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Abstract: Friedreich’s Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias,
marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities,
severely affecting daily functioning. To date, the only medication available for treating FRDA
is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the
human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked
to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron
accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways.
This study amalgamated 226 FXN genetic variants from the literature and database searches, with
only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental
and destabilizing predictions for FXN mutations, predominantly impacting conserved residues
crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of
human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R.
These variants, selected for their severe clinical implications, underwent molecular dynamics (MD)
simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments,
encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings
indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced
by I154F and W155R mutations, aligning with the existing literature.

Keywords: frataxin; Friedreich’s ataxia; in silico analysis

1. Introduction

Friedreich’s Ataxia (FRDA) is an autosomal recessive and neurodegenerative genetic
disease, representing the most prevalent form among hereditary ataxias, affecting approx-
imately 1 in every 50,000 individuals worldwide [1]. FRDA manifests with progressive
ataxia of body movements, mainly affecting the lower limbs, together with decreased vi-
bratory sensation, muscle loss, and increased susceptibility to the development of diabetes
and hypertrophic cardiomyopathy. Furthermore, vestibular and auditory changes may be
present, along with skeletal deformities such as scoliosis and cavus foot [2,3]. The onset
of symptoms generally occurs around twenty years of age, leading to patients’ gradual
loss of independence and impairing their ability to carry out daily activities, including
occupational tasks [4].

To date, there is no cure for Friedreich’s ataxia (FRDA); some treatments are still in the
study phase, such as omaveloxolone, an Nrf2 activator, aiming to improve mitochondrial
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function and restore the redox balance caused in FRDA [5,6]. Approximately 80% of rare
diseases have a genetic origin, highlighting the importance of integrating this topic into
social relationships, health, and research efforts, thus contributing to the exploration of
new therapeutic and pharmaceutical interventions [7].

The human frataxin protein (FXN) comprises 210 amino acids and is predominantly
located in the inner membrane of mitochondria [1]. Its main role involves the regulation
of intracellular iron homeostasis, thus facilitating the biosynthesis of the heme group and
assisting in the assembly and repair of iron–sulfur cluster (ISC) formations [8]. Missense
mutations in the FXN gene result in the loss of frataxin function [9], leading to the dys-
regulation of iron metabolism and subsequent accumulation and precipitation of iron in
mitochondria. This accumulated iron reacts with hydrogen peroxide generated by the res-
piratory chain, triggering oxidation and the production of highly reactive hydroxyl radicals
(Fenton reaction), which disturb the redox balance. Furthermore, deficiencies in proteins
containing iron–sulfur clusters impact electron transport and oxidative phosphorylation
in the respiratory chain, amplifying the generation of free radicals and reactive oxygen
species. Ultimately, oxidative stress-induced mitochondrial damage and the activation of
apoptotic pathways occur in affected neurons [10].

Despite the discovery of numerous mutations through next-generation sequencing
methods, experimental characterization of variants remains expensive, time-consuming,
and difficult to implement. Computer simulations, or in silico approaches, offer a more
efficient, faster, and cost-effective means of studying and predicting mutation effects. These
simulations help prioritize potentially deleterious mutations for future wet-bench investi-
gations. Furthermore, in silico prediction helps in the study of mutations associated with
diseases, guiding the development of more effective drugs for treatment and improving the
understanding of the molecular mechanisms underlying associated pathologies [11–14].

Although the complete structure of human FXN remains experimentally undeter-
mined, the critical functional regions remain unknown [15]. Knowledge of three-dimensional
structures contributes significantly to the understanding of biological activity and protein–
ligand interactions, including drug interactions. Three-dimensional protein structures
serve as fundamental starting points for rational drug design, a fundamental approach to
contemporary drug discovery and pharmaceutical advancements. This strategy allows
for faster and more efficient lead identification and optimization compared to traditional
trial-and-error methods [16]. However, experimental determination of protein structures
(wet-lab methods) remains expensive, time-consuming, and technically challenging. In
this context, in silico structural prediction methods have emerged as valuable tools for fast,
efficient, and accurate modeling of protein structures [13,17,18].

Despite the numerous advantages of dry-lab approaches, it is important to acknowl-
edge that, like any other method, computational approaches also have inherent limitations.
In the field of computational biology, algorithms may be constrained by the assumptions
and simplifications intrinsic to the models. Additionally, the accuracy of these algorithms
relies heavily on the quality of the experimental data used during the training and val-
idation steps [19–21]. In this context, the efficiency and valuable insights provided by
bioinformatics tools are indispensable allies of traditional methods, yet they still require
further support from experimental approaches [22].

To overcome these limitations, we implemented several strategies that were effective
within the frameworks previously established by our research group [11,12,23]. These
strategies include using robust algorithms, integrating diverse modeling approaches, and
comparing the outcomes with existing experimental data [24,25]. Building on this founda-
tion, an integrated suite of methods was employed in this study to thoroughly characterize
the structural and functional effects of mutations in the human frataxin protein. This
framework included functional and stability prediction, evolutionary conservation analysis,
model construction, and validation.
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2. Results
2.1. Protein Sequence and Variant Acquisition

The native FXN sequence obtained from UniProt is complete, comprising 210 amino
acids [26]. FXN is initially encoded in the nucleus and subsequently targeted to the mito-
chondria. This process occurs in two steps and depends on the action of the mitochondrial
processing enzyme peptidase (MPP). Initially, this enzyme cleaves the transit peptide
(residues 1–41), responsible for mitochondrial targeting, located in the N-terminal portion
of frataxin, removing it and generating an intermediate form of the enzyme (residues
42–210). Subsequently, the intermediate form of frataxin can be cleaved at three differ-
ent sites, giving rise to distinct mature forms of the protein: FXN56, FXN78, and mFXN
(FXN81-210) [27].

The mature forms of FXN are named after the position of the second cleavage by the
MPP enzyme. A study by Schmucker et al., 2008, suggests that the predominant form
of the enzyme is mFXN. The other mature forms, FXN56 (residues 56–210) and FXN78
(residues 78–210), are produced in an abnormal maturation process, and their physiological
relevance is not precisely known [27]. The different regions involved in frataxin processing
are illustrated in Figure 1.

According to Pfam, the frataxin protein possesses a conserved domain known as
the frataxin-like domain (FLD), which spans residues 90 to 198. This domain is found in
eukaryotic frataxins and the frataxin homologous protein, CyaY of E. coli [27]. Similar
to frataxin, CyaY is a protein involved in the synthesis of iron–sulfur clusters and iron
metabolism [26]. Given that iron accumulates in mitochondria in the absence or presence of
defects in the frataxin protein, frataxin is believed to play a central role in iron homeostasis.
Although iron was not found bound in protein structures experimentally determined for
frataxin, it is believed that the binding of this protein to iron is essential for it to fulfill
its biological function [28]. According to Sirano et al. (2000) and Huang et al. (2008), the
following frataxin residues can bind to iron: E92, E96, E100, E101, E108, D112, D115, E121,
D122, D124, and H177 [28–30].

The frataxin protein can be phosphorylated by tyrosine kinase, mainly at the Y118
site, leading to subsequent ubiquitination of the protein, a signal for its degradation.
Furthermore, eight other phosphorylation sites were identified in the protein, as shown
in Figure 1A, including S72, S81, T94, Y118, Y143, S160, S161, and Y205. Furthermore, the
K171 position of frataxin is an acetylation site, while the K197 position is a sumoylation
site [31–33].

Overall, 226 genetic variants of human FXN were compiled (Table S1), most of which
have not yet been characterized in terms of their effects. Only 18 mutations were char-
acterized in the literature and databases consulted. Ten mutations are deleterious: M1I,
R40C, L106S, G130A, G130V, N146K, I154V, I154F, W155R, and W173G, while eight muta-
tions are neutral: A14E, L33V, T44N, T44I, R60H, M76V, D178E, and D209G [34]. All the
mutations identified as deleterious are associated with the development of Friedreich’s
Ataxia (FRDA) [26]. In this regard, 208 mutations have not yet had their effects determined,
comprising the vast majority of known human FXN mutations. The compiled mutations
are evenly distributed throughout the protein sequence, similarly affecting the functional
domains of FXN. This article presents the most comprehensive compilation of frataxin
variants available in the literature to date.
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Figure 1. Three-dimensional structure and schematic representation of frataxin domains. (A) Three-
dimensional structure of the complete human frataxin (FXN) protein showing the spatial 
arrangement of functional domains and key residues. Residues involved in iron binding and 
phosphorylation are depicted as sticks, colored red and purple, respectively. Notably, residues I154 
and W155, involved in Friedreich ataxia mutations, are highlighted with pink sticks. Coulombic 
surface representation was displayed alongside the illustration to depict the charge composition of 
the surrounding areas, which illustrates the electrostatic potential. (B) Schematic representation of 
FXN designed using IBS software Version 1.0. (http://ibs.biocuckoo.org/, 05 April 2024). The native 
sequence of the protein is shown alongside functional domains and residues relevant to its function. 
The transit peptide (TP) is colored green, while the frataxin-like domain (FLD) is colored blue. The 
regions comprising the intermediate forms, FXN56 and FXN78, are enclosed in square brackets and 
highlighted in yellow, orange, and red, respectively. The mature form of the protein, mFXN, is 

Figure 1. Three-dimensional structure and schematic representation of frataxin domains. (A) Three-
dimensional structure of the complete human frataxin (FXN) protein showing the spatial arrangement
of functional domains and key residues. Residues involved in iron binding and phosphorylation are
depicted as sticks, colored red and purple, respectively. Notably, residues I154 and W155, involved
in Friedreich ataxia mutations, are highlighted with pink sticks. Coulombic surface representation
was displayed alongside the illustration to depict the charge composition of the surrounding areas,
which illustrates the electrostatic potential. (B) Schematic representation of FXN designed using IBS
software Version 1.0. (http://ibs.biocuckoo.org/, 05 April 2024). The native sequence of the protein
is shown alongside functional domains and residues relevant to its function. The transit peptide (TP)
is colored green, while the frataxin-like domain (FLD) is colored blue. The regions comprising the
intermediate forms, FXN56 and FXN78, are enclosed in square brackets and highlighted in yellow,
orange, and red, respectively. The mature form of the protein, mFXN, is indicated by the bracket
from amino acids 81 to 210. The region densely populated with iron-binding residues is shown
between brackets.

http://ibs.biocuckoo.org/
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The mutations occurring in relevant locations of the protein were verified, such as
those occurring in iron-binding residues, where the following mutations were found:
E92K, E96K, E100A, E108V, E108D, D112H, D112Y, D112A, D115E, D122Y, and H177Y.
On the other hand, the mutations S81T, T94A, Y118C, S160C, S160T, and S160R are at
important phosphorylation sites. Furthermore, the mutations K171E and K171R occur in
the acetylation site and K197R in the sumoylation site of FXN.

2.2. Predictive Analysis

In this step, ten functional prediction algorithms were used to predict the neutral or
deleterious effects of missense mutations on the FXN function (Table S2). Among them,
PolyPhen-2, SIFT, PANTHER, and SNAP2 achieved 100% accuracy among the 10 known
deleterious mutations, followed by SNAP with 90%, PredictSNP, SNP&GO, and PMut with
80%. On the other hand, the PhD-SNP and Mutpred2 algorithms achieved 70% and 30%
accuracy in their predictions, respectively.

The SNAP2 and MutPred2 algorithms exhibited a high deleterious prediction rate
considering the analysis of all the mutations, with 75% and 85% of variants predicted to
belong to this class, respectively (Figure 2A). On the other hand, the PhD-SNP showed a
low rate of harmful predictions, classifying only 25% of the mutations as harmful.

Thus, the difference observed between prediction algorithms in classifying FXN mu-
tations highlights the importance of using a combination of algorithms for this analysis.
Functional prediction methods use a variety of machine learning algorithms and databases
for model training. Furthermore, there is no gold standard method for predicting muta-
tions [18]. Among the most used machine learning algorithms are Support Vector Machine,
Decision Tree, Neural Networks [35], and Bayesian methods [36].

These algorithms use Artificial Intelligence concepts, enabling computational learning
based on detecting patterns from examples contained in large databases [37]. They were
trained on a set of data that serves as an example, where cases are divided into classes
associated with a set of variables or attributes, aiming to detect patterns in variables
associated with the class in question. A summary detailing the predictive algorithms
utilized for characterizing FXN missense mutations is available within Supplementary
Materials (File S1). Based on the patterns learned during the training stage, these algorithms
can make predictions about new cases with relative accuracy [38].

Thus, a consensus approach was applied to analyze FXN missense mutations. Forty-
one percent of the mutations were predicted as deleterious by consensus, that is, by more
than half of the algorithms used (≥6 algorithms) (Figure 2B). This finding suggests that
these mutations can be detrimental to protein function, especially those predicted as
deleterious by all functional prediction algorithms simultaneously since algorithms with
different parameters converged on the same result.

Furthermore, the mutations with the highest rates of deleterious predictions were
concentrated in the frataxin-like domain, a domain involved in iron metabolism and the
synthesis of iron–sulfur clusters. The frataxin-like domain is located between residues
90 and 198, where most of the iron-binding residues and other sites of post-translational
modification are found (Figure 1), such as phosphorylation, which is essential for frataxin
degradation [27].
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Analysis of the SNPeffect, which evaluates protein aggregation tendency, amyloid 
propensity, and chaperone binding tendency using the TANGO, WALTZ, and LIMBO 
algorithms (Table S3) [31] (Figure 3A), indicated that nine mutations increased amyloid 
propensity (WALTZ): V68I, V73A, E108D, D112A, D122Y, L156I, V174A, V174L, and 
H183R, while eight other mutations were classified as increasing protein aggregation 

Figure 2. Functional prediction of human FXN protein variants. (A) Functional prediction of
mutations in each functional prediction algorithm used. The number of mutations predicted to be
deleterious is shown in red, while the number of mutations predicted to be neutral is shown in gray.
(B) Rate of deleterious predictions for the studied mutations.

Analysis of the SNPeffect, which evaluates protein aggregation tendency, amyloid
propensity, and chaperone binding tendency using the TANGO, WALTZ, and LIMBO
algorithms (Table S3) [31] (Figure 3A), indicated that nine mutations increased amyloid
propensity (WALTZ): V68I, V73A, E108D, D112A, D122Y, L156I, V174A, V174L, and H183R,
while eight other mutations were classified as increasing protein aggregation (TANGO) of
FXN: A10V, G11V, M76V, E108V, G130A, G130V, D139V, and H177Y. These mechanisms
are central to the pathophysiology of neurodegenerative diseases such as Alzheimer’s,
Parkinson’s, and Huntington’s diseases. No mutations were predicted to decrease or
increase chaperone binding [18,32].
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to I-Mutant3.0. 
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Figure 3. Stability prediction and SNPEffect4.0 analysis of missense mutations in the FXN protein.
(A) Missense mutations of FXN were compiled and submitted to the WALTZ (amyloid propensity),
TANGO (protein aggregation tendency), and LIMBO (chaperone binding) algorithms of SNPEffect4.0.
(B) The graph shows the percentage of mutations that alter protein stability according to I-Mutant3.0.

Stability prediction analysis in I-Mutant (Table S3), which applies the “Support Vector
Machine” method to calculate free energy based on experimentally determined struc-
tures [33] (Figure 3B), suggested that most of the mutations affected protein stability.
Fifty-two percent of the mutations were predicted to reduce protein stability, while in-
creased stability was considered a rare phenotype, as only 1% of all the mutations were
predicted in this class. Stability changes caused by missense mutations, as observed in
more than half of the mutations analyzed, can impact protein function by increasing or
decreasing stability.
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Stability changes can prevent conformational changes necessary for protein func-
tion, including those involved in post-translational modifications and protein–protein
interactions [39].

2.3. Structural Modeling and Validation

To date, only part of human FXN structure has been experimentally determined by
X-ray crystallography [15], which corresponds to the final portion of the protein, span-
ning amino acids 89–210. Understanding the three-dimensional structures of proteins
is necessary, as it improves the understanding of the biological processes that involve
the protein in question. This could lead to a better understanding of their activity, their
structure–function relationship, and their interaction with other molecules [22]. Therefore,
a complete theoretical model of the protein was constructed using in silico modeling.

In silico methods allow the modeling of protein structures efficiently and accurately.
Among the available methods, comparative modeling is the most accurate and allows the
generation of protein models with a range of general quality that can resemble experimen-
tally determined protein structures [40]. This technique, which is the most dependent on
prior information, is based on the use of proteins with potentially related sequences and
three-dimensional structures known as models. The experimental structure is selected
based on the identity obtained between the target sequence and the possible template
candidates available in specific sequence databases [41].

On the other hand, ab initio modeling does not depend on a previously determined
model, requiring only information contained in the amino acid sequence of the protein in
question. The method uses calculations of physicochemical and thermodynamic properties,
based on the global minimum of free energy, aiming to find a conformation with the lowest
free energy (global minimum) [42].

Threading modeling, in turn, uses a library of known fragments, from which it iden-
tifies the relationships between the structural fragments and the corresponding regions
in the target sequence. These fragments are then joined together, generating a temporary
three-dimensional structure. Finally, simulations such as Monte Carlo simulations are
used to calculate the interaction of these fragments with each other and generate the final
model [43].

Among the experimental fragments available in the PDB for human FXN, the 3S4M
fragment presented the highest resolution (1.30 Å), coverage (61%), and sequence identity
(100%) and was therefore selected for subsequent steps.

During the structural modeling stage, a total of 13 theoretical models of FXN were
generated, of which only the models produced by the Rosetta server were completely
modeled and folded (Table 1). These models were then used in the subsequent validation
steps. The five Robetta models were then aligned in TM-align [44] and showed high
structural similarity with the experimental fragment of 3S4M, given their RMSD and TM-
score values as shown in Table 2. RMSD and TM-score are structural similarity parameters,
where models structurally similar to their templates present RMSD < 2 angstroms and
TM-score > 0.5, respectively [22].

ProSa-Web estimates the global quality of a model, i.e., the Z-score, based on the
assessment of the potential energy of the three-dimensional structure. ProSa-Web calculates
the Z-score of all the structures contained in the Protein Database and plots these values on a
graph, which contains the distribution of expected Z-score values for structures determined
experimentally by X-ray crystallography and nuclear magnetic resonance (Figure 4A).
Finally, the algorithm calculates and includes the Z-score value of the protein of interest in
this graph [25].
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Table 1. Structural modeling of the human frataxin protein.

Algorithm Model Model Size Folding

Rosetta 1 210 complete
Rosetta 2 210 complete
Rosetta 3 210 complete
Rosetta 4 210 complete
Rosetta 5 210 complete

I-Tasser * 1 210 incomplete
I-Tasser * 2 210 incomplete
I-Tasser * 3 210 incomplete
I-Tasser * 4 210 incomplete
I-Tasser * 5 210 incomplete

Raptor-X * 1 210 incomplete
MholLine * 1 210 incomplete

Swiss Model * 1 168 complete
* Models with incomplete size and/or folding.

Table 2. RMSD and TM-Score values calculated from the structural alignment with the 3S4M
fragment.

Algorithm Model RMSD TM Score

Rosetta 1 0.59 0.98055
Rosetta 2 0.67 0.97807
Rosetta 3 0.59 0.98093
Rosetta 4 1.53 0.90771
Rosetta 5 0.70 0.97564

The structural quality of the complete models, that is, those generated by the Robetta
server, was analyzed using validation algorithms (Table 3).

Table 3. Structural validation for the complete theoretical models of the human frataxin protein.

Model ERRAT 1 PROCHECK 2 Verify-3D 3 Prosa-Web 4 QMEAN 5 VoroMQA 6

Rosetta1 99 86 80 NMR high resolution 0.43
Rosetta2 99 84 77 NMR high resolution 0.43
Rosetta3 95 87 86 NMR high resolution 0.42
Rosetta4 96 91 80 NMR high resolution 0.40
Rosetta5 98 86 83 NMR high resolution 0.42

1 Overall quality index in ERRAT (%); 2 Percentage of waste in the most favorable regions of the Ramachandran
plot; 3 Percentage of waste with a 3D-1D compatibility score equal to or greater than 0.2; 4 The overall quality index
(Z-score) estimated for the model is within the range of Z-score values calculated for NMR or crystallographic
structures; 5 The QMEAN score estimated for the model is within the range of QMEAN score values calculated
for high-resolution protein structures; 6 VoroMQA Global Quality Index.

QMEAN uses six physicochemical descriptors to estimate the overall quality of a
given structure (QMEAN score). This QMEAN score is calculated for the target structure
and plotted on a graph containing QMEAN score values for 9766 high-resolution protein
structures [45] (Figure 4B).

The PROCHECK server, in turn, displays the residuals in a graph called a Ramachan-
dran graph (Figure 4C). In this graph, each protein residue is allocated to different regions
based on the arrangement of its phi and psi angles. Structural validation depends on the
number of residues allocated to favorable regions of the plot, that is, the regions colored
red. The structures that have more than 90% of their waste allocated in these regions are
validated by the server [46].
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Ramachandran graph generated from the validation of model4_robetta on the PROCHECK server. 
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additional allowed regions (yellow), generously allowed regions (beige), and disallowed regions 
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ERRAT identifies error-prone regions in protein structures by analyzing the distance 
of their non-bonded interactions. Based on the observed distribution of these distances, 
recorded from a dataset containing 96 high-resolution protein structures, the algorithm 
estimates an error probability for each protein residue. High-resolution structures 
typically have approximately 95% of their residuals with an error probability of less than 
95%. The theoretical model of human frataxin presented 96.48% of its residues within the 
expected error range, thus being validated [47] (Figure 5A). 

Figure 4. Model validation. (A) Validation of model4_robetta on the ProSa-web server. The number
of residues is represented on the X-axis and the Z-score of the structure is represented on the Y-axis.
The structure submitted to the server corresponds to the black dot. Lighter blue regions correspond to
structures already determined by X-ray diffraction, while darker blue regions correspond to structures
determined by NMR. (B) Validation graph of model4_robetta on the QMEAN server. Structure length
in number of residues (X-axis), model QMEAN score (Y-axis). The QMEAN score of the experimental
structures is organized into quality bands according to their Z-score, represented in a normal range
with a scale that varies from black to gray on the graph. The QMEAN score of the submitted structure
is represented by a red “x” in the image. (C) Ramachandran graph generated from the validation of
model4_robetta on the PROCHECK server. The residues, represented by black squares and triangles,
are arranged in favorable regions (red), additional allowed regions (yellow), generously allowed
regions (beige), and disallowed regions (white).

In the Ramachandran plot displayed in Figure 4C, residues Y118 and S129 are located
within disallowed regions. Nonetheless, they are neither within nor near the mutation
sites at positions 154 and 155 (Figure S1). Consequently, it is unlikely that they signifi-
cantly influence the microenvironment of the mutated sites. Moreover, to date, there is
no experimental evidence suggesting that these residues contribute to protein stability or
folding. Therefore, they can be disregarded without compromising the protein structure or
the outcomes derived from it, particularly given this study’s focus on the structural effects
of I154F and W155R mutations.
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ERRAT identifies error-prone regions in protein structures by analyzing the distance
of their non-bonded interactions. Based on the observed distribution of these distances,
recorded from a dataset containing 96 high-resolution protein structures, the algorithm
estimates an error probability for each protein residue. High-resolution structures typically
have approximately 95% of their residuals with an error probability of less than 95%. The
theoretical model of human frataxin presented 96.48% of its residues within the expected
error range, thus being validated [47] (Figure 5A).
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Figure 5. Validation of the generated model. (A) Validation graph by the ERRAT algorithm, with
residuals plotted on the X-axis and error value on the Y-axis. * On the error axis, two lines are drawn
to indicate the confidence with which it is possible to reject regions that exceed that error value.
** Expressed as the percentage of the protein for which the calculated error value falls below the
95% rejection limit. (B) Assessment of the structural compatibility of the model on the Verify-3D
server. Structure residues are shown on the X-axis, while the 3D-1D score value is on the Y-axis.
(C) Local and smoothed quality scores calculated for the model on the VoroMQA server. Local scores
are shown as thin gray lines, while smoothed scores are depicted with thick black lines. Detailed
local structure (dls) and secondary structure (ss) are also presented for a better comparison. Detailed
local scores are colored from red to blue, indicating quality from lowest to highest, while secondary
structures are color-coded by type: pink for α-helices, yellow for β-sheets, and gray for coils.
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The Verify-3D algorithm assigns a structural compatibility value, the 3D-1D score, to
each residue and displays the result of this analysis in a graph (Figure 5B). The server uses
the minimum value of 0.2 for the 3D-1D score as a cutoff point, considering only residues
above this value as validated. High-resolution structures typically have more than 80% of
their residues considered approved by the server, that is, ≥ 0.2 of the 3D-1D score [48].

VoroMQA, “Model Quality Assessment based on Voronoi Diagram”, provides an
estimate of the overall quality of the structure based on the interactions between atoms
in the protein. From these interatomic analyses, the algorithm estimates quality scores
per residue, which are plotted on a graph, as seen in Figure 5C. Using the calculated local
scores, the algorithm generates an overall quality value for the structure. High-resolution
structures typically have global quality scores ≥ 0.4 [49]. The validated frataxin model
presented a global quality value of 0.4, thus being validated.

Additionally, considering the structural quality values obtained in the validation
algorithms, as well as the respective cutoff points for approval—also presented in Table 3—
Model 4 was considered validated. This analysis indicated that Model 4 has comparable
quality to experimentally determined structures (ProSa-Web and QMEAN), along with high
steric (PROCHECK), geometric (ERRAT), and structural quality to its sequence (Verify-3D).

In Figure 6A, the final validated model is superimposed on the experimental fragment
of human frataxin, i.e., 3S4M. Visual inspection of the alignment reaffirms the structural
similarity between the validated model and the crystallographic fragment of human FXN,
which is required for its structural validation [19]. Noteworthy, the R and R-free values of
the template structure (i.e., 3S4M) are 0.153 and 0.187, respectively. It indicates favorable
agreement with the experimental data since the R and R-free values are closely matched and
approximately 0.20, thus revealing a good fit between the model and the observed structural
factors and implying a high level of confidence in the protein structure representation [50,51].
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Figure 6. Theoretical model of human FXN generated on the Robetta server. (A) Structural alignment
in TM-align of Robetta model 4 and experimental fragment 3S4M. The three-dimensional structure of
the validated model is represented in green, while the structure of the crystallographic fragment is
represented in yellow. (B) Final validated model of human FXN. Beta sheet regions are represented
by pink arrows, while alpha helix regions are represented by blue helices. The surface of the protein
is also shown in the figure.
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2.4. Evolutionary Conservation Analysis

The surface of the generated model of the frataxin protein was colored according
to the ConSurf color coding scale (Figure 7A), representing the degree of evolutionary
conservation of each amino acid in the protein. ConSurf uses a scale that ranges from cyan or
1 (highly variable) to brown or 9 (highly conserved). Amino acid residues with functional or
structural importance are crucial for protein function and are often evolutionarily conserved
over time due to greater selective pressure [52]. Therefore, the mutations that affect
conserved positions are more likely to be harmful to the protein [53].
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Figure 7. Evolutionary conservation analysis of the human FXN protein using ConSurf. (A) The
degree of evolutionary conservation of the amino acids of the FXN protein is represented on the
protein surface according to the ConSurf color scale, ranging from 1 e cyan (variable) to 9 e brown
(conserved). (B) Donut chart showing the number of mutations for each degree of evolutionary
conservation of the affected position.

ConSurf analysis revealed that a substantial portion of the mutations affects conserved
(ConSurf score ≥ 7) and variable (ConSurf score ≤ 3) positions within the FXN protein,
accounting for 40% and 39%, respectively. Conversely, only 21% of all the mutations
occurred in moderately conserved positions (ConSurf score between 4 and 6). Furthermore,
19% of FXN mutations had a ConSurf score of 9, indicating the maximum conservation
score and therefore being potentially crucial for FXN function [52].

The frataxin-like domain is a conserved domain found in eukaryotic frataxin and
CyaY proteins, the corresponding bacterial orthologs involved in iron–sulfur cluster (FeS)
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metabolism. Structural analyses of E. coli CyaY, yeast frataxin homolog (Yfh1), and human
FXN have revealed a common protein folding pattern across these species [54,55].

A substantial fraction of the mutations compiled in this study for human FXN oc-
curs within the frataxin-like domain (Table S1), from which 36 received the maximum
ConSurf conservation score (Table S4). This suggests the functional importance of this
domain, housing numerous post-translational modification sites, including iron-binding
and phosphorylation sites (Figure 1A).

2.5. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation is an in silico method for solving Newtonian
equations of motion for a group of atoms, helping to reproduce the behavior of proteins
in their biological environment [56]. The atomic coordinates and velocities calculated for
the simulated system are recorded over time in the trajectory file, providing detailed infor-
mation about conformational changes and protein fluctuations over time. The trajectory
file is then analyzed to evaluate biochemical and structural parameters, such as structural
flexibility [57]. MD simulations can replicate the real behavior of a protein in its natural
environment, allowing the study of biomolecular processes such as conformational change,
protein folding, and ligand binding, as well as predicting the effects structural perturba-
tions, including mutation, phosphorylation, and protonation [56]. Molecular dynamics
simulations were conducted on the wild-type frataxin protein and two missense mutation
variants, I154F and W155R. Unlike other FRDA-related mutations in the human FXN
protein, the variants I154F and W155R are associated with an earlier onset of the disease
and a more severe pathogenesis in affected patients. Given their clinical significance, these
mutations have been subjected to further analysis [58,59].

Considering the biochemical characteristics of amino acid substitutions at position
I154, replacing isoleucine with another hydrophobic amino acid, such as the bulkier pheny-
lalanine, is unlikely to destabilize protein folding. Particularly considering that this residue
is embedded deep within the hydrophobic core of the protein, shielded from the aqueous
environment (Figure S1). Despite that, the protein microenvironment may be affected
within I154F due to the newly introduced aromatic rings of phenylalanine, which could
interact through pi interactions with W173 (Figure S2). In contrast, the surface-exposed
and highly conserved residue W155 are more likely to be involved in protein–environment
interactions (Figure S1). Additionally, substituting W155 with arginine could lead to re-
pulsive interactions with a nearby arginine residue at position 165 (Figure S2), potentially
disrupting the local protein microenvironment [58].

Thus, the mutations I154F and W155R can significantly alter the microenvironment
around the substituted residues in the human frataxin protein. These alterations may in-
clude the disruption or formation of new interactions as well as changes in local electrostatic
and hydrophobic properties [58,60].

In this context, analyzing these mutations through MD simulations provides valuable
insights into how changes in the amino acid sequence influence both the local microenviron-
ment and the overall protein structure. While static models like crystallographic structures
can be used to identify immediate structural disruptions at mutation sites, MD simulations
can capture the dynamic rearrangements that a protein undergoes in response to mutations.
Additionally, this method enables a comprehensive evaluation of the cumulative effects of
mutations on protein stability and flexibility, extending far beyond the immediate vicinity
of the mutated site [32,61].

The root mean square deviation (RMSD) measures the spatial differences between
the initial structure and its corresponding coordinates calculated during the simulation.
RMSD is used to analyze the atomic displacement between protein structures during an
MD simulation and is performed by the molecular dynamics mechanism. This parameter
is useful for analyzing the movement of protein structures over time and comparing the
convergence of structures during the simulation [62].
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RMSD values were calculated from the total number of protein conformations com-
puted in the MD trajectories [62]. As shown in Figure 8, wild-type FXN and I154F
(Figure 8A) and W155R (Figure 8B) variants exhibited stable behavior after an initial period
of structural instability. After approximately 150 ns, a plateau is observed in the RMSD
values, suggesting that these proteins are in a stable average conformation, indicating that
the system has reached equilibrium [11,32,53].
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constant Rg values, indicating stable protein folding [12]. The mean and standard 
deviation values of Rg for FXN WT (1.917 ± 0.091) are similar to those of the W155R variant 
(1.968 ± 0.095) (Figure 9B). Meanwhile, the I154F variant (Figure 9A) presented the lowest 
mean and standard deviation values (1.854 ± 0.032). This result suggests that there were 
no significant changes in the compaction of the analyzed variants. 

Figure 8. RMSD analysis of native FXN and its variants. The RMSD values calculated for the
backbone atoms of the wild-type FXN protein and its variants at 300 K over time. Means (solid
lines) and 95% confidence intervals (smooth lines) are shown for triplicates. (A) The wild type is
represented in black, while the I154F variant is represented in blue. (B) The wild type is represented
in black, while the W155R variant is represented in red.

The radius of gyration (Rg) measures the structural displacement of protein atoms
around their common center of mass along the trajectory, providing information about
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the compaction of the protein over time. The calculated Rg values for wild-type FXN and
its variants are depicted in Figure 9. The analyzed protein structures exhibited relatively
constant Rg values, indicating stable protein folding [12]. The mean and standard devia-
tion values of Rg for FXN WT (1.917 ± 0.091) are similar to those of the W155R variant
(1.968 ± 0.095) (Figure 9B). Meanwhile, the I154F variant (Figure 9A) presented the lowest
mean and standard deviation values (1.854 ± 0.032). This result suggests that there were
no significant changes in the compaction of the analyzed variants.
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are similar to the mean values for the I154F (127.7 ± 3.9) and W155R (124.2 ± 3.4) variants, 
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Figure 9. Rg analysis of native FXN and its variants. The Rg values of native FXN and its variants
at 300 K are shown over time. Means (solid lines) and 95% confidence intervals (smooth lines) are
shown for triplicates. The means of each triplicate are represented by solid lines, while the confidence
intervals are represented by smoother lines. (A) The wild type is represented in black and the I154F
variant in blue. (B) The wild type is represented in black and the W155R variant in red.
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SASA measures the exposed surface on a protein structure that can be accessible to
solvent molecules, providing crucial information about exposure to proteins over time in
their biological environment [63,64]. The SASA values calculated throughout the simu-
lations, represented in Figure 10, indicate stable behavior for the I154F (Figure 10A) and
W155R (Figure 10B) variants, showing stable behavior after 150 ns until the end of the MD
trajectories. The analysis suggests that the mean SASA values for FXN T (128.0 ± 4.7) are
similar to the mean values for the I154F (127.7 ± 3.9) and W155R (124.2 ± 3.4) variants,
indicating that there are no significant changes pointing to changes on the protein surface.
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FXN78, and mFXN (FXN81). On the other hand, a decrease in flexibility was observed for 
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Figure 10. SASA analysis of native FXN and its variants. SASA values of native FXN and its variants
up to 300 K are shown over time. Means (solid lines) and 95% confidence intervals (smooth lines) are
shown for triplicates. (A) The wild type is represented in black and the I154F variant in blue. (B) The
wild type is represented in black and the W155R variant in red.

RMSF is a parameter used to measure the structural displacement of an amino acid in
relation to its average position during the simulation [19]. RMSF evaluates the flexibility of
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protein structures, leading to the identification of more flexible or rigid regions [65]. An
RMSF analysis indicated increased flexibility for the I154F mutation (Figure 11A), with
greater changes in the initial domains such as the transition peptide, FXN42, FXN56, FXN78,
and mFXN (FXN81). On the other hand, a decrease in flexibility was observed for the
W155R variant (Figure 11B).
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protein residues, being used during the MD simulation to analyze the flexibility of its 
residues. Analyze the structural displacement of an amino acid with its average position 
considering the vibrations caused by temperature. Each amino acid of the FXN protein 
had its value calculated and subsequently projected onto the surface of the protein 
structure, thus providing a three-dimensional representation of the protein’s structural 
flexibility [11]. 

Figure 11. RMSF analysis of native FXN and its variants. The RMSF values for each native FXN
residue and its variants are shown in a linear graph at a temperature of 300 K. Shown below is a
schematic representation of the structure of the wild-type protein, with key regions highlighted.
The transition peptide is colored in green, the frataxin-like domain in blue, and the regions com-
prising intermediate forms (FXN42, FXN56, and FXN78) are highlighted in yellow, orange, and red,
respectively. (A) The wild type is represented in black, while the I154F variant is represented in blue.
(B) The wild type is represented in black, while the W155R variant is represented in red.
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Consistent with the RMSF analysis, the B factor is used to describe the flexibility of
protein residues, being used during the MD simulation to analyze the flexibility of its
residues. Analyze the structural displacement of an amino acid with its average position
considering the vibrations caused by temperature. Each amino acid of the FXN protein had
its value calculated and subsequently projected onto the surface of the protein structure,
thus providing a three-dimensional representation of the protein’s structural flexibility [11].

As shown in Figure 12A, the I154F variant exhibited greater flexibility in the transition
peptide and FXN56 regions compared to wild-type FXN. On the other hand, the W155R
variant (Figure 12B) showed less flexibility in the same region. Changes in flexibility were
observed in both variants in regions similar to those found during the RMSF analysis,
suggesting a change in protein flexibility with both variants.
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Figure 12. Analysis of native FXN factor B and its variants. Residues of wild-type FXN (A) and its
variants I154F (B) and W155R (C) are sized and colored according to their B-factor values, following a
color thickness scale ranging from thin blue (residues more rigid) to thick red (more flexible residues).
(D) Schematic representation of the FXN structure for comparison. The transition peptide is colored
green, while the frataxin-like domain is colored blue. The regions comprising intermediate forms
(FXN56, FXN78, and FXN81) are highlighted in yellow, orange, and red, respectively. Mutated
residues (I154F and W155R) are highlighted in pink.
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During the protein maturation process, proteins undergo a series of coordinated events,
including folding, post-translational modification, and cofactor assembly. These processes
are highly dependent on protein flexibility, which allows proteins to acquire their functional
three-dimensional structures. Changes in protein flexibility can affect the efficiency and
precision of these processes, leading to misfolded or dysfunctional proteins [11].

Essential dynamics (ED), also known as Principal Component Analysis (PCA), is
applied to analyze MD simulations. PCA transforms complex, high-dimensional data
contained in a molecular trajectory into a low-dimensional space where large-scale pro-
tein movements are observed, reducing the number of dimensions needed to describe
the dynamics of these proteins. By statistically filtering the observed movements in the
molecular trajectory using a covariance matrix with Cartesian coordinates representing the
atomic positions of the protein, PCA allows the separation of essential movements of the
protein from others. Larger-scale movements, or essential movements, are generally more
biologically relevant to protein function, such as opening, closing and bending, while other
movements consist of small local fluctuations and are irrelevant [32].

The MD trajectories of wild-type FXN and its variants in the subspace covered by PC1
and PC2 are displayed in Figure 13. PCA analysis suggests that the main components, PC1
and PC2, captured the dominant movements of the protein, representing about 89, 74%,
73.31% and 91.39% of the total variance for FXN WT and its variants I154F and W155R,
respectively. In Figure 13 it is observed that the variants occupy a similar area in the
conformational space, while the I154F variant (Figure 13A) occupies a relatively larger
area than the native protein, while the W155R variant (Figure 13B) occupies a smaller area.
Changes in the cluster shape, i.e., in the conformational space of the variants, were also
observed when compared to the wild-type frataxin cluster. ED analysis therefore indicated
changes in the global essential dynamics of all variants.
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and PC2 was also analyzed [32]. The RMSF values for the projections are presented in 
Figures 14 and 15, respectively. The RMSF for PC1 (Figure 14) showed increased essential 
mobility in the transition peptide of both variants and in the FXN78 domain of the I154F 

Figure 13. PCA for native FXN and its variants. Projection of the first two principal components
extracted from the MD trajectories. (A) PCA projection for wild-type FXN in black compared to the
I154F variant in blue. (B) PCA projection for wild-type FXN in black compared to the W155R variant
in red.

The contribution of RMSF for each protein amino acid to the main components PC1
and PC2 was also analyzed [32]. The RMSF values for the projections are presented in
Figures 14 and 15, respectively. The RMSF for PC1 (Figure 14) showed increased essential
mobility in the transition peptide of both variants and in the FXN78 domain of the I154F
variant, as well as decreased flexibility in the frataxin-like domain, with greater loss in the
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I154F variant. On the other hand, the contribution of RMSF to PC2 (Figure 15) showed
essential mobility changes in the transition peptide, FXN56, FXN78, and the frataxin-like
domain, mainly in the I154F variant. Analyzing Figures 14 and 15, the changes appear to be
more pronounced in the transition peptide, in green, and in the FXN56 domain, in orange,
with high flexibility fluctuations, mainly in the I154F variant.
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each protein amino acid to PC1 is shown in a linear graph, accompanied by the projection of the 

Figure 14. Contribution of RMSF to PC1 of native FXN and its variants. The RMSF contribution of
each protein amino acid to PC1 is shown in a linear graph, accompanied by the projection of the
corresponding protein structure and schematic representations of key protein regions. The transition
peptide is colored green, while the frataxin-like domain is colored blue, and the regions comprising
the intermediate forms, FXN56, FXN78, and FXN81, are highlighted in yellow, orange, and red,
respectively. Each amino acid, whether from the WT or its two variants under consideration, is
colored and scaled according to its RMSF contribution, on a color and thickness scale that ranges from
blue and thin (low fluctuations) to red and thick (high fluctuations). (A) RMSF contribution of WT
FXN to PC1. (B) RMSF contribution of Variant I154F to PC1. (C) W155R Variant RMSF contribution
to PC1.
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Figure 15. Contribution of RMSF to PC2 of native FXN and its variants. The RMSF contribution of
each amino acid of the protein to PC2 is shown in a linear graph, where the corresponding structure
is projected and schematic representations of fundamental regions of the protein are highlighted. The
transition peptide is colored green, while the frataxin-like domain is colored blue, and the regions
that make up the intermediate forms, FXN56, FXN78, and FXN81, have been highlighted in yellow,
orange, and red. Each amino acid was colored and sized according to its RMSF contribution, on
a color and thickness scale ranging from blue and thin (low fluctuations) to red and thick (high
fluctuations). (A) Contribution of RMSF to PC2 of FXN WT. (B) RMSF contribution to PC2 of variant
I154F. (C) RMSF contribution to PC2 of the W155R variant.

To further explore the structural changes induced by mutations, we aligned the struc-
tures of variants I154F and W155R with the wild type at the final stage of molecular
dynamics (MD) simulations (Figure S3). The structural alignment of these variants with
the wild type returned RMSD values of 3.35 and 3.81 Å, suggesting significant structural
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perturbations that could have functional implications for the protein [23]. These alterations
mainly occur within the N-terminal domain of I154F and W155R, supporting the findings
from previous analyses of RMSF, B-factor, and PCA.

Human frataxin is a highly conserved, nuclear-encoded protein that requires pro-
teolytic processing to become functional in its mature form. In eukaryotes, frataxin is
synthesized as a pre-protein with an N-terminal signal peptide for mitochondrial trans-
port [27,66]. The N-terminal mitochondrial targeting sequence of both mammalian and
yeast frataxin undergoes proteolytic cleavage in a two-step process, ultimately yielding the
mature protein [27]. Both cleavage steps are mediated by the mitochondrial processing
peptidase (MPP) [59,67]. The precursor of yeast frataxin Yfh1p undergoes two sequential
cleavages by MPP for maturation [68]. The two-step model is supported by in vitro stud-
ies, while in vivo analysis in human cells corroborates this model, revealing a different
N-terminal sequence for mature frataxin [27,66]. In vitro self-assembly experiments suggest
a critical role for residues 56 to 78 in frataxin polymer formation [69]. Frataxin homopoly-
merization was analyzed in the ∆yfh1 yeast knockout model, showing it is dispensable for
rescuing the growth defect but important for reducing iron-induced oxidative stress and
increasing life span [70,71].

The impact of FRDA-related mutations in FXN may include effects on folding effi-
ciency, protein stability, proteolytic susceptibility, function, or even protein maturation [67].
According to Gordon et al. (1999), mutations in the N-terminal region can impair signal
peptide targeting functions, and mutations in other domains can interfere with the folding
necessary to become an efficient substrate for processing [72].

The study of Chi-Lin Tsai et al. (2012) indicated that the I154F and W155R mutations
displayed reduced thermodynamic stability in vitro, with a tendency to precipitate after
iron binding and highlighted that these mutations impact the maturation and biogenesis of
the frataxin protein, associated with the most severe form of FRDA [62]. In vivo assays also
conducted by Chi-Lin Tsai et al. (2012) revealed that the FRDA missense mutants W155R
and I154F mutants exhibit reduced catalytic efficiency, resulting in an allosteric activation
with a weak binding affinity to the Fe-S assembly complex [58].

Moreover, Koutnikova et al. proposed that the interaction and cleavage of frataxin
by MPP might be somewhat impaired by disease-associated missense mutations in its C-
terminal region (G130V and I154F). They observed that the maturation process of the I154F
mutant was diminished in comparison to wild-type frataxin when analyzed in vivo [59].

Proteins are dynamic entities whose functions are intricately tied to their three-
dimensional structures and inherent flexibility. Flexibility within a protein structure enables
small to large-amplitude domain movements, essential for adapting to optimal conforma-
tions necessary for engaging in complex biological processes. Among them, binding to
ligands, enzymatic mechanisms, and interactions with other proteins or nucleic acids [73].

Protein recognition is regulated by the interplay between the interaction energy gained
from the proper alignment of the ligand in the binding site, and the elastic energy required
to deform the interacting molecules. This process is governed by the induced fit model,
in which the protein’s binding site is specifically configured to align with a particular
ligand, utilizing the protein’s natural flexibility to achieve it. When a protein can adjust its
conformation to a ligand, it often leads to more favorable enthalpic interactions, such as
hydrogen bonds and van der Waals forces, and may also result in more favorable entropy
changes by reducing the conformational freedom of the protein–ligand complex [74].

Protein inherent flexibility, typically maintained in its physiological native state [74],
can be disturbed upon mutations and post-translational modifications. These modifications
can disturb the balance of forces that maintain protein structure and dynamics, subsequently
impacting the protein’s ability to assume an optimal and, thus, functional conformation.
While increased flexibility can enhance conformational adaptability, benefiting molecular
recognition and target binding, excessive flexibility may lead to structural instability and
misfunction. Decreased flexibility, on the other hand, are likely to hinder the protein’s
adaptability, potentially leading to loss of function. Nevertheless, the consequences of
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these alterations can vary significantly, depending on the specific protein and the biological
context and environment in which it operates. Thus, the general understanding is that
protein flexibility can have strong and yet non-intuitive consequences for protein interaction
profile, as reviewed elsewhere [75].

In our study, we analyzed the RMSF and B factor of the wild-type frataxin protein
and its I154F and W155R variants. Our findings showed significant changes in frataxin’s
flexibility, particularly in the N-terminal region, with a more pronounced effect observed in
the I154F variant. The affected regions included the transition peptide domains (FXN1-41),
FXN56, and FXN78, crucial for protein maturation and cleavage processes [27].

Thus, our MD findings indicate that the mutations I154F and W155R disturb FXN’s
inherent structure and dynamics, primarily in the N-terminal domain. It could compromise
the protein’s ability to achieve an optimal and, consequently, functional conformation with
a consequent impact on FXN recognition and target binding, especially within the most
affected region [75]. Given the key role of the N-terminal domain in protein maturation
through interactions with MPP, these mutations may hinder FXN’s recognition, thus im-
pacting the cleavage steps involved in its maturation, aligning with the findings of the
previous literature [58,59,72,76–78].

3. Materials and Methods
3.1. Protein Sequence and Variant Acquisition

The sequence of the wild-type human FXN protein was retrieved from the UniProt
database (ID: Q16595). Genetic variants of the FXN protein were collected from multiple
sources, including the following databases: UniProt (ID: Q16595) [79], OMIM
(ID: 606829) [80], dbSNP [34], as well as through a literature review on PubMed.

3.2. Predictive Analysis

The native protein sequence and the compiled variants were subjected to functional
and stability prediction analyses. Ten algorithms were used to predict the functional
impact of FXN variants: PolyPhen-2, SNAP2, SNP&GO, PANTHER, SIFT, SNAP, PHD-SNP,
PMut, PREDICT-SNP, and MutPred2. The I-Mutant algorithm was used to evaluate the
effect of variants on protein stability. Furthermore, SNPEffect4.0’s TANGO, WALTZ, and
LIMBO algorithms were used to predict the potential effects of the mutations on protein
aggregation, amyloid propensity, and chaperone binding tendency, respectively [11,18].

3.3. Structural Modeling and Validation

The experimental fragment of the human FXN protein was retrieved from the Pro-
tein Data Bank (PDB) (3S4M) [15], selected based on the highest coverage and sequence
identity determined through a Protein Blast search algorithm. Furthermore, the quality
of resolution was considered when selecting the structure, which served as a model for
comparative modeling. Comprehensive theoretical models of the native protein were
constructed through comparative modeling, threading and/or ab initio methods using
the following modeling servers: SwissModel, Robetta, I-TASSER, MholLine, and Raptor-
X [17,19]. Models exhibiting incomplete sequence coverage or folding were excluded from
further analysis.

The structural quality of the complete theoretical models of human FXN was assessed
using six validation algorithms: ProSa-Web, QMEAN, PROCHECK, Verify3D, ERRAT, and
VoroMQA. These algorithms evaluate structure–sequence compatibility, evaluate overall
model quality via comparisons with experimentally determined structures, and perform
stereochemical analyzes using the Ramachandran plot [17]. The theoretical model that
presented the highest number of approvals in the validation algorithms was chosen for the
structural alignment stage.

Finally, the selected model was structurally aligned with the 3S4M experimental frag-
ment using the TM-align server to verify its similarity with the crystallographic structure
of the human FXN protein [44].
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3.4. Evolutionary Conservation Analysis

The validated model was subjected to an evolutionary conservation analysis on the
ConSurf server [81], which calculates the degree of evolutionary conservation of each
amino acid in the protein based on the phylogenetic relationship between the target protein
and its homologous sequences through multiple sequence alignments [11]. The following
parameters were selected for analysis: homologous search algorithm: PSI-BLAST; number
of iterations: 3; E cut-off value: 0.0001; protein database: UniProt; reference sequence:
closest; number of selected reference sequences: 150; maximum sequence identity: 95%;
minimum identity of counterparties: 35%; alignment method: MAFFT-L-INS-I; calculation
method: Bayesian; evolutionary replacement model: best model (default) [17].

3.5. Molecular Dynamics Simulation

The I154F and W155R mutations were individually induced via in silico mutagenesis
in the validated native FXN model using the Mutator Plugin 1.3 [82] within the Visual
Molecular Dynamics (VMD) 1.9.3 software [83]. Molecular dynamics (MD) simulations of
the native protein and variants were carried out using the GROMACS 2018.3 package [84],
following methodologies established by our group [11,12]. The simulations were carried
out in triplicate using the AMBER99SB-ILDN force field, known for accurately describing
several structural and dynamic properties of proteins [85].

Initially, the molecules were solvated in a triclinic box and solvated with TIP3P water
molecules. The system was neutralized by adding Na+ and Cl- ions at a concentration of
0.15 mol/L. Subsequently, energy minimization was performed using the steepest descent
method [86,87]. The minimized system experienced NPT (constant number of particles,
constant pressure, and temperature) and NVT (constant number, volume, and temperature)
sets for 100 ps under a constant pressure of 1 atm and a temperature of 300 K. Following
the NPT simulation, MD simulations were performed in triplicate for 300 ns under a
temperature of 300 K.

The MD trajectories were comparatively analyzed using several GROMACS distribu-
tion programs: gmx trjcat, gmx trjconv, gmx rms, gmx rmsf, gmx gyrate, gmx sasa, gmx hbond,
gmx mindist, gmx distance, and gmx gangle. Parameters including root mean square deviation
(RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), number of in-
tramolecular hydrogen bonds, solvent accessible surface area (SASA), and B factor were ex-
amined. Furthermore, principal component analysis (PCA) was performed for native FXN
and its variants. Rotational and translational motions were eliminated to construct covari-
ance matrices, and PCA was performed on the Cα atoms. The Cartesian coordinates of these
atoms were used to generate the covariance matrices. PCA analyzes were performed using
the Bio3D package of the R software version 4.3.3 (https://www.r-project.org/ accessed
on 3 April 2024) [88]. Data visualization was performed using the ggplot2 package [89]
in R and the UCSF Chimera software version 1.14 (https://www.cgl.ucsf.edu/chimera/
accessed on 2 February 2024) [90]. The structures of wild type and variants at the final
stage of molecular dynamics (MD) simulations were aligned in the TM-align server [91] to
further explore the structural changes induced by the mutations I154F and W155R.

4. Conclusions

Overall, 226 missense mutations in human frataxin were compiled from the literature
and databases, which underwent a thoroughly functional characterization in silico. This
study also provided an unprecedented, complete, and accurate three-dimensional model
of human frataxin, serving as a basis for constructing the structure of clinically relevant
variants, I154F and W155R. Our MD findings suggest that these mutations disturb FXN’s
inherent structure and dynamics, primarily within the N-terminal domain. This behavior
could compromise the protein’s ability to adopt functional conformations, potentially
leading to impaired recognition and cleavage by the MPP protein, which is directly involved
in FXN maturation, as outlined in previous studies. Thus, our findings provide valuable

https://www.r-project.org/
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insights into the molecular basis of FXN dysfunction in FRDA, shedding light on future
directions that could be explored for developing new therapeutic strategies.
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www.mdpi.com/article/10.3390/ijms25115796/s1. References [92–97] are cited in the Supplementary
Materials in the SI section.
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