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Abstract: Breast cancer is influenced by factors such as diet, a sedentary lifestyle, obesity, and post-
menopausal status, which are all linked to prolonged hormonal and inflammatory exposure. Physical
activity offers protection against breast cancer by modulating hormones, immune responses, and
oxidative defenses. This study aimed to assess how a prolonged high-fat diet (HFD) affects the effec-
tiveness of physical activity in preventing and managing mammary tumorigenesis. Ovariectomised
C57BL/6 mice were provided with an enriched environment to induce spontaneous physical activity
while being fed HFD. After 44 days (short-term, ST HFD) or 88 days (long-term, LT HFD), syngenic
EO771 cells were implanted into mammary glands, and tumour growth was monitored until sacrifice.
Despite similar physical activity and food intake, the LT HFD group exhibited higher visceral adipose
tissue mass and reduced skeletal muscle mass. In the tumour microenvironment, the LT HFD group
showed decreased NK cells and TCD8+ cells, with a trend toward increased T regulatory cells,
leading to a collapse of the T8/Treg ratio. Additionally, the LT HFD group displayed decreased
tumour triglyceride content and altered enzyme activities indicative of oxidative stress. Prolonged
exposure to HFD was associated with tumour growth despite elevated physical activity, promoting a
tolerogenic tumour microenvironment. Future studies should explore inter-organ exchanges between
tumour and tissues.

Keywords: high-fat diet; obesity; spontaneous physical activity; mammary carcinogenesis; tumour
microenvironment; immunity; oxidative stress

1. Introduction

Breast cancer is the most common cancer diagnosed in women and the second most
common for both sexes, just behind lung cancer. In 2022, an estimated 2.3 million new
breast cancer cases arose, representing 11.6% of all cancer cases. Breast cancer is the
fifth leading cause of cancer death worldwide, with 666,000 deaths. Among women,
breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths [1]. Breast cancer
is a multifactorial pathology. Non-modifiable genetic factors have an important role in
mammary carcinogenesis, with the involvement of high and medium penetrant genes [2]
and many single nucleotide polymorphisms (SNP) [3], as reported in the literature. These
mutations can severely increase the risk of developing breast cancer [4,5]. However,
5–10% of breast cancers are recognised to be hereditary [6]. The contribution of SNP
polymorphisms to the occurrence of breast cancer is more closely related to pre-menopausal
invasive breast cancer than to post-menopausal cases [7].
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The results of numerous clinical and epidemiological studies clearly show the influence
of modifiable risk factors such as lifestyle habits on the prevention and development of
breast cancer [8]. Indeed, an overall healthy lifestyle is inversely related to the risk of
invasive breast cancer, in particular, among post-menopausal women [7,9].

As stated by the World Cancer Research Fund International [10], excess weight or
obesity throughout adulthood has an ambivalent role depending on menopausal status.
Obesity increases the risk of getting breast cancer by 33% in post-menopausal women,
despite being protective in pre-menopausal women [11]. Despite these observations, it is
recommended to maintain a healthy throughout all stages of life, with a healthy diet and
regular physical activity [10].

Breast tissue is composed of many anatomical structures, including fat, which are in-
volved in various breast mechanisms like development, pregnancy, lactation, and age-related
involution [12,13]. The main immune cells found in breast adipocytes are macrophages. These
exert various tissular functions, such as removing dead adipocytes and beige adipogenesis,
and they contribute to regulating lipid storage [14].

The extent of adipose tissue due to excessive caloric intake and lack of energy expendi-
ture leads to an alteration of white adipose tissue (WAT) physiology throughout the whole
body, including in organs such as the breast. This is associated with many pathologies [15],
such as inflammation, insulin resistance [16], and metabolic syndrome [17]. Excess calorie
consumption during obesity can also trigger liver disease [18], which could then lead to
extrahepatic cancers, such as breast cancer [19].

The link between body fat content and breast cancer is based on several mecha-
nisms. Indeed, chronic inflammation, associated with expended mammary WAT, leads
to macrophage (M) infiltration, forming crown-like structures around dead and dying
adipocytes as well as in visceral and subcutaneous adipose tissue [20]. This is followed
by the activation of nuclear factor-kappa B (NF-κB), inducing elevated production of pro-
inflammation factors, such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and
prostaglandin E (PGE)2, and dysregulation of the leptin/adiponectin ratio. The increase in
leptin level contributes to many mechanisms in breast cancer development, such as cell
proliferation, adhesion, invasion, migration, inflammation, angiogenesis, and epithelial–
mesenchymal transition [21]. The upregulation of pro-inflammatory factors is associated
with an increase in the expression and activity of aromatase in WAT. The final stage of
estrogen synthesis is regulated by this enzyme [22], which in turn causes an increase in
mitochondrial respiration linked to the generation of reactive oxygen species, DNA damage
from mitochondrial metabolism, and a decrease in the DNA damage repair system [23].
All of these phenomena are responsible for the increased risk of breast cancer in obesity.

Physical activity is recommended for overweight or obese people for cancer preven-
tion and survival [24,25]. Such activity reduces body fat mass and obesity-associated
inflammation, restores insulin sensitivity, and increases energy expenditure and metabolite
consumption [26,27]. Physical activity is also proposed as a solution for the management
of obesity-related-liver disease [28]. It acts on many levels against breast cancer. Physical
activity decreases the availability of androgens, estrogens, and progestogens and increases
the production of sex hormone-binding globulin [29]. Physical activity modulates estrogen
signaling associated with breast cancer in obese individuals. At the immune level, we
previously demonstrated that, in a high-fat diet-fed mice, spontaneous physical activity
permits the recruitment of antitumour immune cells in the tumour microenvironment,
leading to a decrease in tumour growth [30]. This observation can be explained by multiple
mechanisms, such as the recruitment of CD8+ T cells [31] or the modulation of natural
killer (NK) cell proportion and activity [32]. Moreover, oxidative stress is reduced with
an increase in the expression and/or the activities of antioxidant enzymes, depending on
the type of physical exercise [33]. The role of physical activity in metabolic regulation to
counteract cancer development is discussed as well [34].

In previous animal studies on post-menopausal breast cancer, we have shown that
spontaneous physical activity prevents tumour growth at several levels, such as immune
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regulation inside the tumour [30], or at systemic and tissular hormone levels [35]. These
studies focused on a short-term high-fat diet; therefore, it is unknown how long-term
obesity may affect the benefits of physical activity. Consequently, this study aims to
evaluate the benefits of spontaneous physical activity on the effect of a long-term high-
fat diet (LT HFD) versus a short high-fat diet (ST HFD) duration in mammary tumour
development in a syngenic mice model of post-menopausal cancer.

2. Results
2.1. A Long-Term High-Fat Diet Tended to Influence Spontaneous Physical Activity but Not
Food Intake

Before tumour cell implantation, LT HFD had no impact on the daily distance trav-
elled (LT HFD = 1.065 ± 0.076 vs. ST HFD = 0.693 ± 0.103 km/day/mouse, p = 0.1265).
Similarly, tumour growth did not affect the daily distance travelled, whatever the group
(LT HFD = 0.965 ± 0.217 vs. ST HFD = 0.818 ± 0.048 km/day/mouse, p = 0.9357). As a
whole, the experiment showed an effect of diet duration on spontaneous physical activity
that tended to be significant (p = 0.0915), contrary to tumour growth (p = 0.9335).

Food intake was similar between the two groups, either before or after tumour im-
plantation. Similarly, there was no difference in food intake before and after tumour
implantation within each group (Figure 1A).
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Figure 1. Impact of long-term high-fat diet on daily food intake and body weight evolution. (A) Food
intake and (B) body weight time course throughout the experiment. (C) Body weight variation
before and after tumour implantation. (D) Individual body weight evolution after ovariectomy (ovx)
at tumour implantation and sacrifice. Data presented as boxes with median, interquartile range
and min–max values (n = 10–11 mice/group) or individually were analysed by two-way ANOVA
followed by a Tukey test with the factors being the experimentation period and the diet duration.
Values with different superscript letters are statistically different, p < 0.05. ST and LT HFD: short- or
long-term high-fat diet.
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2.2. The Duration of Lipid Consumption Altered Anthropometric Parameters

When the high-fat diet was introduced, both groups significantly gained weight until
tumour implantation. During tumour growth, mice under LT HFD did not lose weight
(LT HFD = 32.3 ± 1.3 g at sacrifice), while mice under ST HFD tended to lose weight at
sacrifice (ST HFD = 28.4 ± 0.8 g, p = 0.0856), leading in a significant effect of diet duration
on weight management (p = 0.0109). It is noteworthy that, in each group, one mouse did
not respond to the high-fat diet (LT HFD: 25.3 g, 24.7 g, and 25.5 g; ST HFD: 23.5 g, 25.2 g,
and 24.8 g, respectively) at the beginning, implantation, and sacrifice times (Figure 1B,D).

Regarding average weight evolution before tumour implantation, daily weight gain was
similar between the two groups (LT HFD = 0.101 ± 0.013 vs. ST HFD = 0.139 ± 0.020 g/day).
During tumour growth, mice under LT HFD lost less weight than those under ST HFD
(LT HFD = −0.045 ± 0.011 vs. ST HFD = −0.138 ± 0.022 g/day, p = 0.0013) (Figure 1C).

Whatever the diet duration, at sacrifice, total absolute adiposity remained the same
between groups (Figure 2A) but differed according to the adipose tissue localisation.
LT HFD significantly increased visceral adipose tissue weight (LT HFD = 1533 ± 260
vs. ST HFD = 1029 ± 204 mg, p = 0.0446) (Figure 2B) and decreased brown adipose tissue
(LT HFD = 87 ± 10 vs. ST HFD = 171 ± 19 mg, p = 0.0004) (Figure 2C).
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The total muscle mass resulting from the sum of skeletal muscle masses of the two
hind legs tended to be lower in the LT HFD group in comparison to the ST HFD group
(334 ± 8 vs. 354 ± 13 mg, p = 0.0765) (Figure 2D). Similarly, in response to LT HFD,
the relative total muscle mass decreased significantly (Figure 2E) as a consequence of
reduced individual muscle mass, such as the gastrocnemius, (LT HFD = 0.72 ± 0.03%
vs. ST HFD = 0.90 ± 0.01%, p = 0.0001) (Figure 2F), soleus (LT HFD = 0.06 ± 0.002% vs.
ST HFD = 0.07 ± 0.004%, p = 0.0544) (Figure 2G), and tibialis (LT HFD = 0.26 ± 0.01% vs.
ST HFD = 0.35 ± 0.03%, p = 0.0068) (Figure 2H).

2.3. Biochemical Profiles in Liver and Plasma

LT HFD did not affect liver weight (LT HFD = 1.38 ± 0.06 vs. ST HFD = 1.36 ± 0.06 g)
nor its glucose, triglycerides, cholesterol, urea, and uric acid concentrations. Only the



Int. J. Mol. Sci. 2024, 25, 6221 5 of 18

total bilirubin concentration was significantly higher in response to longer lipid exposition
(Table 1).

Table 1. Liver biochemical markers.

Mmol/Tissue ST HFD LT HFD

Glucose 0.045 ± 0.011 0.033 ± 0.006
Triglycerides 0.031 ± 0.011 0.024 ± 0.003
Cholesterol 0.007 ± 0.0003 0.007 ± 0.001

Total bilirubin 0.062 ± 0.018 0.099 ± 0.006 *
Urea 1.61 ± 0.524 1.82 ± 0.099

Uric acid 2.72 ± 0.498 2.50 ± 1.422
Creatinine 0.129 ± 0.043 0.324 ± 0.068

Variables were determined using specific kits from Biolabo. Data are presented as mean ± SEM (n = 4/group) and
were analysed by a Mann–Whitney test, * p < 0.05 vs. ST HFD. ST and LT HFD: short- or long-term high-fat diet.

At the circulating level, the concentrations of biomarkers studied were not altered,
whatever the diet duration (Table 2).

Table 2. Plasma biological markers.

Biological Marker ST HFD LT HFD

Glucose (mmol/L) 15.1 ± 5.2 10.8 ± 3.0
Triglycerides (mmol/L) 1.05 ± 0.60 1.11 ± 0.08
Cholesterol (mmol/L) 2.95 ± 0.18 5.65 ± 0.23

Total bilirubin (µmol/L) 8.94 ± 0.39 7.10 ± 1.06
Urea (mmol/L) 12.1 ± 3.9 7.6 ± 0.6

Uric acid (µmol/L) 208 ± 48 142 ± 33
Creatinine (µmol/L) 0.104 ± 0.042 0.042 ± 0.018

Variables were measured using specific kits from Biolabo. Results are expressed as mean ± SEM (n = 4/group).
Data were analysed by a Mann–Whitney test, p > 0.05. ST and LT HFD: short- or long-term high-fat diet.

2.4. Tumour Weight and Density

LT HFD induced a significantly higher tumour weight (LT HFD = 2.23 ± 18 vs.
ST HFD = 1.81 ± 11 g, p = 0.0412) (Figure 3A). However, tumour density remained similar
between the two groups (LT HFD = 0.94 ± 0.06 vs. ST HFD = 0.95 ± 0.08 g/cm3) (Figure 3B).
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2.5. Tumour Growth

Tumour growth was faster in response to LT HFD compared to the other group.
Indeed, the tumour volume reached 1500 mm3 at 21 days post-implantation in LT HFD mice
versus 28 days post-implantation in the ST HFD group (Figure 4A). The survival rate was
significantly reduced in the LT HFD group (p = 0.0296), with median survivals of 22 days
for the LT HFD group and 25.5 days for the ST HFD group (Figure 4B).
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Figure 4. Tumour progression and animal survival. (A) Tumour growth evolution depending on the
diet duration, results are in volume (mm3) with an individual calliper measure. (B). Time course
of survival with end-point limit. The end-point limit was a 2 cm3 tumour, as required by ethical
guidelines. Mean ± SEM (n = 10–13/group). Data were analysed by repeated measures ANOVA
or by Mantel–Cox text as appropriate, * p < 0.05, ** p < 0.01. ST and LT HFD: short- or long-term
high-fat diet.

2.6. Tumour Characteristics
2.6.1. Tumour Metabolism

In response to the longest HFD, the tumour glucose concentration tended to increase
(LT HFD = 0.159 ± 0.071 vs. ST HFD = 0.061 ± 0.012 mmol, p = 0.1, Figure 5A) and the
triglyceride content was significantly reduced (LT HFD = 0.031 ± 0.020 vs.
ST HFD = 0.114 ± 0.029 mmol, p = 0.0571; Figure 5B). The tumour cholesterol level remained
unchanged (LT HFD = 0.071 ± 0.036 vs. ST HFD = 0.042 ± 0.007 mmol, Figure 5C).
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Figure 5. Tumour biological markers and expression of enzymes involved in energy metabolism.
(A–C) Glucose, triglyceride, and cholesterol concentrations were measured using specific kits from
Biolabo. (D–F) Cpt1, Cpt2, and Cs mRNA expression were measured by RT-qPCR and normalised
with Hprt. Biochemistry assays were performed on 4 mice/group and mRNA expression analysis on
5 mice/group. Results are expressed in min–max ± SEM. Data were analysed by a Mann–Whitney
test, * p < 0.05. ST and LT HFD: short- or long-term high-fat diet.
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The expression of genes involved in energy metabolism and more specifically in
energy production was modulated by lipid diet duration. While no change was ob-
served in carnitine palmitoyl transferase (Cpt) 2 gene expression (LT HFD = 0.95 ± 0.05
vs. ST HFD = 1.01 ± 0.08, Figure 5E), the expression of Cpt1 tended to increase in re-
sponse to the longest lipid impregnation (LT HFD = 2.05 ± 0.21 vs. ST HFD = 1.11 ± 0.24,
p = 0.1111, Figure 5D). The gene coding for citrate synthase was significantly overexpressed
(LT HFD = 1.38 ± 0.09 vs. ST HFD = 1.00 ± 0.04, p = 0.0159, Figure 5F).

2.6.2. Tumour Oxidative Stress

Among antioxidant enzymes, the total tissular activity of glutathione peroxidase (GPx)
(LT HFD = 15.33 ± 1.11 vs. St HFD = 3.46 ± 1.35 UI, Figure 6A) and the expression of
the gene coding for the isoform Gpx1 (LT HFD = 1.58 ± 0.13 vs. ST HFD = 1.04 ± 0.15,
p = 0.0159, Figure 6B) and the isoform Gpx2 (LT HFD = 2.03 ± 0.24 vs. ST HFD = 1.04 ± 0.13,
p = 0.0040, Figure 6C) were significantly increased in response to LT HFD.
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H+. (D) Superoxide dismutase (SOD) activity was measured using a kit from Sigma-Aldrich. (G) Re-
duced glutathione (GSH) was quantified using a spectrophotometric assay measuring the appear-
ance of the 2-nitro-5-thiobenzoate (TNB) after the reaction between GSH and 5,5′-dithiobis-TNB.
(B,C,E,F,H,J,L) mRNA expression was determined by RT-qPCR and normalised with Hprt. En-
zyme activity assays were performed on 4 mice/group and targeted transcriptomic analysis on
5 mice/group. Results are presented as boxes with median, interquartile range and min–max values.
Data were analysed by a Mann–Whitney test, * p < 0.05, ** p < 0.01. ST and LT HFD: short- or
long-term high-fat diet.

Tumour superoxide dismutase (SOD) activity tended to be higher in response to the
longest lipid exposure (LT HFD = 2387 ± 708 vs. ST HFD = 1202 ± 189 UI, p = 0.1143,
Figure 6D). At the transcriptomic level, the expression of Sod1 (LT HFD = 1.46 ± 0.11
vs. ST HFD = 1.03 ± 0.15, p = 0.0476, Figure 6E) was significantly increased in the
LT HFD condition while the expression of Sod2 remained unchanged (LT HFD = 1.07 ± 0.09
vs. ST HFD = 1.08 ± 0.24, Figure 6F).

In response to LT HFD, tumour reduced glutathione (GSH) content rose signifi-
cantly (LT HFD = 0.015 ± 0.002 vs. ST HFD = 0.007 ± 0.001 mmol, p = 0.1, Figure 6G)
while glutamate-cysteine ligase catalytic subunit (Gclc) expression was significantly reduced
(LT HFD = 0.80 ± 0.06, p = 0.0476 vs. ST HFD = 1.04 ± 0.14, Figure 6H). Glutathione reduc-
tase (GR) activity tended to be enhanced (LT HFD = 41 ± 10 vs. ST HFD = 16 ± 2 UI, p = 0.1,
Figure 6I) and glutathione-disulfide reductase (Gsr) expression was significantly upregulated
(LT HFD = 1.61 ± 0.15 vs. ST HFD = 1.05 ± 0.19, p = 0.0278, Figure 6J) in response to
LT HFD.

The activity of glutathione S transferase (GST) was significantly reduced in the
LT HFD group (LT HFD = 6.7 ± 2.5 vs. ST HFD = 30.9 ± 4.3 UI, p = 0.0143, Figure 6K),
whereas the expression of glutathione S-transferase omega (Gsto) (LT HFD = 1.74 ± 0.16 vs.
ST HFD = 1.01 ± 0.06, p = 0.0040, Figure 6L) was enhanced.

2.6.3. Tumour Immune Infiltrate

In the tumour microenvironment, following LT HFD exposition, a significant reduction
in the proportion of both NK cells (LT HFD = 0.2 ± 0.1 vs. ST HFD = 24.5 ± 1.9%/total T lym-
phocytes, p = 0.05, Figure 7A) and T8 cells (LT HFD = 1.008 ± 0.275 vs.
ST HFD = 7.875 ± 3.068%/total T lymphocytes, p = 0.0022, Figure 7B) was observed, while the
Treg cell proportion tended to increase (LT HFD = 0.5 ± 0.06 vs. ST HFD = 0.017 ± 0.007%/
lymphocyte T, p = 0.1, Figure 7C). Consequently, the T8/Treg ratio, a marker of antitu-
moural immune defense, fell (LT HFD = 2.6 ± 1.3 vs. ST HFD = 421.6 ± 153.8, p = 0.0286,
Figure 7D).

Diet duration did not affect the global tumour-associated macrophage proportion
(LT HFD = 66.7 ± 6.8 vs. ST HFD = 60.3 ± 10.7%/total leucocytes, Figure 7E). At the
transcriptomic level, LT HFD was linked to non-significant downregulated expression of
nitric oxide synthase (Nos) 2, a marker of M1 (LT HFD = 0.71 ± 0.35 vs. ST HFD = 1.05 ± 0.18,
p = 0.1111, Figure 7F), whereas the expression of mannose receptor c-type (Mrc) 1, a marker of
M2, remained stable (LT HFD = 0.86 ± 0.31 vs. ST HFD = 1.15 ±0.27, Figure 7G).

The T lymphocyte helper (Th) 1 cell proportion increased in the LT HFD group
(LT HFD = 0.203 ± 0.088 vs. ST HFD = 0.068 ± 0.016%/T lymphocytes, p = 0.0595,
Figure 7H) without a change in Th2 cell infiltrate (LT HFD = 8.530 ± 6.6 vs.
ST HFD = 8.435 ± 1.673%/T lymphocytes, Figure 7I). Thus, the Th1/Th2 ratio, a marker of
antitumoural immune defense, tended to increase (LT HFD = 0.024 ± 0.013 vs.
ST HFD = 0.011 ± 0.004, p = 0.0714, Figure 7J).



Int. J. Mol. Sci. 2024, 25, 6221 9 of 18

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 20 
 

 

In the tumour microenvironment, following LT HFD exposition, a significant reduc-
tion in the proportion of both NK cells (LT HFD = 0.2 ± 0.1 vs. ST HFD = 24.5 ± 1.9%/total 
T lymphocytes, p = 0.05, Figure 7A) and T8 cells (LT HFD = 1.008 ± 0.275 vs. ST HFD = 
7.875 ± 3.068%/total T lymphocytes, p = 0.0022, Figure 7B) was observed, while the Treg 
cell proportion tended to increase (LT HFD = 0.5 ± 0.06 vs. ST HFD = 0.017 ± 0.007%/ lym-
phocyte T, p = 0.1, Figure 7C). Consequently, the T8/Treg ratio, a marker of antitumoural 
immune defense, fell (LT HFD = 2.6 ± 1.3 vs. ST HFD = 421.6 ± 153.8, p = 0.0286, Figure 7D). 

Diet duration did not affect the global tumour-associated macrophage proportion (LT 
HFD = 66.7 ± 6.8 vs. ST HFD = 60.3 ± 10.7%/total leucocytes, Figure 7E). At the tran-
scriptomic level, LT HFD was linked to non-significant downregulated expression of nitric 
oxide synthase (Nos) 2, a marker of M1 (LT HFD = 0.71 ± 0.35 vs. ST HFD = 1.05 ± 0.18, p = 
0.1111, Figure 7F), whereas the expression of mannose receptor c-type (Mrc) 1, a marker of 
M2, remained stable (LT HFD = 0.86 ± 0.31 vs. ST HFD = 1.15 ±0.27, Figure 7G). 

The T lymphocyte helper (Th) 1 cell proportion increased in the LT HFD group (LT 
HFD = 0.203 ± 0.088 vs. ST HFD = 0.068 ± 0.016%/ T lymphocytes, p = 0.0595, Figure 7H) 
without a change in Th2 cell infiltrate (LT HFD = 8.530 ± 6.6 vs. ST HFD = 8.435 ± 1.673%/T 
lymphocytes, Figure 7I). Thus, the Th1/Th2 ratio, a marker of antitumoural immune de-
fense, tended to increase (LT HFD = 0.024 ± 0.013 vs. ST HFD = 0.011 ± 0.004, p = 0.0714, 
Figure 7J). 

 
Figure 7. Tumour microenvironnement immune infiltration. (A–E,H–J) Sub-populations of immune
cells were quantified by flow cytometry using marked antibodies against specific cell surface markers.
(F,G) mRNA expression of Nos2, a specific marker of M1, and Mrc1, a specific marker of M2,
were explored using RT-qPCR and normalised with Cd45. Flow cytometry was performed on
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with median, interquartile range and min–max values. Data were analysed by a Mann–Whitney test,
* p < 0.05, ** p < 0.01. ST and LT HFD: short- or long-term high-fat diet.

3. Discussion

This animal model of aged ovariectomised mice fed a hypercaloric diet, mimicking
menopause and the risk of developing breast cancer, has been previously characterised and
validated [30,35,36]. The EO771 tumour cells represent a luminal B cancer type [37,38] and
are particularly immunogenic [30].

In this model, we previously observed that a 3-month HFD led to an increase in
body fat and maintenance of muscle mass compared to a normocaloric diet. HFD was
also associated with rapid tumour growth and a higher final tumour mass. Spontaneous
physical activity was reduced under HFD and tumour bearing (Figure S1) [39]. With
physical activity being key to the prevention of obesity and breast cancer [34], the animals
were housed in an enriched environment known to increase not only spontaneous phys-
ical activity but also animal well-being [40]. Indeed, previous studies have shown that
spontaneous physical activity promoted by housing in an enriched environment provides
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a protective factor against cancer and limits tumour growth via hormonal, cellular, and
immune mechanisms [30,35,40,41]. It is well known that weight gain in any adult’s life
period is associated with increased postmenopausal breast cancer risk in humans [42]. Thus,
based on our experimental model, the objective of this study was to see if the beneficial
effects of spontaneous physical activity on tumour growth were maintained in response to
a long high-fat diet duration.

Both HFD groups were housed in the same enriched environment, allowing an
equivalent level of spontaneous physical activity. The ST HFD lasted 44 days and the
LT HFD lasted twice that time (88 days), at tumour implantation. Throughout the experi-
ment, independently of food intake, body weight changed. Indeed, the body weights of the
two groups of mice increased in the same range throughout the experiment, even though
the LT HFD group was fed for a longer time. This could be explained by the fact that, in
parallel with the longer diet time, there was also longer physical activity practice, which
is known to regulate body weight [26]. The daily gain in mass of the LT HFD group was
lower but statistically similar to that of the ST HFD group, which is why animals from both
groups reached the same body weight before the time of tumour implantation.

Despite similarities in weight gain in the pre-tumoural period, after tumour implan-
tation, the ST HFD group lost more weight than the LT HFD group. This difference led
to corporal changes at sacrifice. In our experiment, the body weight loss observed in the
short-term group was not intended but was associated with lower tumour growth. This
body weight loss seemed to be supported mainly by a lower visceral adipose tissue mass.
This observation is in accordance with the literature reporting the beneficial effects of
physical activity, not only on prevention but also on the therapeutic management of breast
cancer [42,43]. Conversely, mice under LT HFD presented more visceral adipose tissue, less
total hind leg muscle mass, and higher tumour growth. These data are in line with recent
studies reporting that muscle loss may adversely affect breast cancer patient outcomes,
independently from malnutrition [44]. Moreover, the muscle mass variation observed could
be an interesting perspective to follow the low but real prevalence of sarcopenia in women
with breast cancer [45].

The absence of differences between the two groups of mice in plasma and liver bio-
chemical markers could be explained by the time course of metabolic alteration appearance.
Indeed, at sacrifice, the LT HFD and ST HFD groups were respectively at 110 and 70 days of
the high-fat diet. It has been reported in male mice that the first plasma biological changes
leading to metabolic syndrome appear only after at least 90 days of a high-fat diet, and the
major perturbations are observed at 150 days compared to a standard diet [46]. Moreover,
focusing on the high-fat diet group, all of the metabolic parameters were similar between
60, 90, and 120 days. Thus, the lack of differences in liver and plasma markers in our model
could be explained by the early metabolic time window, whatever the diet duration.

Surprisingly, tumour growth was influenced by the duration of the diet. Indeed,
tumorigenesis was faster in the LT HFD group, leading to a reduced survival rate. The
long-term high-fat diet decreased the tumour triglyceride content while the glucose level
tended to increase. Similarly, tumour overexpression of Cpt1 and Cs supports repro-
gramming of energy metabolism in favour of fatty acid oxidation (FAO). As is known,
the energetic pathway of cancer cells mostly relies on glycolysis (Warburg effect) [47].
However, in an adipocyte-rich microenvironment, breast cancer cells may switch from
typically glucose-centered to lipid-centered metabolism. This lipid-centered connection is
particularly pronounced in obesity [48].

Lipid oxidation in the mitochondria leads to oxidative stress, which is associated with
the production of reactive oxygen species. This latter is well known to favour the devel-
opment of breast cancer [49] and be differently regulated in cancer cells under obesogenic
conditions [50]. In our model, the tumour increase in antioxidant defense markers under LT
HFD, such as SOD, the glutathione recycling enzyme GR, the lipid peroxidation protecting
GPx, and the reduced GSH, could be linked to higher metabolic oxidative stress due to the
activation of FAO [51]. Moreover, this fatty acid metabolism pathway has been demon-
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strated to protect cancer cells against apoptosis. Increased FAO triggers the activation
of signal transducer and activator of transcription 3 (STAT3) through acetylation, which
enhances mitochondrial integrity and reduces apoptosis [52]. These mechanisms are in
accordance with the SU.VI.MAX cohort study’s results showing that oxidative stress [53]
and lipid metabolites [54] are markers of long-term breast cancer risk.

Oxidative stress and lipid peroxidation are major contributors to inflammation in
the tumour. Inflammation is one of the hallmarks of cancer and is a key regulator of
tumour immune infiltration [55]. Inflammatory molecules recruit immune cells in the
tumour microenvironment [56]. In our experiment, the long-term high-fat diet led to an
increase in the proportion of Treg cells and a decrease in CD8+ T cells and NK cells despite
elevated spontaneous physical activity. Moreover, the long-term diet tended to decrease the
expression of M1 marker, without affecting the M2 marker. In our experimental conditions,
LT HFD induced a pro-tumoural immune infiltrate. Indeed, the switch in the polarisation of
macrophages from pro-inflammatory M1 to anti-inflammatory M2 [57] is known to favour
the recruitment of T regulator (Treg) lymphocytes [58]. All of these cells together inhibit
antitumoural immunity indirectly by modulating T helper (Th) lymphocytes, favoring Th2
instead of Th1 lymphocytes, but also directly by inhibiting the cytotoxic T cells CD8+ and
NK cells responsible for the destruction of tumour cells [59]. Associated with the long-term
high-fat diet, the elevated spontaneous physical activity was not able to maintain an efficient
antitumour immune defense, unlike in our previous observations [30]. Altogether, these
results led to a tolerogenic environment, favourable to the development of mammary cancer.

Our experiment is one of the few studies in the literature performed on old ovariec-
tomised female mice. The main limitation of our study is the fact that the two groups are
in the same window for metabolic syndrome development [46]. A longer HFD duration
should be tested to develop a more severe metabolic syndrome and highlight some other
mechanisms that could be implicated, such as liver alteration and higher insulin resistance.
Moreover, in agreement with the ethical 3R rules, we did not include a standard diet control
group, as was previously included (Figure S1).

However, this model, close to physiopathological breast carcinogenesis, demonstrates
the celerity of a high-fat diet in promoting tumour growth in association with a switch
in the immune population. This chain of events seems to happen even without plasma
metabolic disturbances and in the presence of spontaneous physical activity. To our knowl-
edge, few papers have described a spontaneous loss of muscle in mouse models of breast
cancer. Further investigations could be relevant to understand the relationship between the
duration of the high-fat diet and the modulation of body mass, especially the increase in
visceral adipose tissue gain and in muscle mass loss. The model with a long-term high-fat
diet will be used to explore the inter-organ dialogue in terms of cytokines, adipokines,
hepatokines, and exerkines [60–63].

4. Materials and Methods
4.1. Animal Model and Housing Conditions

This experiment was carried out in accordance with European directives on animal
ethics (Comité Régional d’Ethique sur l’Expérimentation Animale, No. 01095.02, Clermont-
Ferrand, France). Female mice C57BL/6J, 33-weeks-old, purchased from Janvier Lab (Le
Genest-St-Isle, France), were placed in a box under standard laboratory conditions (i.e.,
12 h light and 12 h dark cycle on a reverse light cycle and 22 ± 2 ◦C). Diet and water
were accessed ad libitum. The cages were enriched with toys, a nest, and a wheel, with
5–7 mice per cage. This enriched environment permitted the promotion of spontaneous
physical activity, which is well known to enhance social interaction due to multiple mice
per cage, to influence normal mammary gland development, and to inhibit mammary
tumour growth [41]. All mice were ovariectomised to mimic the menopausal effect, which
is absent in the species.
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4.2. Diet, Body Weight Follow Up and Physical Activity

All mice were fed a high-fat (HF) diet designed in collaboration with the laboratory
“Safe” (Augy, France), following the American Institute of Nutrition 93 (AIN-93G) recom-
mendations, and previously published [30]. With 450 kcal/100 g of food, it is composed
of 42.1% lipids (ratio ω6/ω3 = 6.2; ω6 intake: 2.46 mg/100 g), 37.4% carbohydrates, and
20.5% protein. All minerals and vitamins were present in optimal quantities. Body weight
and ad libitum food intake were measured twice a week throughout the experimental
period. Spontaneous physical activity was assessed using wheel counters in each cage
or using a TSE System PhenoMaster/LabMaster (TSE System, Bad Homburg, Germany),
depending on the difficulties encountered during the experiments. With the wheel counter,
the distance travelled per cage, relative to the number of mice, was recorded daily. For
the TSE system, the spontaneous physical activity was measured twice during the experi-
ment, before and after tumour implantation, with 1 day of acclimatisation and 3 days of
measurements each time.

4.3. Orthotopic Injection of EO771 Mammary Adenocarcinoma Cells and Tumour Monitoring

The C57BL/6 syngeneic cell line of spontaneous mammary adenocarcinoma EO771
was cultured in complete RPMI 1640 medium (Biowest, Nouaille, France) supplemented
with 10% foetal calf serum (Biowest), 100 µg/mL of streptomycin (Sigma-Aldrich, Saint-
Quentin Fallavier, France), 100 U/mL of penicillin (Sigma-Aldrich), and 2 mM glutamine
(Sigma-Aldrich) at 37 ◦C in a 5% CO2 humidified atmosphere. Tumour cells were implanted
into the mouse’s left fourth pair of mammary glands using the “fat pad” technique, with
a density of 5 × 105 cells/100 µL of matrigel (Growth Factor Reduced BD Matrigel TM
Matrix, BD Biosciences, Bedford, MA, USA). The surgery was performed after 44 days
of HF diet for the short-term high-fat diet group (ST HFD, n = 10) and 88 days for the
long-term high-fat diet group (LT HFD, n = 11). The tumour size was determined three
times a week by measuring the perpendicular diameter with a digital calliper. The tumour
volume was calculated using the formula V = 4π/3 × (width/2)2 × (length/2), where the
width is the smaller of the two measurements.

4.4. Sacrifice and Blood and Tissue Sampling

The experiment ended when the tumour volume exceeded 2 cm3, animal weight
loss of more than 20%, or at a maximum of 35 days post-implantation. The mice were
anaesthetised with a ketamine/xylazine mixture (i.p., 100/10 mg/kg) and blood was
collected by cardiac puncture in heparinised tubes. After centrifugation at 1000× g for
5 min, plasma was collected, and aliquots were made and stored at −80 ◦C. Several organs
were harvested and weighed, then frozen in liquid nitrogen, and stored at −80 ◦C, notably,
the different adipose tissues, the gastrocnemius, soleus, and tibialis skeletal muscles, and
the liver. The tumours were collected and cut into pieces, with one piece used for the study
of immune cell infiltration and the others frozen.

4.5. Tumour Immune Cell Infiltration

The tumour piece analysed, after collection at sacrifice, was crushed in sterile phosphate-
buffered saline (PBS, Biowest) 1X with 0.5% bovine serum albumin (BSA, Sigma-Aldrich),
filtered using a 40 µm pore filter (Falcon® 40 µm Cell Strainer), centrifuged to pellet tissue
debris, and then resuspended in staining buffer (PBS 1×, BSA 0.5%, ethylene diamine
tetra acetic acid (EDTA, Fluka, Sigma-Aldrich) 2 mM). According to the supplier’s rec-
ommendations (MACS Miltenyi Biotec, Bergisch Gladbach, Germany or eBioscience, San
Diego, CA, USA), immune cells were labelled by monoclonal antibodies conjugated to
fluorochromes (Table 3). Cells were surface-labelled with specific antibodies for 30 min at
4 ◦C. Intracellular staining using anti-FoxP3-Biotin was performed according to the manu-
facturer’s instructions (eBioscience). The samples were then analysed by flow cytometry
(Beckman Coulter EPICS XL FC500, Villepinte, France), where immune populations were
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characterised and counted based on their size and granularity. Due to the constraints of the
methods, half of the animals were randomised and used in cytometric analysis.

Table 3. Antibodies used for flow cytometry staining.

Cell Type Antibody Fluorochrome Clone Provider

TAM
Cd11b PerCP Cy5.5 M1/70.15 eBioscience
F4/80 PE REA126 MACS Miltenyi

Natural Killer
NK1.1 PerCP Vio®700 PK136 MACS Miltenyi

CD49b (DX5) PE DX5 MACS Miltenyi

T4 CD4 PE GK1.5 MACS Miltenyi

T8 CD8α FITC 53-6.7 MACS Miltenyi

Th1
CD4 AF700 GK1.5 eBioscience

CD119 PE REA189 MACS Miltenyi

Th2
CD4 AF700 GK1.5 eBioscience

CD124 PE REA235 MACS Miltenyi

Treg CD25 PE PC61.5 eBioscience
FoxP3 Biotin FJK-16s eBioscience

TAM: Tumour-associated macrophage, NK: natural killer, T4: T4 lymphocyte, T8: T8 lymphocyte, Th1: T helper 1
lymphocyte, Th2: helper 2 T lymphocyte, Treg; regulatory T lymphocyte, CD: cluster of differentiation, FoxP3:
forkhead box protein 3; PerCP: peridinin chlorophyll protein, Cy: cyanine, PE: phycoerythrine, FITC: fluorescein
isothiocyanate, AF700: Alexa Fluor 700.

The data were post-analysed using Kaluza 1.2 software (Beckman-Coulter, Hialeah,
FL, USA).

4.6. Tissue Exploration
4.6.1. Tissue Preparation

Tumours and livers were cut into pieces before homogenisation using an Ultraturax®

system in 100 mM Tris, 1 mM EDTA, supplemented with protease (Halt Protease Inhibitor
Cocktail, Thermo Scientific, Waltham, MA, USA) and phosphatase (Halt Phosphatase
Inhibitor Cocktail, Thermo Scientific) inhibitors for metabolic and protein exploration or
in TRIzol® reagent (Invitrogen, Saint Aubin, France) for RNA exploration. The samples
were homogenised and centrifuged at 500× g for 5 min. The supernatant was aliquoted
and frozen until analysis at −80 ◦C.

4.6.2. RNA Extraction

Total tumour RNA was isolated using TRIzol® reagent according to the manufacturer’s
instructions and quantified using a Spark® multimode microplate reader (Tecan Trading
AG, Männedorf, Switzerland). Reverse transcription was carried out in a thermocycler
(Mastercycler® gradient; Eppendorf, Montesson, France) on 1 µg of total RNA for each
condition using a high-capacity cDNA reverse transcription kit (Applied Biosystems, Saint
Aubin, France) with random hexamer pdN6 primers.

4.6.3. Quantitative Real-Time PCR

According to the manufacturer’s protocol, qPCR was carried out using SYBR® Green
reagent on a StepOne system (Applied Biosystems, Waltham, MA, USA). Each sample
was assayed in duplicate. Relative quantification was obtained by the comparative Ct
method, based on the formula 2−∆∆Ct. The expression level of genes involved in energetic
metabolism was normalised to that of the housekeeping gene Hprt. The fold-change of
expression was determined against the ST HFD condition set at level one. The sequences
and fragment sizes of the murine-specific primers used are reported in Table 4.
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Table 4. PCR Primers.

Gene Species Sequence Reference Amplicon Size Forward Primer Reverse Primer

Hprt mouse NM_013556.2 176 GTAATGATCAGTCAACGGGGGAC CCAGCAAGCTTGCAACCTTAACCA

Cd45 mouse NM_001111316.2 158 GCTGATGGATGTGGAGCCAA TCTGATTGTGGGGCTTTCGG

Cpt1 mouse NM_013495.2 336 CTGGCTCTACCATGACGGGA ATGGACTTGTCAAACCACCTGTC

Cpt2 mouse NM_009949 241 CATCGTACCCACCATGCACT ATCAAACCAGGGGCCTGAGA

Cs mouse NM_026444.4 133 CAGCAGTATCGGAGCCATTGAC ACCACCCTCATGGTCACTATGGAT

Gclc mouse NM_010295.2 375 TCGACCTGACCATCGATAAGGA TCATGTTCTCGTCAACCTTGG

Gpx 1 mouse NM_008160.6 150 GCTCATTGAGAATGTCGCGT TCATTCTTGCCATTCTCCTGGT

Gpx 2 mouse NM_030677.2 108 CGGGACTACAACCAGCTCAA CTCGTTCTGACAGTTCTCCTGA

Gsr mouse NM_010344.4 177 GGCACTTGCGTGAATGTTGG ATAGATGGTGTTCAGGCGGC

Gsto1 mouse NM_010362.3 168 CTCCGAACCTAAGGGAAGCG TGTGGGCTAGACACTCCTTG

Sod1 mouse NM_011434.1 136 GGAACCATCCACTTCGAGCA CTGCACTGGTACAGCCTTGT

Sod2 mouse NM_013671.3 179 GAACAATCTCAACGCCACCG CCAGCAACTCTCCTTTGGGTT

Nos2 mouse NM_010927.4 131 AGGGTCACAACTTTACAGGGAG GTGAGGAGCCTCAGAAGTGTC

Mrc1 mouse NM_008625.2 102 TTGCACTTTGAGGGAAGCGA CCTTGCCTGATGCCAGGTTA

Hprt: hypoxanthine-guanine phosphoribosyltransferase, Cd: cluster of differentiation, Cpt: carnitine palmitoyl-
transferase, Cs: citrate synthase, Gclc: glutamate-cysteine ligase catalytic subunit, Gpx: glutathione peroxidase,
Gsr: glutathione-disulfide reductase, Gsto: glutathine S-transferase omega, Sod: superoxide dismutase, Nos2: nitric
oxide synthase 2, Mrc1: mannose receptor C-type 1.

4.6.4. Protein Quantification

Protein quantities were assayed using a bicinchoninic acid (BCA) assay (Interchim,
Montluçon, France) based on the Biuret method with a microplate spectrophotometer
reader at 550 nm (Multiskan FC, Thermo Scientific, Waltham, MA, USA).

4.6.5. Enzymatic Activities

All enzymatic activities were analysed using the Thermo Electron Konelab 20i®

(Thermo Scientific, Waltham, MA, USA). All total tissular enzyme activities are expressed
in UI.

The glutathione reductase assay was based on a two-reagent method. Reagent 1 was
composed of 100 mM of Tris, 1 mM of EDTA, and 87 µM of NADPH, H+, with the pH
adjusted at 8. Reagent 2 was the result of adding 0.1 mM of glutathione disulfide (GSSG) to
reagent 1. Thirty µL of sample was incubated with 200 µL of reagent 1 and 10 µL of reagent
2. The assay was performed at 37 ◦C by measuring the absorbance at 340 nm every 30 s for
3 min. For quantification, the enzymatic factor used was −1270.

The glutathione peroxidase assay was based on a one-reagent method. The reagent was
composed of 100 mM, 1 mM of EDTA, 0.156 mM of NADPH, H+, 0.1 UI/mL of glutathione
reductase, 5 mM of glutathione (GSH), and 22.2 mM of tert-butyl hydroperoxide (tBOOH),
with the pH adjusted at 7.4. Thirty µL of sample was added to 210 µL of reagent, and the
enzyme activity was studied by measuring the absorbance at 340 nm every 30 s for 5 min
at 37 ◦C. For quantification, the enzymatic factor used was −1270.

The glutathione S-transferase assay was based on a two-reagent method. Reagent
1 was made by mixing 1 mL of 50 mM of GSH with 7 mL of 50 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) and Triton 0.1X, with the pH adjusted at 7.5.
Reagent 2 was composed of 1 mM of 1-chloro-2,4-dinitrobenzene (CDNB) in 40% ethanol.
After mixing 20 µL of sample with 160 µL of reagent 1 and 20 µL of reagent 2, the assay
was performed at 37 ◦C by measuring the absorbance at 340 nm every 30 s for 3 min. For
quantification, the enzymatic factor used was 1042.

Superoxide dismutase (SOD) activity was measured using an SOD activity kit (#MAK379-
1KT, Sigma-Aldrich). Briefly, 20 µL of sample or standard was mixed with 200 µL of WST
working solution and 20 µL of enzyme working solution, and the absorbance was read at
0 and 20 min. Quantification of enzymatic activity was obtained with a calibration curve
according to the manufacturer’s instructions.
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4.6.6. GSH Assay

The reduced gluthatione (GSH) assay was based on the reaction with 5,5′-dithiobis-2-
nitrobenzoic acid (DTNB). The DTNB reagent was composed of 2 mM of DTNB in 50 mM
K2HPO4 buffer solution. Multiple standard concentrations (5 mM solution used at purity
and 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 dilutions) were used to obtain a standard range.
For the reaction, 10 µL of standards and sample was mixed with 200 µL of DTNB reagent,
and the absorbance was read at 405 nm after 3 min of reaction.

4.7. Metabolism Assay

The concentrations of glucose (ref #80009), triglycerides (ref #80019), cholesterol (ref
#80106), total bilirubin (ref #80443), urea (ref #80221), uric acid (ref #80351), and creati-
nine (ref #80107) were quantified using suitable kits (Biolabo, Maizy, France) based on
colourimetric measurements. The concentrations of glucose, triglycerides, and choles-
terol were measured in the plasma, and bothtumour, and liver supernatants. The levels
of total bilirubin, uric acid, urea, and creatinine were evaluated in the plasma and liver
supernatants.

4.8. Statistical Analysis

All results are expressed as the mean ± SEM and were analysed statistically with Prism
8.0.2 software for Windows (GraphPad Software Inc., San Diego, CA, USA). Comparisons
between the two groups were evaluated by the Mann–Whitney test for one variable and
two-way analysis of variance (ANOVA) followed by the Tukey test for two variables. The
difference in the survival of the animals was assessed using a log-rank Mantel–Cox test.
p-values < 0.05 indicate a significant difference.

5. Conclusions

In conclusion, our study has demonstrated that a longer high-fat diet period prior to
breast cancer apparition, associated with elevated spontaneous physical activity, favours
tumorigenesis. One of the key mechanisms involved is the immune modulation of the
tumour microenvironment. Moreover, these effects appear without the canonical biological
markers of metabolic syndrome. Our results highlight the necessity to take charge of obesity
and eating disorders as soon as possible in life, and not just take care of the patient when
the disease appears. As diet duration could counteract the beneficial effect of spontaneous
physical activity, further work is needed to explain all of the mechanisms involved either
in the tumour or in other organs like muscle and adipose tissue.
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