSTGGKA 3.7 13.28
3sox 2.65 3sou 1.8 UHRF1 PHD finger ARTKQTARK 2.1 10.32
4ljn 3.0 4lk9 1.6 MOZ double PHD finger ARTKQTARKSTGGKAPRKQLA - 15.02
4qf2 1.7 4q6f 1.91 BAZ2A PHD Zinc finger ARTKQ 2.51 9.99

1 Experimentally determined portions of the amino acid sequences of the histone tails are underlined. 2 For
complex structures determined by NMR, peptide structures from their first model were used as reference structures
during RMSD calculations.

The investigated complexes are particularly challenging, as mostly the N-terminal
head of ca. five amino acids of the histone H3 ligand has a well-defined binding geometry,
while the C-terminal region shows a high structural variability (Figure 1a). This feature can
be exemplified by the high mean RMSD of 11 Å of the histone H3 ligand in the experimental
solution structures of System 2fui calculated in comparison with the representative structure
of the PDB entry. Thus, the nuclear magnetic resonance (NMR) spectroscopic measurements
of System 2fui show the flexibility (uncertainty) of ligand conformation, especially at its
C-terminal region with a high mobility in the bulk. This uncertainty can be attributed
to the relatively weak interactions between the C-terminal region of histone H3 (ligand,
Figure 1b) and the BPTF PHD finger (target, Figure 1b) and the correspondingly moderate
(micromolar) binding affinity value (Table 1). For the same System 2fui, a moderate mean
RMSD of 1 Å can be calculated for the tightly bound N-terminal region of the histone H3
ligand (Figure 1a). Accordingly, eleven fast docking methods in the previous study [94]
also showed (Table S2) a better performance of an average RMSD of 7 Å calculated for the
first five N-terminal amino acids if compared with the RMSD (the above-mentioned 9 Å)
calculated for the entire ligand including the C-terminus.
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sticks representation while the remaining models are shown in cartoon representation. (b) The mean 
(columns) and standard deviations (error bars) of Einter values of all 20 NMR models calculated for 
the peptide respective residues upon a brief energy minimization. 

Figure 1. Structural and per-residue energetic analysis of histone H3 peptide bound to reader
protein. (a) NMR solution structure of the BPTF PHD finger domain (grey surface, PDB ID 2fui) in
complex with a histone H3 peptide in which the peptide structure in the first model is shown in
sticks representation while the remaining models are shown in cartoon representation. (b) The mean
(columns) and standard deviations (error bars) of Einter values of all 20 NMR models calculated for
the peptide respective residues upon a brief energy minimization.

The above-mentioned results [94] and other studies [41,45,47,56–59] concluded that
complex structures of peptide ligands produced by fast docking methods have moderate
structural precision, and, therefore, they should be subjected to post-docking refinements.
Moreover, the ranking performance of such methods (that is the score-based selection of
the close to real docked ligand structure) is very low [94].

Thus, in this present study, complexes including the top-ranked docked ligand [94]
conformations produced by PepGrow were used as starting structures for MD refinements.
PepGrow is a protocol based on fragment-docking and constructs atomic-resolution struc-
tures of target–peptide complexes without prior knowledge of the binding site residues on
the target (see also Supplementary Methods for details). Rather than attempting to link
all fragments of the ligand directly, the method relies on the in situ growing of a fragment
seed from the peptide ligand within the binding pocket of the reader protein. However,
due to poor ranking performance, these docked ligand conformations had a relatively large
RMSD (RMSDstart, Table 1) in all complexes. Six different MD protocols were constructed
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from three consecutive steps (Figure 2) including initial, simulated annealing (SA), and full
flexibility MD.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 25 
 

 

The above-mentioned results [94] and other studies [41,45,47,56–59] concluded that 
complex structures of peptide ligands produced by fast docking methods have moderate 
structural precision, and, therefore, they should be subjected to post-docking refinements. 
Moreover, the ranking performance of such methods (that is the score-based selection of 
the close to real docked ligand structure) is very low [94]. 

Thus, in this present study, complexes including the top-ranked docked ligand [94] 
conformations produced by PepGrow were used as starting structures for MD refine-
ments. PepGrow is a protocol based on fragment-docking and constructs atomic-resolu-
tion structures of target–peptide complexes without prior knowledge of the binding site 
residues on the target (see also Supplementary Methods for details). Rather than attempt-
ing to link all fragments of the ligand directly, the method relies on the in situ growing of 
a fragment seed from the peptide ligand within the binding pocket of the reader protein. 
However, due to poor ranking performance, these docked ligand conformations had a 
relatively large RMSD (RMSDstart, Table 1) in all complexes. Six different MD protocols 
were constructed from three consecutive steps (Figure 2) including initial, simulated an-
nealing (SA), and full flexibility MD. 

 
Figure 2. Parameters of the MD refinement protocols. 

In all cases, the same preparatory steps (Section 3) were performed prior to the MD 
runs including a pre-MD hydration (Section 3) that filled up the target–ligand interfaces 
with explicit water molecules to eliminate unwanted empty spaces. The refinement pro-
tocols differed in four parameters including temperature, position restraints, simulation 
time, and length of the peptide ligand (Figure 2). In Protocol P1, there were three consec-
utive MD simulations with an SA stage and it improved the binding mode of a pentapep-
tide from an RMSD of 6.6 Å (from fast docking) to 1.7 Å (after MD steps) in a previous 
study [80]. P1 started with a short MD simulation to remove bad interactions and to im-

Figure 2. Parameters of the MD refinement protocols.

In all cases, the same preparatory steps (Section 3) were performed prior to the MD
runs including a pre-MD hydration (Section 3) that filled up the target–ligand interfaces
with explicit water molecules to eliminate unwanted empty spaces. The refinement proto-
cols differed in four parameters including temperature, position restraints, simulation time,
and length of the peptide ligand (Figure 2). In Protocol P1, there were three consecutive MD
simulations with an SA stage and it improved the binding mode of a pentapeptide from
an RMSD of 6.6 Å (from fast docking) to 1.7 Å (after MD steps) in a previous study [80].
P1 started with a short MD simulation to remove bad interactions and to improve the
target–ligand interactions, preparing the complex for further steps. It was followed by
an SA MD simulation during which high temperature accelerates the thermal motion of
solutes and water molecules allowing the ligand to overcome energetic barriers to explore
more conformational space and move towards a minimum energy conformation as the
temperature lowers. Full target flexibility in P1 and P2 did not result in significant improve-
ment after the first two simulation steps, and, therefore, it was skipped in the next (P3–P6)
protocols. Since the most notable improvements in peptide conformation, as indicated
by decreased RMSD values (Figures 3 and S1), occurred during the first two simulations,
we extended their durations from 5 ns and 20 ns to 15 ns and 40 ns in protocols P3 and
P5. Despite this adjustment, the last 5 ns of the equilibrium MD and the final 20 ns of
simulated annealing MD did not show significant additional improvements (Figure S1b).
Consequently, we reduced the simulation lengths to 10 ns and 30 ns in protocols P4 and P6,
optimizing the balance between computational efficiency and structural refinement.
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Figure 3. A successful MD refinement of the docked binding mode of ATRX ADD domain–histone
H3 peptide complex (System 3qln) using Protocol P4. The upper plot shows the trend of RMSD of
the peptide ligand and the ATRX ADD domain–peptide interaction energy (Einter). The best match
with the experimental reference binding mode of the ligand (RMSDbest = 3.68 Å) was achieved
after 14 ns and stabilized in the rest of the protocol. The different steps of the MD protocol are
divided by a dashed line separating the first 10 ns initial MD followed by 30 ns of SA simulation.
Representative structures of the complexes are shown at the top, where the experimental reference
histone conformation is shown in red sticks and the starting (t = 0 ns, docked) peptide conformation,
and after SA MD simulation (t = 40 ns) are shown in teal sticks. (See also Video S1 with more details
on the dynamic changes).

Instead of full target flexibility, the release of the binding pocket residues in P4 and P6
reduces the complexity of the simulation and sampling of irrelevant conformational space,
requiring less computational time. Moreover, position restraints on the binding site sur-
rounding residues prevent any major structural changes that could lead to instability of the
complex structure. The length of each simulation was altered to ensure that peptides could
find their correct positions within as minimal computational time as possible (Figure 2). All
six protocols have the first two consecutive MD simulations with the peptide freely moving
while position restraints were applied on different atom groups of the target to ensure
optimal target flexibility during the simulations (Figure 2). A close inspection of the refined
complexes showed that in some cases, extensive intramolecular interactions between the N-
and C-termini of the peptide resulted in ball-like conformations limiting the development
of intermolecular interactions between the peptide and the target. Thus, the C-terminal
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peptide tails with no role in target binding (Figure 1) were removed in Protocols P5 and P6
to foster intermolecular interactions with the target and interface water molecules instead
of the intramolecular ones.

2.2. Structural Performance
2.2.1. The Overall Performance of the MD Protocols

The performance of the MD-based refinement protocols (Figure 2) was evaluated
by measuring how close they can bring the refined ligand binding mode to the reference
(experimental) one, compared to the initial fast-docked binding mode (RMSDstart, Table S2).
The improvement of starting structures (∆RMSD), that is the decrease in RMSD upon
MD refinement, is expressed in the percentage of RMSDstart (in Figure 4, Tables S3 and S6).
The refinement protocols were able to improve the starting conformations in most cases,
especially P1 and P4, displaying a large ∆RMSD of >1 Å in nearly all cases (Table S5,
Figure 4). The overall statistics show that P4 outperformed all other protocols with a
median ∆RMSD of 32% corresponding to a large improvement of 7.5 Å. Furthermore,
P4 produced the largest improvement of 22.8 Å (84%) in the case of target TRIM24 PHD
Bromo (System 3o33) starting from the largest RMSDstart of 27.2 Å of the test set (Table S2).
Moreover, P4 was shown to improve initial conformations of relatively good quality (low
RMSDstart), as well. For example, the initial conformation of System 4qf2 obtained with
its holo target structure has an RMSDstart of 3.8 Å. Upon P4, a large ∆RMSD improvement
of 1.53 Å (40%) was observed for the system (Table S13), indicating applicability of the
protocol on a wide range of starting conformations. The overall performance of Protocols
P1 and P3 were comparable to that of P4, and both of them produced a median ∆RMSD
close to 30% (Table S3).
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The increase in simulation time in P3 (Figure 2) did not result in a significant improve-
ment over P1 or P4 (Table S4). Notably, during longer simulations, the loosely bound
(C-terminal, Figure 1) regions have more time to interact with the bulk that may result in
the step-wise dissociation of the whole peptide. The increase in the maximal temperature
of simulation annealing in Protocol P2 (Figure 2) was even counterproductive with a drop
of median ∆RMSD below 20% except for System 4ljn. Unlike other systems (Figure 1),
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the C-terminal region of the histone ligand of 4ljn is engaged in extensive intramolecular
interactions, resulting in a helix-like conformation. These interactions are further stabilized
by weak interactions with the target. Protocols P1, P3, and P4 tend to promote stable
interactions between the C-terminal region of the peptide and the target, limiting its chance
to engage in intramolecular interactions. In P2, the high temperature accelerates the peptide
movements minimizing its interaction with the target promoting intramolecular interac-
tions. When the highly mobile C-terminal region of histone H3 ligands (Section 2.1) were
excluded and only the N-terminal five amino acids were involved in the RMSD calculations,
all protocols except P2 showed a median ∆RMSD of at least ca. 20% (Tables S6 and S7)
which can be attributed to the general improvement of MD-based protocols for the strongest
binding N-terminal region of the ligand (Figure 1). The above-mentioned exclusion of
the non-interacting C-terminal region in Protocols P5 and P6 promoted the formation of
interactions with the target and the bulk, and speeded up the optimization (drop of RMSD)
for Systems 3qlc, 3o33, and 4qf2. For example, P3 was able to obtain a ∆RMSD of 22%
calculated for the first five amino acids of the ligand for System 3o33. Upon removing the
C-terminal region of non-specific interactions with the target, P5 achieved a ∆RMSD of 58%
for the same system (Table S6).

Structural accuracy is a vital aspect of a docking method, but equally important is
its ability to accurately rank binding modes. In many cases, the improvement (decrease)
in RMSD was accompanied and resulted by the strengthening of the target–ligand inter-
action shown by the drop in the corresponding energy (Einter) during MD optimization
(Figures 3 and S1) if Protocol P4 was applied. The Einter value of System 3qln shows
a considerable, ca. 25% drop alongside a large ∆RMSD improvement of 9.6 Å (72%)
(Figure 3, Video S1). As the terms of Einter are key components of many scoring (free energy)
functions [108,109], the above-mentioned improvement of Einter will expectedly improve
the quality of scoring and subsequent ligand ranking, which are crucial for effective drug
or peptide design projects.

2.2.2. The Kinetic Stability of the MD-Refined Complex Structure

The stability of an improved RMSD along the MD trajectory indicates a stable binding
mode and strong interactions with a target. Several studies have reported that such kinetic
stability can be used as a descriptor for discriminating real and artificial docked ligand
binding modes [69,70,110]. In this present study, the kinetic stability of the correct binding
mode corresponding to the largest ∆RMSD was calculated for all MD trajectories and
expressed in terms of residence frequency (RF, Section 3) as it had been introduced in a
previous study [111]. It was observed that systems with an RF > 0.5 ns−1 have a target–
ligand complex of high kinetic stability along the full MD trajectory. In this sense, Protocol
P4 was able to achieve the best results as 4 out of 10 systems showed high kinetic stability.
As an example of a stable MD refinement, P4 improved the RMSD of the initial docked
pose of System 3qln by 72% which was achieved upon a sharp drop in RMSD along the
trajectory started around 5 ns into the equilibrium simulation and stabilized at 4 Å soon
after entering into the final simulation (Figure 3). Compared to the trend observed in P4,
the sharp drop in the RMSD started at ca. 8 ns of the SA simulation step for the same
system using P1 since the target flexibility is restricted in P1, allowing an increased target
motion mostly in the high temperature of SA (Figure S1a). Similarly, System 3o33 exhibited
a comparable trend, with P5 (limited target flexibility) and P6 (flexible binding site region)
following the same pattern (Figure S1b,c). On the other hand, for System 3qln, P2 was
able to produce the best possible model with up to 41% improvement over its starting
conformation after 9 ns into the SA simulation. However, the conformation did not last
long due to high thermal motions (Figure S1d).

2.2.3. Comparison with the Results of Other Post- and Pre-Processing Studies

Post-docking refinement methods vary in their structural performance depending
on the different protocols they apply to increase the accuracy of peptide–protein docking
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results. A brief comparison of the performance of Protocol P4 of this present study and
the best results of other methods will be discussed here. The different studies in the
literature use different statistics for the measurement of the performance of the refinement.
Here, we re-calculated the statistical measures of the previous studies or this present study
for comparability.

The refinement protocol implemented in the HADDOCK [75,112] peptide docking
protocol was reported to improve the docked ligands with a success rate of more than
15% (from 54% to 69%). The HADDOCK semi-flexible refinement works at high tem-
perature allowing flexibility in the interface region and also performs full MD in explicit
solvent. The post-docking refinement step of the peptide–protein docking method, pepAT-
TRACT [113,114], was able to increase the initial docking success rate by 10% (from 70% to
80%) using short MD simulations with an implicit solvent model. Using the same criterion
as HADDOCK and pepATTRACT, Protocol P4 of this present study improved the success
rate by 20% for full-length ligands (from 10% to 30%) and for the first five amino acids
(from 50% to 70%) (Section 3, Tables S8 and S9).

Accelerated MD techniques are aimed at improving conformational sampling [115–117].
Gaussian-accelerated MD was also used [71] to refine the global docking results of three
peptide–protein complexes (with decapeptide-sized ligands) obtained by ClusPro Pepti-
Dock [118]. Indeed, the refinement protocol produced [71] a backbone ∆RMSD of docked
peptide ligands up to 83%. In the case of our Protocol P4, a maximum of 89% backbone
∆RMSD was achieved for the full H3 peptide ligand (Tables S10 and S11).

The Rosetta FlexPepDock refinement protocol was tested on 37 peptide–protein com-
plexes (with decapeptide-sized ligands) and was able to achieve a backbone ∆RMSD of
64% for the majority of the test set [74]. The protocol uses a Monte Carlo search followed by
energy minimization (EM) steps that allow full flexibility for the peptide and side-chain flex-
ibility for the target protein. Protocol P4 (Figure 2) produced a median backbone ∆RMSD
of 33% for full-length ligands (Tables S10 and S11). However, it is important to note that
Rosetta FlexPepDock was tested on starting conformations with backbone RMSDstart of
1–5 Å while much worse geometries of RMSDstart values of 8–27 Å were used in this present
study (Table 1) for the full-length ligand.

In addition to post-docking methods, various pre-processing approaches have been
adopted in docking tools to improve prediction accuracy. Ensemble docking, for instance,
incorporates target flexibility by docking ligands into either all ensemble protein structures
or an average representation of these structures [119–121]. In peptide docking, ensemble
docking has been adapted to account for peptide ligands. Specifically, tools like HPEP-
DOCK perform rigid-body docking of up to 1000 initial peptide conformations generated
by the MODPEP program [105]. By doing so, HPEPDOCK efficiently samples the confor-
mational flexibility of large peptide ligands while maintaining prediction accuracy. In a
previous study [94], HPEPDOCK was one of the benchmark methods and showed rela-
tively good performance with an average RMSDbest of 8.4 ± 3.4 Å which is comparable
to that of Protocol P4 (average RMSDbest of 7.6 ± 2.6 Å). The main challenge in ensemble-
based docking is that its success relies on the diversity and representativeness of the initial
conformations. The initial set of conformations used for docking may not fully cover
the true conformational space of the peptide, posing a challenge. Wang et al. reported
near-native binding modes for decapeptides (with backbone RMSD of 0.6–2.7 Å) using
ClusPro PeptiDock that performs global rigid body docking of an ensemble of peptide
conformations retrieved from the PDB, followed by an MD refinement step [71]. Therefore,
a combination of ensemble docking and MD-based post-docking refinement, like Protocol
P4, can synergistically enhance the overall performance of molecular docking predictions.

2.3. Factors Influencing MD Refinement
2.3.1. Target Conformation

The conformational state of the target may have a great impact on ligand binding
and influence the accuracy of binding mode prediction [122–125]. MD provides conforma-
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tional flexibility on both ligand and target sides during refinement. However, insufficient
sampling may limit the performance of MD refinements. For example, the refinements
failed or worked with limited accuracy in cases where the conformational change at the
target interface during ligand binding exceeded an RMSD of 1–2 Å [112,114]. The apo
state of the target is often characterized by a higher flexibility compared to the holo states
and this higher flexibility could enable extensive conformational sampling during MD
simulations [126]. In this present study, three systems (2mny, 3qln, and 4ljn) had a target
conformational change at the interface above an RMSD of 2 Å (Table S12). However, the MD
refinement achieved a ∆RMSD improvement of up to 72% (Protocol P4) in these three sys-
tems with starting conformations obtained using apo target structures (Tables S3 and S6).
The protocols were also repeated for a docked set with holo targets that had a 2 Å better
mean RMSDstart value (Table S13) than that of the apo set (Table 1). However, P4 produced
a median ∆RMSD of 25% for the holo set while the same value was 32% for the apo set
(Tables S3 and S13). These findings indicate that the MD refinement protocols are relatively
robust in the sense that apo target conformations can be used, and they do not necessitate
ligand-bound target conformations as starting points.

2.3.2. Initial Ligand Binding Mode

Several refinement studies have reported the effect of the distance of the initial ligand
binding mode (=position, orientation, and conformation) from the experimental (real)
structure on the success of structural refinements. In the cases where the initial peptide
binding mode was completely wrong, refinement procedures failed to produce the real
binding mode [70,74,80]. For example, in a previous study, we carried out 1-µs-long MD
simulations on a benzamidine–trypsin complex (PDB ID: 3ptb) where benzamidine was
placed at three different starting positions [80]. The results showed that even in the easy
case of the small benzamidine ligand, 81 ns to 690 ns of simulation time was necessary to
navigate the ligand to the real binding pocket depending on the distance of the post-docking
starting position from the real pocket. In this present study, moderate to high correlations
(R2 of 0.86 and 0.53) were observed between RMSDstart and the improvement (∆RMSD
calculated for the full ligand and the N-terminal five amino acids, respectively) using
Protocol P4 on the apo set (Figure 5a,b) as well as all the other protocols (R2 ranges from
0.25 to 0.73, Figure S2). Accordingly, for the N-terminal fragment, smaller improvements
can be expected (see also Section 2.2). Thus, docked ligand binding modes that largely
deviate from the reference (high RMSDstart) have a high potential for improvement upon
MD refinement while those close to the reference structure showed only little further
improvement. This finding shows that in the case of linear peptide ligands like the N-
terminal histone fragments of this present study (Table 1) MD can achieve considerable
improvements even for starting situations that have a hopelessly large starting deviation
from the real binding mode.
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2.3.3. Anchoring Residues

The presence of strong interactions between the target and the initial (docked) binding
mode of the ligand affects the performance of MD refinements [68,70]. Many peptides are
known to interact with their targets through highly conserved anchoring residues [27,127–129].
Strong interactions at these hot spots may be particularly important to drive the highly
flexible, linear histone peptide to an appropriate final binding mode. In the case of histone
H3 ligand, anchoring residues A1, R2, and K4 [88,90–92,94] are located at the N-terminal
end of the peptide with the best per-residue Einter (Figure 1) values. The correlations of the
pre-residue Einter values of these anchoring residues with ∆RMSD showed that interactions
at residue R2 are the most important for a successful MD refinement, especially for the
best-performing Protocol P4 (Figure 5c,d). As (the backbone of) R2 residue had an accurate
initial binding mode (low RMSDstart) in most cases (Table S14), its strong interaction with
the target can keep the fragment in close proximity to its native conformation while the
simulation samples conformations of the side-chain and the remaining part of the peptide.
For example, the initial ligand binding mode of System 3o33 deviated largely from its
experimental structure (Table 1). At the same time, anchoring R2 residue in the initial
structure was relatively accurately positioned and contributed almost half of the total Einter
of the ligand. This provided a good starting point for sampling the possible conformations
of the peptide during the simulations resulting in an 84% improvement over its RMSDstart
with Protocol P4 (Table S3). On the other hand, System 2mny had an initial docked pose
closer to its experimental structure compared to System 3o33 (Table 1). However, only
weak interaction was detected between R2 residue and the target resulting in only 33%
improvement upon P4 (Table S3). Thus, the correct docked (initial) binding mode of key
residues like R2 is crucial for the success of post-docking MD refinements.

2.3.4. Interfacial Water Network

It has been long recognized that water molecules play key roles in protein folding,
stability, filling cavities, and mediating interactions with ligands [39,130]. Peptide ligands
like the histone H3 fragments (Table 1) are highly hydrated, and, therefore, water molecules
play a central role [32] during their binding to the target molecules. Water molecules
in the interface of the binding partners can form adhesive hydrogen-bonded networks
between the partners, stabilizing the protein–ligand complex structure [39,131]. However,
accurately assigning all water positions in experimental structures determined by X-ray
crystallography is challenging due to its limitations often rooted in the inherent mobility of
water [132,133]. Other experimental methods also often suffer from improper or complete
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lack of water positions [133–136], necessitating the use of theoretical methods. Computa-
tional studies commonly use MD simulations with explicit solvent models to investigate
the above-mentioned roles of water at the atomic level [39]. However, providing a com-
plete hydration structure of target–ligand complexes is often challenging for the default
hydration algorithms of MD simulation packages due to the restricted access of bulk water
to interface regions [46] resulting in an unwanted presence of void (vacuum) cavities in the
interface prior to the MD steps. In this present study, the interfaces between the docked
ligand and the target molecules of all systems of Table 1 were filled with water molecules
by a pre-MD hydration step based on the HydroDock protocol [41] and MobyWat [46,137]
(Step 1, Section 3). This step results in a complete hydration structure without void spaces.
Notably, in a previous paper [46], it was discussed that the simplicity of the default pre-MD
water positioning process of MD programs and the inaccessibility of the target–ligand
interface result in void spaces. That is, cavities without water molecules can remain in the
interface unless such pre-MD hydration is applied as described in Step 1 of Section 3. It has
also been shown [46] that the methods used in the pre-MD hydration step can produce the
water structure of the interface at high precision if compared with experimental structures.
For the systems of this present study (Table 1), the comparison with experimental structures
was also performed. Three out of ten systems have more than one experimentally deter-
mined interfacial water molecule in the holo structures. Matches between experimental
and calculated (from pre-MD hydration step) interface water positions were quantified
as success rates (Section 3). The pre-MD hydration step achieved an average 86% success
rate (Figure S3 and Table S15) that is in line with the previous results [46]. These findings
further highlight the robustness of the hydration protocol implemented in this study.

To investigate the effect of the complete hydration on the results, Protocol P4 was also
performed without the pre-MD hydration (Step 1, Section 3) on System 3o33, that is using
only the default water positioning of the MD program. It was found that pre-MD hydration
considerably improved the RMSD from 15.77 Å to 4.41 Å (that is a ∆RMSD from 42% to
84%) with Protocol P4 (Figure 6). Since the docked (starting) peptide binding mode for
System 3o33 was largely deviated from the reference (Table 1), extensive conformational
sampling was necessary to find its near-native conformation. However, if the pre-MD
hydration was not performed, the anchoring R2 and K4 residues of the peptide formed
extensive (artificial) interactions with the target limiting the movements of the peptide
during the simulations (Figure 6a) and resulting in a large RMSD value. On the other hand,
after pre-MD hydration, H-bond donors on the anchoring residues of the peptide were well
shielded by water molecules in the starting complex structure allowing the formation of
proper interactions with the target (Figure 6a) resulting in a drop of RMSD. As the pre-MD
hydration fills void spaces of the interface completely, a large number of water molecules
were accurately positioned with the above-mentioned shielding effect and later forming
bridging hydrogen bonds between the target and the histone peptide. For example, in
the case of residue K4, three bridging water molecules stabilized the interaction with the
neighboring target residues in the final structure if the pre-MD hydration was applied.
Without pre-MD hydration, only one water bridge was formed, providing less stability
at a wrong pocket (Figure 6b). Thus, the interface water structure is crucial in promoting
stable interactions and hindering the formation of artificial intramolecular interactions in
the peptide. In addition to bridging hydrogen bonds, water–water interaction networks
can further stabilize the target–peptide complex.

The above example showed the importance of interfacial hydration networks of
large protein–peptide complexes for forming interactions between the partners, in agree-
ment with previous studies [41,46]. This problem of correct interface hydration is vital
as handling explicit water molecules is still an intractable challenge for machine learning
technologies [138] and docking methods [139,140].
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3. Methods and Materials
3.1. Refinement Protocols

All refinement protocols consist of two main steps: (1) pre-MD hydration (the building
and equilibration of the void-free hydration structure of the complex interface) and (2) con-
secutive MD simulations. The uniform procedures of all steps and the common parameters
of the simulations are described in the next sections, followed by the specific details of the
two main steps.

Energy minimization (EM). The structure was placed in a dodecahedral box with a
distance criterion of 1 nm between the solute and the box. The box was filled with explicit
TIP3P water molecules [141] and counterions (sodium or chloride ions) were added to
neutralize the system by the gmx solvate routine of GROMACS [142]. The simulation box
was subjected to a steepest descent (sd) optimization with convergence thresholds set to
1000 kJ mol−1 nm−1. Next, conjugate gradient (cg) optimization was carried out, with
convergence thresholds set to 10 kJ mol−1 nm−1. In both steps, solute-heavy atoms were
position restrained at a force constant of 1000 kJ mol−1 nm−2. In cases where the target
structure contained structural Zn2+ ions, zinc-coordinating cysteine or histidine residues
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had residue types with the appropriate protonation state (cysteine and histidine in the
Amber force field). When position restraints were applied, the zinc ions were considered as
heavy atoms of the target. All simulations were performed with the AMBER99SB-ILDN
force field [143] using the GROMACS software package (version 2021.4) [142].

Molecular Dynamics (MD). After EM, NPT MD simulations were performed with a
time step of 2 fs on the optimized structure. Solute and solvent were coupled separately
to a reference temperature of 300 K using the velocity rescale algorithm [144] with a time
constant of 0.1 ps. The temperature differs in the simulated annealing MD simulations
(see below) depending on the refinement protocol (Figure 2). The pressure was kept at
1 bar using the Parrinello–Rahman algorithm [145–147] with a time constant of 0.5 ps and
compressibility of 4.5 × 10−5 bar−1. Particle mesh Ewald summation [145] was used for
long-range electrostatics using a Fourier spacing of 0.12 nm and a grid spacing of 1 Å.
All van der Waals interactions were truncated at a cutoff of 11 Å. Position restraints were
applied on all solute-heavy atoms with a force constant of 1000 kJ mol−1 nm−2. The bonds
in solute and solvent were constrained using the LINCS [148,149] algorithm. Coordinates
were saved at regular time intervals, at every 10 ps. Before analysis, periodic boundary
conditions were treated and each frame was fit to the experimental target structure using
Cα atoms. The final trajectory containing all atomic coordinates of all frames was saved in
a portable binary file and used for subsequent procedures.

Simulated annealing (SA). During SA MD simulations, simulated annealing tempera-
ture was rescaled and controlled in the same way for each temperature group in GROMACS
(both solvent and solute). For protocols (Figure 2) with a maximal SA temperature of 323 K,
the simulation started at 300 K and the temperature was increased to 310 K, then to 323 K,
and then cooled down to 310 K and 300 K. The simulation was performed for 2.5 ns for
each temperature, except for the highest temperature. Depending on the length of the SA
MD simulation of each protocol, the highest temperature was applied for the remaining
simulation time (10 ns, 30 ns, 20 ns, 30 ns, and 20 ns for P1, P3, P4, P5, and P6, respectively).
The maximal SA temperature was 353 K for P2 and the simulation temperature increased
from 300 K to 311 K and then by 14 K intervals until it reached 353 K. From the highest
temperature, it was cooled down to 300 K following the same temperature scheme. The
simulation was performed for 1.2 ns for each temperature (10 ns for the highest temper-
ature). All the other simulation parameters were unchanged and used as described in
Molecular Dynamics.

Pre-MD hydration (Step 1). Hydration structures of the starting protein–peptide com-
plexes were built using MobyWat [46,137], which predicts water positions on the target
surface and in the complex interface at high precision using MD trajectories. From the
starting complex structure, the ligand was removed and the resulting dry target structure
was then energy minimized by sd and cg algorithms as in Energy Minimization to prepare
it for the 10 ns long NPT MD simulation which was performed as described in Molecular
Dynamics. Using the resulting MD trajectory file, the surface water structure of the target
was calculated by the prediction mode of MobyWat using its all-inclusive identity-based
prediction algorithm (IDa). During the calculation, the maximum distance from the tar-
get (dmax) of 5 Å was applied with clustering (ctol) and prediction (ptol) tolerances of
1.5 and 2.5 Å, respectively. The hydrated target structure was then placed in a common
coordinate system as the starting peptide structure using Pymol [150]. The water molecules
conflicting with the ligand structure were removed using the editing mode of MobyWat at
a minimum distance limit (dmin) of 1.75 Å.

The hydrated complex structures were subjected to a five-step robust equilibration of
the HydroDock protocol [41] to optimize the orientation of H atoms of the predicted water
molecules that can assist formation of a water network. In the first two steps, sd and cg
optimizations were performed as described in Energy Minimization, followed by a short
100 ps long NPT MD simulation with the same parameters as in Molecular Dynamics, with
the exception that only backbone Cα atoms were position-restrained. The second round of
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sd and cg optimizations were carried out with the same settings as the first round, except
for the position restraints which were applied on only backbone Cα atoms.

Consecutive MD simulations (Step 2). For all complex systems, three consecutive
simulations of initial equilibrium MD (1), SA-MD (2), and MD with full flexibility (3)
were performed on the hydrated and equilibrated complex structures depending on the
refinement protocol (Figure 2). All simulations were performed with settings described in
the section Molecular Dynamics, except for the parameters varied in the different protocols
(Figure 2) including the simulation length, position restraints on the target atoms, SA
parameters, and the length of peptide ligands. All frames generated in the MD trajectory
were fitted onto the initial structure using their target Cα atoms using a GROMACS tool
trjconv which also handles periodic boundary effects and centers the system in the box.
Complex snapshots were extracted to individual PDB files from the resulting trajectory file
by 0.1 ns steps and subjected to further analysis.

3.2. Evaluation Metrics

Root mean squared deviation (RMSD, Equation (1)). RMSD values were calculated
between all-heavy atoms of the calculated (C in Equation (1)) and experimental reference
(R) peptide binding mode according to Equation (1).

RMSD =

√√√√ 1
NH

NH

∑
i=1

|Ci − Ri|2 (1)

NH is the number of heavy atoms in the ligand, C and R are space vectors of the
ith heavy atom of the calculated and experimental reference ligand binding modes in the
respective Protein Databank (PDB) coordinate files.

Improvement of RMSD. ∆RMSD values were calculated to quantify the improvement
of starting structures upon MD refinement. ∆RMSD (Equation (2)) is measured as the
difference between RMSDstart (the RMSD calculated for the starting ligand conformation
obtained from docking) and RMSDbest (the model with the best RMSD produced by a
refinement protocol, Equation (2)). The improvement is also expressed as a percentage
(∆RMSD (%) in Equation (3)) relative to RMSDstart.

∆RMSD = RMSDstart − RMSDbest (2)

∆RMSD(%) =
∆RMSD × 100

RMSDstart
(3)

The quality of IF water predictions by the pre-MD hydration step was quantified
using the validation mode of MobyWat (version 1.1) [46,137] and expressed as success rates
(Equation (4)).

SR(%) = 100
Count of matches

Count of reference water positions
(4)

Crystallographic positions of water molecules within a maximum distance (dmax) of
3.5 Å from both the target and ligand were used as references. A match is defined when
the distance between the oxygen atoms of the predicted and reference water molecules is
below the match tolerance of 1.5 Å. For detailed information on the algorithms used by
MobyWat, please refer to [46,137].

Kinetic stability of a binding mode. The kinetic stability of the binding mode of a ligand
during the simulation was measured by residence frequency (RF in Equation (5)) [110]. The
movement of the ligand was determined by RMSD calculated between its experimental
reference structure and its actual structure at each frame during the total simulation time.

RF =
Number of frames with ∆RMSD ≥ cutoff

Simulation time (ns)
(5)
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The cutoff was set to 1 Å indicating that the RF value is a fraction of the simulation
time in which peptide binding modes improved RMSD of the starting conformation by 1 Å
or more (∆RMSD ≥ 1 Å).

3.3. Per-Residue Interaction Energy Analyses

Per-residue interaction energy analysis was performed on the experimental structure
of System 2fui (Figure 1). The calculations were also performed for the preparation of data
in Figures 3 and 5. Upon adding polar hydrogen atoms and Gasteiger–Marsilli partial
charges [151] to the experimental structure, the structural file in PDB format was converted
to MOL2 using OpenBabel [152]. The per-residue interaction energy (Einter) was then
calculated on the MOL2 files according to Equation (6). The Coulomb term (ECoulomb) in
Equation (6) was calculated with a distance-dependent dielectric function. The Lennard
Jones term (ELJ) was calculated using Amber2012 force field parameters [153].

Einter = ELJ + ECoulomb =
NTNL

∑
i,j

(
Aij

r12
ij

−
Bij

r6
ij
+

qiqj

4πε0εrrij

)

Aij = εijR12
ij

Bij = 2εijR6
ij

Rij = Ri + Rj

εij =
√
εiεj

εr = A +
B

1 + ke−λBr (6)

NT and NL are the number of target and ligand atoms, respectively; rij is the actual
distance between the ith (ligand) and jth (target) atoms; q is the partial charge of an atom; ε0
is the permittivity of vacuum; εr is the distance-dependent relative permittivity; εij is the po-
tential well depth at equilibrium; Rij is the inter-nuclear distance at equilibrium; B = ε0 − A
in which ε0 is the dielectric constant of water at 25 ◦C; A, λ, and k are constants [154].

4. Conclusions

Large peptides loosely bound to their target proteins are challenging ligands for fast
computational docking tools. In such cases, the application of post-docking refinement
methods is necessary to achieve precise target–ligand complex structures. MD simulations
have been applied for such refinements as they account for the flexibility of both target
and ligand partners, and can be efficiently combined with various solvent models. In this
present study, MD refinement protocols were explored using a challenging set of structures
of docked complexes of histone H3 peptide ligands with a relatively large deviation from
the experimental reference binding modes. In the present protocols, a pre-MD hydration
step was introduced to complete the docked (starting) complex structures with a layer of
water molecules. Thus, the complexes were equipped with appropriately oriented waters
in the target–ligand interface and the number of unwanted void cavities was minimized
prior to the MD simulations. Six different MD protocols of three consecutive MD steps
and the effects of various simulation parameters were investigated. We found that MD
refinements can handle the challenges of histone ligands, and the best performing Protocol
P4 achieved an improvement of a median ∆RMSD of 32% (the largest improvement of
84%) if compared with the docked starting complex. Furthermore, the refinement protocols
considerably improved the docked structures of large deviation from the experimental
reference. An analysis of the MD parameters showed that the increase in simulation time
and maximal SA temperature beyond a limit did not result in further improvement in
the efficiency of the refinement. It was also concluded that an accurate positioning of
anchoring residues (like R2 in the histone H3 ligand) in the docked structure considerably
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improves the efficiency of the MD refinement. The target–ligand intermolecular interaction
energy (Einter) proved to be a good indicator of the quality (structural precision) of the
actual complex structure during the refinements. The efficient use of (super)computational
resources and the parallelized code of GROMACS have significantly reduced the time and
cost associated with high-precision docking refinements to some hours using Protocol P4.
Additionally, the pre-MD hydration step and the inclusion of simulated annealing within
the MD protocol, and the full flexibility of the binding site region made Protocol P4 a
robust option for refining initial conformations of a wide range of structural qualities. This
study shows that a proper MD-based refinement protocol not only improves the structural
accuracy of target–ligand complexes but also enhances the efficiency and reliability of
current fast docking methods. This advancement holds a potential for accelerating the
discovery of new drugs in epigenetics or any design projects working with peptide ligands.

Supplementary Materials: The following supporting information can be downloaded at: https:
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