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Abstract: Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic
selection aiming to identify less susceptible animals has been proposed as a complementary measure
in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for
bTb based on interferon-gamma (IFNG) and its use in bovine selective breeding programs have not
been explored. In the current study, IFNG production was measured using a specific IFNG ELISA kit
in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle.
DNA isolated from the peripheral blood samples collected from the animals included in the study
was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to
whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNG in
response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the
identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs
(miRNAs) associated with this phenotype. No negative correlations between this phenotype and
other phenotypes and traits included in the Spanish breeding program were observed. Taken together,
our results define a heritable and distinct immunogenetic profile associated with strong production
of IFNG in response to Mb.

Keywords: Mycobacterium bovis; interferon-gamma; polymorphisms; breeding

1. Introduction

Animal tuberculosis is a chronic infection caused by members of the Mycobacterium
tuberculosis complex (MTC). Mycobacterium bovis (Mb), an intracellular, Gram-positive
pathogen, is the key pathogen responsible for bovine tuberculosis (bTb). This zoonotic
disease causes important economic losses worldwide, is considered a threat to public health,
and has implications for the international trade of animals [1,2].

Mb resides within phagosomes in infected host macrophages [3]. Soon after being
infected, the macrophages produce interleukin 12 (IL12), which activates natural killer (NK)
cells and T lymphocytes to produce interferon-gamma (IFNG), leading to the activation of
macrophages, enhanced release of nitric oxide, and restricted bacterial multiplication [4].
However, Mb has evolved ways to evade the host defense and to replicate within infected
macrophages by inhibiting phagosome–lysosome fusion. Mb suppresses the antimicrobial
immune response in macrophages, facilitating intracellular survival and immune evasion
through autophagy inhibition and macrophage M2 polarization [5]. In advanced stages of
infection, IFNγ is involved in the pathogenesis of several immunological disorders caused
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by unrestrained inflammatory responses. In a vaccination–challenge study, Vordermeier
et al. found that following a challenge with Mb, the IFNγ response to the early secreted
antigenic target 6 kDa antigen (ESAT-6) correlated positively with lesion scores in infected
animals [6]. On the other hand, previous studies have shown that IFNγ production
might be regulated post-transcriptionally by micro-RNAs (miRNAs). For instance, the
downregulation of miRNA-29 has been shown to upregulate IFNG -mediated innate and
adaptative responses to Mb infection [7]. Transgenic mice in which the miRNA-29 was
knocked down initiated a more potent IFNγ production in activated NK and T cells after
Mb infection.

Monitoring, control, and eradication programs for bTb have been established in
multiple countries. Vaccination is not used as a preventive measure in animals because of
the potential interference with bTb surveillance and diagnostic tests. In Spain, all regions
are subjected to a national eradication program based on animal reaction to the single
intradermal tuberculin test (SITT), the slaughter of reactor animals, and post-mortem
confirmation of positive animals with histopathological lesions compatible with bTb. In
some countries, including Spain, IFNγ release assays (IGRAs) are being used for diagnosis
in combination with the single intradermal comparative cervical test (SICCT) [8]. The
sensitivity of the SITT was 63.7% (95% CI, 54.54–72.00), while the sensitivity of the IFNγ

assays ranged between 60.2% and 92% [9]. Results from experimental and natural infections
of cattle with Mb indicated that the IGRA can detect a cell-mediated immune response
(CMI) to infection as early as two weeks post-infection, earlier than the SICCT [10–13]. In
general, however, bTb diagnostic tests are unable to distinguish the infection from the
disease [14]. A study by Bernitz et al. [15] observed that levels of IFNγ in unstimulated
whole blood were elevated in infected buffaloes with observable pathological changes
consistent with bTb in comparison with uninfected controls. Furthermore, increased IFNγ

significantly correlated with increasing severity of pathological changes in the infected
buffaloes, consistent with observations of associations between antigen-stimulated IFNγ

and bTb pathology in cattle and badgers, demonstrating the potential of this cytokine to be
used as an indicator of bTb [16,17].

The incidence of new cases of bTb in parts of Spain suggests that existing control
strategies are insufficient to eradicate the disease and that additional control measures that
can complement current strategies need to be explored [18–20]. Currently, there are no
vaccines commercially available that allow differentiation between naturally infected and
vaccinated individuals. Genetic selection aiming to identify and select more resistant or
less susceptible animals has been proposed as an additional measure in ongoing programs
toward controlling bTb [21]. The effects of this strategy are cumulative and permanent, and
they are transferred to subsequent generations and might result in disease eradication.

BTb is a multifactorial disease that is the result of the interaction of genetic, environ-
mental, and microbial factors. Previous studies quantified the genetic variation for bTb in
different cattle populations and countries using a variety of trait definitions and reported
heritability estimates that ranged between 0.06 and 0.18 [22–25]. More recent studies us-
ing genome-wide DNA arrays reported higher heritability estimates of 0.21–0.27 [26–30].
These studies demonstrated that host genetics plays an important role in the susceptibil-
ity/resistance to Mb infection and, therefore, a breeding strategy focused on increasing
resistance or reducing susceptibility to Mb infection is feasible and currently used by farm-
ers in some countries such as the UK and Ireland [21,25]. Different genetic models were
investigated, and the single-step best linear unbiased prediction (BLUP) model resulted in
the most accurate estimates of animal genetic merit for bTb resistance [31].

Defining the adequate phenotype is the main challenge in identifying the genetic
profile of resistance or susceptibility against an infection. In the case of bTb, most previous
studies combined SITT tests and postmortem data, such as records of bTb lesions and Mb
bacteriological culture, to define the health status of each animal. Recently, reductionist
approaches have been used to investigate a host biological subsystem, such as a key
cellular function, whose performance is the phenotypical criterion for the classification
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of the population [32]. By performing a genome-wide association analysis (GWAS), our
research group identified a total of 71 single-nucleotide polymorphisms (SNPs) associated
with significant production of IFNγ in avian tuberculin-stimulated blood samples from
Mycobacterium avium subsp. paratuberculosis (MAP)-infected cattle using whole-genome
sequence (WGS) data [33]. In the current study, we hypothesize that animals able to induce
a strong IFNG in response to Mb infection might also have specific host genetics. This study
aimed to identify SNPs, quantitative trait loci (QTL), and candidate genes associated with
susceptibility or resistance to Mb infection using IFNG production in response to bovine
tuberculin as an indicator. The identified QTLs were compared with reported and annotated
QTLs associated with health, body conformation, milk production, meat and carcass,
reproduction, and length of productive life. In addition, the identified candidate genes were
compared with bovine and human candidate genes previously associated with bovine and
human tuberculosis, respectively. Undesirable genetic linkages between IFNG production
and other traits included in the Spanish Holstein cattle evaluations were assessed. For this
purpose, genomic estimated breeding values (gEBVs) for IFNG production were estimated
in a larger independent population (N = 1739), and the correlations with 65 traits and
phenotypes included in the Spanish evaluations of Holstein cattle were analyzed.

2. Materials and Methods
2.1. Animals and Disease Status

The animals included in this study belonged to a reference population of 986 culled
Holstein cattle that were slaughtered from March 2007 to May 2010. To ensure that the
animals had a mature immune system, the cows included in the reference population were
older than 2 years. Sampling was systematically performed once a week at the slaughter-
house. In each visit, the first 2 to 10 animals satisfying the breed and age requirements were
sampled (on average 5 animals/sampling). The cows were slaughtered in the Bilbao and
Donostia municipal slaughterhouses (Basque Country, Spain) under the pertinent Basque
(Basque Government Decree 454/1994), Spanish (Spanish Government Law 32/2007 and
Royal decree 731/2007), and European (Council Regulation No. 1099/2009) legislation on
animal welfare. The cows were not submitted to any in vivo experimentation; therefore, no
specific ethical authorization was needed.

2.2. Interferon-Gamma Release Assay (IGRA)

For the IGRA, blood stimulation must be performed within the first eight hours after
blood collection. Since one of the abattoirs was far from our research institute, IGRA could
be performed in blood samples from only 343 of the 986 culled cows. Blood stimulation
was performed as previously described [33,34]. Briefly, four 1.4 mL aliquots of lithium
heparinized whole blood samples from each animal were added to four wells of a 24-well
plate (Becton Dickinson, Franklin Lakes, NJ, USA). The blood samples were then stimulated
with 100 µL of phosphate-buffered saline (PBS), 100 µL of avian purified protein derivative
(aPPD) (0.3 µg/µL) (CZ Vaccines® SA, Porriño, Spain), 100 µL of bovine purified protein
derivative (bPPD) (0.3 µg/µL) (CZ Vaccines® SA, Porriño, Spain), and 100 µL of lectin
(1 µg/mL) as a positive control. BPPD is derived from Mb, strain AN-5. After incubating
for 16 to 24 h at 37 ◦C in a 5% CO2 incubator, the plasma was separated by centrifugation
at 500× g for 10 min at room temperature (RT) and then was frozen at −20 ◦C until
testing. Subsequently, IFNG levels were measured in triplicate from the plasma samples
using a specific IFNG ELISA test according to the manufacturer’s instructions (BovigamTM,
Prionics, Schlieren, Switzerland). IFNG levels were expressed as the OD of the aPPD or
bPPD-stimulated plasmas minus the OD of the PBS-stimulated samples. In the current
study, 117 cows from the 343 animals with an IGRA record were selected because they had
an OD (bPPD-PBS) higher than the OD (aPPD-PBS) and the OD (bPPD) was higher than
the OD (PBS) as well. This selection avoids false positive reactions with MAP infection and
negative OD values, respectively. According to the interpretation criteria of the kit, 76 of
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the 117 cows included in the study were bTb-positive because the OD of the bPPD-PBS was
>0.05 and the OD (bPPD-PBS) was higher than the OD (aPPD-PBS).

2.3. Genotyping and Imputation to Whole-Genome Sequence (WGS)

Peripheral blood (PB) samples were collected into 10 mL Vacutainer EDTA tubes
(Becton Dickinson, Franklin Lakes, NJ, USA) at the time of slaughter. Total DNA was
extracted from the PB samples using the QIAmp DNA Blood Mini Kit according to the man-
ufacturer’s instructions (Qiagen, Hilden, Germany). Purified DNA was then quantified by
spectrophotometry and genotyped using the EuroG Medium-Density Bead Chip (Illumina)
at the molecular genetic laboratory service of the Spanish Federation of Holstein Cattle
(CONAFE) using the InfiniumTM iScan software for allele assignation (Illumina, San Diego,
CA, USA). The individual genotypes were imputed to WGS as previously described [35].
Briefly, genotypes were phased using Eagle 2.4 [36] and imputed with minimac4 [37] to the
Bovine High-Density Bead Chip (581,712 SNPs) using a reference panel of 1278 Holstein
bulls from Run7.0 of the 1000 Bull Genomes project. Imputation to the WGS level (ARS-
UCD1.2) was then undertaken using the same phasing and imputation procedure and a
reference population of 2333 Bos taurus from Run7.0 of the 1000 Bull Genomes project [38].
Finally, the following filters were applied: call rate > 0.80, minimum allele frequency (MAF)
> 0.01, and imputation score (r2) > 0.7. The final number of SNPs per animal was 11,122,500.

2.4. GWAS Analysis, Variance Components, and h2 Estimation

The IFNG levels in response to the bPPD, OD (bPPD-PBS), was the quantitative pheno-
type in the GWAS analysis. The variance components and h2 explained by all the SNPs
were calculated using the genome-wide complex trait analysis (GCTA) software 1.93.2 [39],
according to the following formula:

h2 =
σ2

G
σ2

G + σ2
e

where σ2
G represents the variance explained by all the SNPs and σ2

e the residual variance.
These WGS data and the OD of these bPPD-PBS data were analyzed using the mixed linear
model association analysis of the GCTA 1.93.2 software, expressed as y = a + bx + g + e. In
the model, y is the phenotype, a is the mean term, b is the allele effect, x is the genotype of
the SNP coded as 0, 1, or 2 depending on the copies of the minor allele, g is the polygenic
effect as a random effect (assumed to be distributed as N~(0, σ2

e ), and e is the residual
effect (also assumed to be distributed as N~(0, σ2

e )). Age was included as a covariate in the
analysis. To account for multiple testing, a 5% genome-wide false discovery rate (FDR) was
used. A threshold of p-value ≤ 5 × 10−7 was used as suggested by the Wellcome Trust Case
Control Consortium [40]. The inflation factor (λ) and quantile–quantile plots were used
to compare the observed distributions of the –log (p-values) to the expected distribution
under the no-association model. λ values close to 1 suggest appropriate adjustment for
the potential substructure, and λ > 1.2 suggests population stratification. The SNP effects
(b-values) were also calculated using the GCTA 1.93.2 software. If the sign of the b-value
is positive, it implies that there is a positive relationship between the variables SNP and
IFNG levels.

2.5. GWAS Data Post-Processing

SNPs identified in the GWAS analysis were filtered based on the p-values and clump-
ing. Briefly, clumping is a process that first selects the most significant SNP and clumps
(removes) other SNPs in a particular window that are in linkage disequilibrium with the se-
lected SNP. The clumping was performed using the software PLINK1.9 [41] with a window
of 500 Kbp and a linkage disequilibrium-based correlation index (r2) of 0.9.
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2.6. SNPs, Quantitative Trait Loci (QTLs), QTLs Enrichment Analysis, Candidate Genes
Identification, and Protein-to-Protein Interaction Networks

After clumping, the localization of the significant SNPs (FDR ≤ 0.05, p-value ≤
5 × 10−7), QTLs, and candidate genes was performed using the ARS-UCD1.3 reference
genome as previously described [33]. The genomic localization of the identified SNPs in the
ARS-UCD1.3 reference genome was determined using the Ensembl Variant Effect Predictor
(VEP) [42].

The R package Genomic functional Annotation in Livestock for positional candidate Loci
(GALLO) [43] was used to identify in the cattle QTL database release 52 [44] annotated
QTLs within an interval of 500 Kbp of the identified SNPs. Overlapping QTLs were merged
to create a single QTL. To determine which of the annotated QTLs were overrepresented, a
QTL enrichment analysis was performed using GALLO.

Candidate genes within the QTLs were identified using Ensembl [42]. Candidate
genes were compared with bovine and human candidate genes that were previously
associated with bovine and human tuberculosis [45]. The function of the candidate genes
was searched in GeneCards [46] by searching their gene symbol. To investigate the potential
innate immune function of the identified candidate genes further, we searched the Innate
DB database [47]. Protein-to-protein interaction networks were analyzed using String v2.0.,
setting the minimum required interaction score to 0.7.

2.7. Genomic Estimated Breeding Values (gEBVs) for IFNγ Production in Response to Bovine
Tuberculin and Correlations with Other Bovine Phenotypes and Traits

gEBVs for IFNγ production were calculated for each animal in the study population
based on the effect of each SNP with evidence of association with the IFNγ production
(PFDR ≤ 0.05) using the genomic best linear unbiased prediction (gBLUP) model of GCTA
v1.93.2. [39,48]. Subsequently, gEBVs for IFNγ production were predicted in a larger
population of 1739 Friesian cattle. Correlations between the gEBVs for IFNγ levels and 65
phenotypes and traits included in the evaluations of Spanish Holstein cattle were calculated
in the larger population (N = 1739) with the Spearman’s rank correlation (ρ) implemented
in R v4.1.2.

3. Results
3.1. Assessment of IFNG Production in Response to Bovine Tuberculin Stimulation

Only 117 of the 343 cows with an IGRA record were included in the study because
they had an OD (bPPD-PBS) higher than the OD (aPPD-PBS), and the OD (bPPD) was
higher than the OD (PBS). IFNG levels after blood stimulation with bPPD (OD (bPPD-PBS))
took values between 0.01 and 1.99, with most of the animals showing OD values between
0.01 and 0.5. The mean OD (bPPD-PBS) of the population was 0.17.

Ten animals had IFNG levels after blood stimulation with bPPD > 0.5. According to
the interpretation criteria of the kit, 76 of the 117 cows included in the study had a positive
IGRA result in response to bPPD. Figure 1 shows the mean of the IFNG production after
blood stimulation with bPPD.
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heritability and variance components of the IFNɣ levels in the study population were es-
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calization of the SNPs is indicated on the x-axis. The horizontal red line is drawn at –log10 (5 × 10−7); 

Figure 1. IFNγ production. Error plot of the levels of IFNG in stimulated blood samples from
the 117 cows included in the study. The central line represents the mean of the group, and the
whiskers represent the standard error. According to the interpretation criteria of the kit, 76 of the
117 cows included in the study were bTb-positive because the OD (bPPD-PBS) was >0.05 and the OD
(bPPD-PBS) > OD (aPPD-PBS).

3.2. Heritability (h2) Estimate, Variance Components, and GWAS Results

The associations between genome-wide imputed SNPs and IFNG levels after blood
stimulation with bPPD (OD (bPPD-PBS)) (N = 117) were analyzed using GCTA1.93.2. The
heritability and variance components of the IFNG levels in the study population were
estimated as 0.23 (σG = 0.01823, σe = 0.06146). The Manhattan plot shows –log10 (p-values)
of the association test between IFNG levels and each SNP is represented in Figure 2A.
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Figure 2. Results of the GWAS analysis. (A) Manhattan plot of the –log10 of the p-values of the
association test between each SNP and the IFNG levels. Each dot represents one SNP. Chromosome
localization of the SNPs is indicated on the x-axis. The horizontal red line is drawn at –log10 (5 × 10−7);
(B) Genomic distribution of the 163 SNPs surpassing the threshold (p-value ≤ 5 × 10−7) according
to the Ensembl Variant Effect Predictor (VEP); (C) Quantile–quantile plot comparing the observed
distribution of –log (p-values) to the expected values under the null hypothesis.
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After clumping, the total number of SNPs that surpassed the significance criteria
(PFDR ≤ 0.05, p-value ≤ 5 × 10−7) was 163. The 163 significant SNPs were located on
20 different Bos taurus chromosomes. As seen in Figure 2B, most of the 163 SNPs were
in intronic regions (67%), while the remaining identified SNPs were in intergenic regions
(23%) or were upstream (4%) non-coding transcript variants (3%), or downstream (2%),
variants. The quantile–quantile plot comparing the observed distribution of –log (p-values)
to the expected p-values under the null hypothesis is shown in Figure 2C. The median
inflation factor was 1.007588, which indicates the absence of population stratification.

3.3. SNPs, QTLs, and Candidate Genes Associated with IFNγ Production in Response to Bovine
Tuberculin Stimulation

After clumping, a total of 163 SNPs, 72 QTLs, 197 candidate genes and 8 miRNAs
(bta-mir-2285cf, bta-mir-2351, bta-mir-12005-2, bta-mir-12000, bta-mir-6121, bta-mir-6524,
bta-mir-4680, and bta-mir-2399), were associated with production of IFNγ after stimulation
with bPPD. p-values, QTLs positions, candidate genes, and miRNAs within each QTL are
presented in Table 1. Pathway analysis failed to reveal significantly enriched biological
processes and metabolic pathways when bovine-specific pathway data were considered.

Table 1. QTLs, candidate genes, and miRNAs associated with high levels of IFNG in response to
bovine tuberculin.

BTA 1 QTL Start
(bp)

QTL End
(bp)

Peak
p-Value Genes in QTL 2 No. SNPs

in QTL

1 124,889,999 124,889,999 4.05 × 10−6
ENSBTAG00000059771, DIPK2A,

ENSBTAG00000064298, ENSBTAG00000060304,
SLC9A9

1

1 125,545,373 125,555,920 5.26 × 10−6 2

1 127,196,414 127,784,694 2.06 × 10−6
GRK7, RNF7, RASA2, U6, bta-mir-2285cf, ZBTB38,

PXYLP1, ENSBTAG00000050470,
ENSBTAG00000059581, SPSB4

5

1 20,524,991 20,585,846 2.29 × 10−6 4

2 13,171,064 13,171,064 1.57 × 10−6 1

2 14,086,412 14,102,103 1.64 × 10−6 ENSBTAG00000053080, ENSBTAG00000058959,
PDE1A 2

2 15,276,423 15,276,423 3.92 × 10−6 ENSBTAG00000064762 1

2 19,826,914 19,958,921 2.24 × 10−8 ENSBTAG00000069400, ENSBTAG00000069332,
ENSBTAG00000064902 2

2 87,618,721 87,987,549 1.21 × 10−7 SATB2 2

2 9,485,693 9,772,662 5.72 × 10−8 FAM171B, ZSWIM2, ITGAV, bta-mir-2351 5

3 47,301,950 47,301,950 1.94 × 10−6 1

3 63,633,887 63,633,887 7.87 × 10−6 1

3 73,139,474 73,139,474 2.82 × 10−6 NEGR1 1

3 81,693,793 81,693,793 3.16 × 10−6 ROR1 1

3 87,101,478 87,101,478 1.14 × 10−6 ENSBTAG00000066077 1

3 88,629,927 88,629,927 3.65 × 10−6 DAB1 1

4 28,439,718 28,439,718 7.73 × 10−6 POLR1F, TMEM196 1

5 106,699,607 106,710,516 5.50 × 10−6 TSPAN9, ENSBTAG00000060879 2
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Table 1. Cont.

BTA 1 QTL Start
(bp)

QTL End
(bp)

Peak
p-Value Genes in QTL 2 No. SNPs

in QTL

5 22,620,852 22,963,465 3.86 × 10−6 PLEKHG7, U6, EEA1, ENSBTAG00000065664,
ENSBTAG00000068135 5

5 31,376,781 31,376,781 5.49 × 10−7 OR8S27, OR8S25, OR8S10 1

5 32,917,758 33,096,745 1.66 × 10−9
ENSBTAG00000059572, ENSBTAG00000038027,
ENSBTAG00000060945, ENSBTAG00000067834,

PCED1B
2

5 33,790,732 34,674,103 1.21 × 10−10

ENSBTAG00000062330, ENSBTAG00000062600,
ENSBTAG00000058122, SLC38A2,

ENSBTAG00000067121, SLC38A1, SCAF11, ARID2,
ENSBTAG00000058264, ENSBTAG00000069144,

ENSBTAG00000067082

6

5 37,435,087 38,572,334 8.97 × 10−8
ENSBTAG00000067640, SNORA62, bta-mir-12005-2,

PRICKLE1, ENSBTAG00000060964, PPHLN1, ZCRB1,
YAF2, GXYLT1

8

5 44,552,213 44,780,908 9.47 × 10−7

U6, LYZ, CPSF6, ENSBTAG00000066263,
ENSBTAG00000069891, ENSBTAG00000057583,
ENSBTAG00000064106, ENSBTAG00000002741,
ENSBTAG00000044636, ENSBTAG00000064663,

ENSBTAG00000069326

3

6 56,297,100 56,297,100 2.00 × 10−6 1

7 109,402,049 109,402,049 7.49 × 10−6 1

7 12,351,770 12,389,993 5.77 × 10−8 CACNA1A, bta-mir-12000, ENSBTAG00000060372,
ENSBTAG00000062006, IER2, STX10 2

7 80,281,173 80,281,173 3.50 × 10−7 TENM2 1

8 106,878,958 107,205,388 5.95 × 10−8 TLR4, ENSBTAG00000068729,
ENSBTAG00000061668 3

8 16,064,815 16,064,815 5.10 × 10−6 LINGO2, ENSBTAG00000066439 1

8 16,591,629 16,755,960 5.32 × 10−6 ENSBTAG00000067505, ENSBTAG00000060335,
IFNK 3

8 92,008,532 92,008,532 4.67 × 10−6 1

9 11,599,785 11,938,116 1.09 × 10−6 RIMS1 2

9 33,772,705 33,772,705 1.33 × 10−6 RFX6 1

9 34,608,918 34,906,969 2.80 × 10−6 NT5DC1, SYNE1 2

9 89,314,702 89,389,719 6.70 × 10−6 SYNE1, ENSBTAG00000052173 2

9 95,898,153 95,898,153 6.69 × 10−6 ENSBTAG00000052316 1

11 6,223,550 6,223,550 7.77 × 10−7 CNOT11, ENSBTAG00000067224, SNORD89,
ENSBTAG00000064562, RNF149, CREG2 1

12 11,410,693 11,410,693 3.30 × 10−9 KBTBD7, MTRF1 1

12 78,341,192 78,341,192 2.79 × 10−6 FGF14 1

14 10,240,609 10,240,609 4.03 × 10−6 ASAP1 1

14 74,566,478 74,566,478 1.61 × 10−8 MMP16 1

15 19,232,962 19,232,962 4.12 × 10−6 1

15 20,351,354 20,406,919 1.04 × 10−6 RDX, ENSBTAG00000068159, ENSBTAG00000066977 2

15 72,080,092 72,080,539 6.78 × 10−6 2
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Table 1. Cont.

BTA 1 QTL Start
(bp)

QTL End
(bp)

Peak
p-Value Genes in QTL 2 No. SNPs

in QTL

16 59,681,912 59,681,912 3.82 × 10−7 1

16 68,538,475 68,542,979 2.40 × 10−7 KCNK2 2

16 69,071,657 69,071,657 1.66 × 10−9 PTPN14 1

16 73,402,526 73,402,526 5.00 × 10−7 SYT14, ENSBTAG00000065259,
ENSBTAG00000064536, UTP25 1

16 74,037,392 74,222,831 2.63 × 10−6 3

16 74,743,716 75,220,658 5.16 × 10−9 ENSBTAG00000042659, PLXNA2, bta-mir-6121 5

16 77,902,129 77,902,129 1.70 × 10−6 ENSBTAG00000059177 1

17 50,628,634 50,628,634 4.15 × 10−8 TMEM132B 1

17 59,585,737 59,585,737 6.92 × 10−9 U2 1

17 66,464,708 66,600,043 2.81 × 10−9 5

21 21,803,104 21,803,104 4.91 × 10−7 MAN2A2, FES, FURIN, ENSBTAG00000057133, BLM 1

21 25,085,953 25,085,953 2.56 × 10−7 BTBD1, ENSBTAG00000066584,
ENSBTAG00000063590 1

22 27,941,466 28,433,940 4.60 × 10−6 ENSBTAG00000069336, ENSBTAG00000069185,
PDZRN3 3

22 31,251,423 31,507,701 1.30 × 10−6 ENSBTAG00000064803, ENSBTAG00000061892,
MDFIC2 4

26 31,413,153 31,413,153 5.68 × 10−8
RBM20, ENSBTAG00000061228,

ENSBTAG00000061228, ENSBTAG00000059480,
PDCD4, bta-mir-6524, bta-mir-4680

1

26 31,943,002 32,482,052 8.36 × 10−13
ENSBTAG00000059653, ENSBTAG00000062595,
ENSBTAG00000066814, ENSBTAG00000064546,
ENSBTAG00000059196, ENSBTAG00000061789

8

26 33,800,182 34,212,369 7.72 × 10−7 HABP2, NRAP, CASP7, PLEKHS1 4

26 35,012,876 35,056,491 9.30 × 10−9 ABLIM1 3

26 37,967,031 38,185,671 6.19 × 10−8 5

26 39,549,032 39,664,208 6.19 × 10−8 ENSBTAG00000063944, ENSBTAG00000056024,
RGS10, TIAL1 3

26 40,347,155 41,671,467 1.90 × 10−8 9

27 23,351,726 23,817,855 6.29 × 10−6 ENSBTAG00000060821, ENSBTAG00000068762,
C27H8orf48, DLC1 2

27 25,170,223 25,252,376 3.51 × 10−6 ENSBTAG00000060632, PPP1R3B, U6 2

27 26,556,329 26,560,206 2.63 × 10−6 RBPMS, ENSBTAG00000053684, bta-mir-2399 2

27 29,107,302 29,107,302 4.53 × 10−6 ENSBTAG00000057376, FUT10,
ENSBTAG00000054272 1

27 34,187,524 34,187,953 4.04 × 10−7 HTRA4, TM2D2, ENSBTAG00000068068, ADAM9 2

28 29,347,932 29,347,932 2.05 × 10−6 MRPS16, CFAP70, ANXA7, ENSBTAG00000054455 1
1 Chromosome QTL location, 2 Candidate genes within the identified QTL.

The identified QTLs were distributed along the Bos taurus genome; chromosome
26 harbors the highest number of SNPs (N = 33). The QTL that harbored the SNP with
the strongest association was on chromosome 26 (p-value = 8.36 × 10−13) and a b-value
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of 1.186. The b-values of all the identified SNPs were positive, which suggests that all the
variants were associated with a significant IFNG production in response to Mb.

Overlapping between the QTLs identified in the current study and QTLs previously
associated with exterior, meat and carcass, production, reproduction, and health traits
was observed. More specifically, overlapping between some of the identified QTLs and
QTLs associated with 30 health traits was observed. The identified QTLs overlapped with
159 QTLs previously associated with bovine tuberculosis [29,49,50], 158 QTLs associated
with somatic cell score [51–59], 105 QTLs associated with bovine respiratory disease suscep-
tibility [60–62], and 14 QTLs associated with bovine paratuberculosis susceptibility [63–68].
QTLs enrichment analysis revealed the enrichment of 33 QTLs associated with exterior,
meat and carcass, production, reproduction, and health (Supplementary Table S1). Of these,
significant enrichment of QTLs previously associated with three health traits was observed,
including bovine tuberculosis susceptibility (P-adjusted = 5.39 × 10−56), somatic cell score
(P-adjusted = 4.43 × 10−6), and direct bilirubin level (P-adjusted = 0.04). The health traits
identified in the QTL enrichment analysis are presented in Figure 3.
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We searched the animal genome database and discovered that 13% of the 91 identified
candidate genes with a recognized gene name matched with candidate genes previously
associated with bovine diseases such as bovine respiratory disease, mastitis, and bovine
paratuberculosis. However, we did not find any matches with candidate genes associated
with bovine tuberculosis. Some of the identified candidate genes, such as G Protein-
Coupled Receptor Kinase 7 (GRK7), ADAM metallopeptidase domain 9 (ADAM9), furin,
paired basic amino acid cleaving enzyme (FURIN), and Integrin Subunit Alpha V (ITGAV) were
previously associated with bovine respiratory disease susceptibility [62]. Both FURIN
and ITGAV mediate tumor growth factor β1 (TGFβ1) activation. Several candidate genes
identified in our study were previously associated with somatic cell counts such as Receptor
tyrosine kinase-like orphan receptor 1 (ROR1), DAB adaptor protein 1 (DAB1), PC-esterase domain
containing 1B (PCED1B), Glucoside xylosyltransferase 1 (GXYLT1), Solute carrier family 38
member 1 (SLC38A1), and Toll-like receptor 4 (TLR4) [54,58].

Some of the identified candidate genes located on BTA11 (6,223,550–6,223,550 bp),
such as CCR4-NOT Transcription Complex, Subunit 11 (CNOT11), RING-Type E3 Ubiquitin
Transferase RNF149 (RNF149), and Cellular Repressor Of E1A Stimulated Genes 2 (CREG2),
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were previously associated with the presence of PTB-associated multifocal lesions [69].
The RFN149 negatively regulates Mitogen-Activated Protein Kinase (MAPK) cascade, and
genetic variants in the vicinity of this gene were previously associated with the humoral
immune response to MAP infection in dairy cattle [65]. CNOT11 is linked to various cellular
processes, including bulk mRNA degradation, miRNA-mediated repression, translational
repression during translational initiation, and general transcription regulation. Candidate
genes identified on BTA3 (63,633,887–63,633,887 bp) such as Hyaluronan Binding Protein
2 (HABP2), Nebulin Related Anchoring Protein (NRAP), Caspase 7 (CASP7), and Pleckstrin
Homology Domain Containing S1 (PLEKHS1) were previously associated with the presence
of PTB-associated diffuse lesions [69]. HABP2 is involved in coagulation and fibrinolysis
systems by activating coagulation factor VII and may function as a tumor suppressor,
negatively regulating cell proliferation and cell migration. Mutations in this gene have been
previously associated with nonmedullary thyroid cancer in humans [70] and susceptibility
to venous thromboembolism due to thrombin defects [71]. CASP7 is a thiol protease
involved in different programmed cell death processes, such as apoptosis, pyroptosis, or
granzyme-mediated programmed cell death, by proteolytically cleaving target proteins and
acts as a key regulator of the inflammatory response in response to bacterial infection by
catalyzing the cleavage and activation of the sphingomyelin phosphodiesterase (SMPD1) in
the extracellular milieu, thereby promoting membrane repair [72,73]. CASP7 also acts as an
inhibitor of type I interferon production during pathogen-induced apoptosis by mediating
cleavage of the antiviral proteins CGAS, IRF3, and MAVS, thereby preventing cytokine
overproduction. Mutations in CASP7 might counteract these effects, resulting in cytokine
overproduction and aberrant inflammation.

Some of the identified candidate genes matched with genes in the animal genome
database previously associated with bovine paratuberculosis susceptibility, such as Toll-
like receptor 4 (TLR4) [66,67] and the Periphilin 1 (PPHLN1), respectively. The PPHLN1
contributes to epidermal integrity and barrier formation and was previously associated
with MAP resistance in Holstein cattle [63]. Matrix Metallopeptidase 16 (MMP16) located on
BTA14 was previously associated with positive ELISA, PCR, and bacteriological culture
results for MAP infection detection [35], and it was also identified in the current study.
MMP16 is a protein of the matrix metalloproteinase family involved in the breakdown
of extracellular matrix components such as collagen type III and fibronectin in normal
physiological processes. In the lung, several MMPs contribute to tissue homeostasis, such
as MMP-7, -16, -19, -21, -24, -25, and -28 [74]. Allelic variants affecting MMPs might cause
improper ECM remodeling and disease progression in pathological circumstances.

Some of the identified candidate genes were previously associated with several bovine
traits, highlighting their importance not just in health but also in milk production, fertility,
body conformation, and length of productive life. For instance, TLR4 was identified in
our study and was previously found to be associated with 18 bovine traits, some of them
health traits including basophil and lymphocyte number, somatic cell counts, and MAP
infection susceptibility [66,67]. TLR4 plays a fundamental role in pathogen recognition and
activation of innate immunity, and mutations in this receptor might result in inadequate
antigen recognition and processing, leading to immune tolerance.

By searching the human GWAs catalog, we found that PC-esterase domain containing
1BP (PCED1B), a hydrolase involved in macrophage apoptosis and autophagy, and ArfGAP
With SH3 Domain, Ankyrin Repeat And PH Domain 1 (ASAP1) were the only candidate
genes identified in our study that were previously associated with human tuberculosis [75].
PCED1B was also previously associated with bovine respiratory disease susceptibility [62].
Susceptibility to human tuberculosis was associated with variants in the ASAP1 gene
encoding a regulator of dendritic cell migration [76]. Most of the 91 candidate genes with a
recognized gene symbol were included in the InnateDB database and had a role in signaling
pathways involved in the bovine immune response against microbial infections, including
TLR4 and programmed cell death protein 4 (PDCD4), among others.
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3.4. Protein-to-Protein Interaction Analysis

The 197 identified candidates were analyzed for protein-to-protein interactions. The
analysis revealed five networks: GRK5-RGS10-TLR4, STX10-EEA1-FURIN-MMP16, TIAL1-
ZCRB1-GXYLT1-CACNA1A, TM2D2-ADAM9-HTRA4, and SCAF11-ARID2-RASA2-ZBTB38
(Figure 4).
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Figure 4. Protein-to-protein network analysis using the identified candidate genes. Individual
nodes represent proteins with relationships represented by edges. The green lines represent gene
neighborhood, red lines represent gene fusions, blue lines represent gene co-occurrence, black lines
represent co-expression, pale blue lines represent homology, and purple lines represent experimentally
determined interaction. The candidate proteins with no associations to other proteins were hidden.

3.5. gEBVs for IFNγ Production and Correlations with Other Bovine Traits

gEBVs for IFNγ production were calculated for each animal in the study population
and then predicted in a larger population of 1739 Friesian cattle. Correlations between the
gEBVs for IFNγ levels in this larger population and 65 phenotypes and traits included in
the evaluations of Spanish Holstein cattle were calculated with Spearman’s correlation test.
For the phenotypes and traits with a significant correlation (p ≤ 0.05) with IFNγ production,
the absolute value of Spearman’s correlation index was lower than 0.12.

4. Discussion

The use of cellular immunity traits in genetic linkage studies in Holstein cattle is
scarce. Recently, a strong effect of host genetics on IFNγ production in response to the
avian tuberculin was observed [33]. In the current study, we measured the IFNγ production
in response to the bPPD in 343 Holstein cows in two steps consisting of (i) incubating whole
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blood samples from the selected animals with bPPD and (ii) detecting the presence of IFNγ

released by sensitized lymphocytes in the whole blood sample to indicate a CMI to the
specific antigen. The number of samples (N = 117) used in this study could be considered
small in comparison with traditional GWAS analysis. The main limitation that arises from
having a small sample size is the decrease in statistical power. However, the assessment
of IFNG levels in stimulated blood is a functional and controlled trait that allowed us to
identify 163 SNPs significantly associated with high IFNG production. Similar reductionist
phenotypes, such as the assessment of the macrophages’ performance by measuring MAP
load within MDMs, used only 61 samples [77].

Previous studies quantified the genetic variation for bTb in different cattle populations
and countries using a variety of trait definitions and reported heritability estimates that
ranged between 0.06 and 0.18 [22–25]. In the current study, we demonstrated that IFNγ pro-
duction in response to Mb is, at least to some extent, dependent on host genetics (h2 = 0.23).
Putative QTLs associated with Mb infection in Holstein cattle have been reported on the
Bos taurus chromosome 1 (BTA1) [28], BTA2 and BTA13 [22], BTA6 [78,79], BTA22 [80], and
BTA23 [28,49]. In most of these studies, case cows had a positive CITT, histopathological
lesions, and a positive bacteriological culture result, and all other cattle present in the herd
were considered control cows. In the current study, none of the identified genomic regions
associated with IFNγ production were located on BTA23. Differences between studies
may be due to differences in the phenotypes used, population structure, methodologies
used across studies, and the large polygenic inheritance of the trait. In addition to the
individual QTL differences between studies, our QTLs enrichment analysis revealed a total
of three health traits with QTLs overlapping the QTLs identified in our study, including
bovine tuberculosis susceptibility as the most significant trait. This finding suggests that
the capacity to produce a strong IFNγ in response to Mb is an indicator of bTb susceptibility
in cattle. Previous studies demonstrated that strong IFNγ production correlated with bTb
pathology in cattle and badgers [14].

We identified 163 SNPs, 72 QTLs, 197 candidate genes, and 8 miRNAs associated with
high IFNγ production in response to Mb infection. The 163 significant SNPs were located
on 20 different Bos taurus chromosomes. This suggests that IFNG production is a polygenic
trait depending on many SNPs located on different chromosomes. The identified QTLs
overlapped with a total of 159 QTLs in chromosomes 3, 5, 16, 17, 22, and 27 that were
previously associated with bTb susceptibility [29,49,50]. Our study identified candidate
genes that might result in an inadequate recognition of Mb antigens, reduced autophagy,
inflammasome activation, uncontrolled extracellular matrix degradation, and reduced
immune cell migration. The RAS p21 protein activator 2 (RASA2) gene identified in our study
encodes a protein that has been previously demonstrated to serve as a tumor suppressor in
melanoma, and therefore, mutations affecting RASA2 might be associated with uncontrolled
inflammation [81]. In the protein network analysis, we found a network (SCAF11-ARID2-
RASA2-ZBTB38) centered in RASA2, together with the chromatin remodeling factor ARID2,
also mutated in various cancer types [82].

Another candidate gene identified in our study was the TLR4 receptor. In the protein
network analysis, we found a network (GRK5-RGS10-TLR4) containing the TLR4 gene. G
Protein-Coupled Receptor Kinase 5 (GRK5) regulates the motility of polymorphonuclear
leukocytes, and TLR4 recognizes pathogen-associated molecular patterns (PAMPs) that
are expressed in mycobacteria and mediate the production of cytokines necessary for the
development of effective immunity. Polymorphisms in the TLR4 gene have been shown to
affect MAP recognition and have been associated with increased susceptibility of cattle to
paratuberculosis [83]. A recent study has shown that knocking out the TLR4 gene in bovine
MAC-T cells enhances inflammation in response to MAP infection [84]. TLR4 mutant
C3H/HeJ mice can control Mb BCG infection as well as C3H/HeOUJ control mice, with
efficient macrophage recruitment and activation, but they have arrested body weight and
develop chronic exacerbated inflammation at later stages of infection [85]. Under a similar
bacterial burden, inflammation was exacerbated and persisted longer in TLR4-deficient
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mice, suggesting that a “switch off” signal for inflammation was missing in the absence of
a functional TLR4. Our study is the first to identify RASA2, GRK5, and TLR4 as candidate
genes associated with strong IFNγ production in response to Mb infection. Mutations
affecting these genes might cause improper Mb antigen recognition and uncontrolled
inflammation.

Interestingly, the PCED1B, a hydrolase involved in apoptosis and autophagy of in-
fected macrophages, was identified in our study, and it was also associated with human
Tb susceptibility [75]. PCED1B plays a crucial role in apoptosis and autophagy, which
are important mechanisms of innate immunity against Mtb [86]. Mutations in PCED1B
might result in impaired autophagy and increased inflammasome activation in both human
and bovine Tb. The ASAP1 gene was identified in our study and previously associated
with human Tb [76]. Susceptibility to human tuberculosis is associated with variants
in the ASAP1 gene, which encodes a regulator of dendritic cell (DC) migration. SNPs
in ASAP1 were significantly associated with Tb in the Russian population [78], the Han
Chinese population [87], and the Xinjiang Muslim population [88]. Impaired migration of
mycobacteria-infected DCs, caused by the genetically determined excessive reduction of
ASAP1 expression, may contribute to human and bovine tuberculosis. This may be one of
the mechanisms that lead to the slow migration of DCs to lymph nodes and the delay of
the adaptive immune response during the early stages of tuberculosis infection [76].

A total of eight miRNAs (bta-mir-2285cf, bta-mir-2351, bta-mir-12005-2, bta-mir-12000,
bta-mir-6121, bta-mir-6524, bta-mir-4680, and bta-mir-2399) were associated with high pro-
duction of IFNγ after stimulation with bPPD. MiRNAs are important regulators of innate
and adaptative immune responses. More specifically, several miRNAs have been found
to regulate T-cell functions or the innate function of macrophages, dendritic cells, and NK
cells [89,90]. For example, bta-miR-4680 is expressed in bovine alveolar macrophages [91],
suggesting its potential implication in infectious respiratory diseases. On the other hand,
the identified bta-miR-2285cf is part of the bta-miR-2285 family, with 40 members spanning
the entire bovine genome, which is expressed in response to Gram-positive bacteria infec-
tion [92] and in macrophages infected with Streptococcus agalactiae [93]. bta-mir-2399 is part
of the repertoire of bovine miRNAs and miRNAs-like small regulatory RNAs expressed
upon viral infections [94]. Future functional studies are required to confirm the association
of these miRNAs, IFNγ production, and susceptibility to Mb infection.

Despite the vast research about the immune response mechanisms of human tuber-
culosis caused by Mtb, the knowledge of bovine tuberculosis’s immunology, particularly
regarding the innate immune response, remains scarce. Our study advances the under-
standing of the role of bovine IFNγ in mycobacterial infections. It was interesting to find
that none of the SNPs and QTLs identified in the current study overlapped with QTLs
associated with strong production of IFNγ in blood samples stimulated with aPPD [33].
These findings show that different genetic variations are associated with enhanced IFNγ

production in response to MAP or Mb [95]. Early after MAP infection, a strong IFNγ

production correlates with resistance [33]. In contrast, strong IFNγ production in response
to bovine tuberculin correlates with bTb susceptibility in more advanced stages of Mb
infection. An IGRA to distinguish between Mb infection and bTb disease has not yet been
developed [96].

Our results open the possibility of ranking Holstein cows based on predicted IFNG pro-
duction, which would allow producers to select cattle less susceptible to bTb, ultimately
reducing the prevalence of the disease, preventing economic losses, and increasing the
length of cattle’s productive life. Genetic selection of less susceptible cattle would be
particularly useful in low and middle-income countries where test-and-slaughter-based
control programs are unfeasible. Importantly, the correlations between IFNG production
and other animal traits were close to zero, suggesting that selective breeding to reduce
animal susceptibility to bTb would not compromise improvements in other traits [25].
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5. Conclusions

We report a new phenotype, the production of IFNG in response to bovine tuberculin,
for evaluating susceptibility to bTb in dairy cows. The identified SNPs, QTLs, and candidate
genes revealed an association between high IFNG levels after stimulation of blood samples
with bPPD and host genetic susceptibility to bTb. QTLs enrichment analysis revealed
a total of three health traits, with QTLs overlapping the QTL identified in this study,
including bovine tuberculosis susceptibility, which is the most significant trait. To our
knowledge, this is the first study revealing a genetic association between bovine IFNγ

production and candidate genes involved in various crucial biological processes, including
the recognition of bacterial antigens, apoptosis, autophagy, extracellular matrix remodeling,
and the migration of immune cells. Furthermore, our results have important implications
regarding the use of genetic evaluations for IFNγ production complementing bTb control.
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