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Abstract: The role of probiotics in regulating intestinal flora to enhance host immunity has recently
received widespread attention. Altering the human gut microbiota may increase the predisposition
to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal
microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in
modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a
versatile role in restoring the composition of the gut microbiota, helping to improve host immunity
and prevent intestinal disease phenotypes. This comprehensive review provides firsthand informa-
tion on the gut microbiota and their influence on human health, the dietary effects of diet on the gut
microbiota, and how probiotics alter the composition and function of the human gut microbiota, along
with their corresponding effects on host immunity in building a healthy intestine. We also discuss the
implications of probiotics in some of the most important human diseases. In summary, probiotics
play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the
abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
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1. Introduction

Recent evidence suggests that probiotics play a critical role in altering the composition
of the gut microbiota and helping inhibit the colonization of pathogenic bacteria in the gut,
thereby assisting the host in building healthy intestinal mucosa [1]. Probiotics primarily
reside in the human intestine and work to balance the intestinal microbes. Common active
bacterial preparations or probiotics include Lactobacillus or Bifidobacterium [2]. Probiotics
have various roles such as boosting immunity, possessing anti-cancer properties, acting as
anti-obesity agents, and having anti-diabetic effects in the treatment of chronic inflamma-
tory and metabolic disorders [2]. They are dietary factors that exert regulatory effects on
the structure and composition of the gut microbiome, primarily influencing host immunity.

The importance of probiotics was brought to light in 2001 when the definition of
probiotics was first established. It was redefined as “live microorganisms that, when
administered in sufficient amounts, provide numerous health benefits to the host” [3].
This definition was further refined in 2014 by a panel of scientists from the International
Scientific Association for Probiotics and Prebiotics (ISAPP) as “this definition encompasses
a wide range of microbes and applications, while capturing the essence of probiotics” [4].

The two dynamic functions of the gut microbiota include the modulation of the
internal host environment and the influencing of the host immune response [5]. For
example, intestinal microorganisms produce short-chain fatty acids (SCFAs), which enhance
epithelial barrier function and reduce inflammation [5]. Another striking role of probiotics
is in the innate and adaptive immunity of the human immune system. For instance,
flagellin elicits an adaptive immune response and regulates the production of flagella
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by the microbiota. This, in turn, helps maintain the mucosal barrier and balance [6]. In
a nutshell, the intestinal flora in the human body resists pathogens and maintains the
integrity of the mucosal barrier.

The beneficial effects of probiotics are attributed to colonization resistance, organic
acids, SCFA production, the competitive exclusion of pathogens, the normalization of
altered microbiota abundance, the regulation of intestinal transit, direct antagonism, gut
barrier reinforcement, and the neutralization of carcinogens [7]. Gut dysbiosis leads to
several metabolic, intestinal, and cardiovascular conditions, and probiotics have shown
promising effects as supplements or adjunct therapy in mitigating the effects of these
diseases [8]. In this comprehensive review, we have summarized recent animal and human
probiotic studies as well as the beneficial effects of probiotics in enhancing host immunity
and modulating the gut microbiota. We have also highlighted the evidence-based health-
promoting effects of probiotics.

2. The Human Gut Microbiota

The gut microbiota is a complex community of millions of microbes in the human
colon, whose metabolic activity is extremely important in maintaining host homeostasis.
It consists of several strains of bacteria and yeasts. The association between the gut flora
and humans is commensal or mutualistic. Different sections of the gastrointestinal tract
have different microbial compositions, with the colon harboring the highest microbiome
population, while only a few species of bacteria are present in the stomach and small
intestine. In total, 99% of the bacteria present in the gut are anaerobes [9].

Human microbiome projects have identified 2172 species of microbiome isolated from
human beings classified into 12 different phyla [9]. The dominant strains of bacteria in the
human gut belong to five major phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
and Verrucomicrobia [10]. Alterations in its composition can cause a metabolic shift, changing
the host phenotype [9]. The gut microbiota is influenced by environmental stimuli such as
diet, the use of antibiotics or other medications, in addition to host factors like stress [11].
Important classes of microbiota-derived metabolites include SCFAs, bile acids, amino acids,
trimethylamine N-oxide, tryptophan, and indole derivatives [12].

In the early stages of development, the diversity of microbiota is low. By around
2.5 years of age, the composition, diversity, and functional capability of infant microbiota
resembles that of the adult microbiota. During adulthood, the composition of microbiota is
relatively stable, although it can be altered by life events. However, at the age of 65, the
composition of their microbiota and the abundance of several microbiota shifts. There is an
abundance of Bacteroidetes phyla and Clostridium cluster IV, in contrast to younger persons,
where cluster XIVa is more prevalent [10]. Given the close symbiotic relationship between
the gut microbiota and the host, it is not surprising to find an altered gut microbiota
in several diseases. The commensal microbiota load in the human gastrointestinal tract,
measured in colony-forming units (cfu)/mL, gradually increases from the stomach to the
jejunum to the colon (Figure 1).

Moreover, the alteration of beneficial gut microbiota can provoke gastrointestinal
diseases such as irritable bowel syndrome, inflammatory bowel disease (IBD), celiac disease,
colorectal cancer, and many other diseases. Importantly, an imbalance of the gut microbial
communities and their metabolites has also been closely related to the dysfunction or
illnesses of other organs (Figure 2).
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Figure 1. Microbiota load and diversity vary throughout the gastrointestinal tract. In a healthy
individual, the microbiota count, measured as colony-forming units (cfu)/mL, in the human gastroin-
testinal tract increases from the stomach/duodenum to the jejunum/ileum to the colon. Additionally,
the regional diversity in the gastrointestinal microbiome, known as the microbial landscape, increases
from the mouth (rostral) to the anus (caudal). Importantly, there is significant intra- and interpersonal
variation in the composition of the human microbiome, which is further influenced by various factors
such as the mode of infant delivery and feeding, aging, diet composition, geography, medication,

stress, and many others [13].
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Figure 2. Organ dysfunction as a consequence of dysbiosis. The balance of the physiological micro-
biota community (eubiosis) in the gut is crucial to ensure an individual’s health. Factors such as an
unhealthy diet, excessive fasting, alcohol consumption, smoking, physical or psychological stress,
chronic inflammation, and the overuse of antibiotics can lead to dysbiosis, which can negatively im-
pact the health of organs. Diseases associated with abnormalities and imbalances in the gut microbiota
can vary greatly and affect all organs. The abbreviations used are as follows: ccRCC, clear cell renal cell
carcinoma; CVD, cardiovascular disease; HCC, hepatocellular carcinoma; IBD, inflammatory bowel
disease; MASH, metabolic-associated steatohepatitis; MASLD, metabolic dysfunction-associated
steatotic liver disease; PCOS, polycystic ovary syndrome. For more information on the impact of the
gut microbiota and its role in health and disease, please refer to [14].
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3. Effects of Probiotics on Intestinal Homeostasis

It is crucial to maintain a dynamic balance of intestinal microbiota homeostasis in a
stable ecological niche [15]. Probiotics increase the number of beneficial bacteria in the
intestine through their own growth by promoting the growth of endogenous desirable
microbial populations [15]. The second way in which probiotics regulate intestinal home-
ostasis is through competitive exclusion, which is a natural phenomenon of competition
for nutrients and ecological niches. This process enhances the colonization of beneficial
bacteria and prevents the growing of pathogenic bacteria [16]. For example, an in vitro
study identified different carbohydrate-binding specificities of probiotic strains, such as
Lactobacillus rhamnosus, Lactobacillus mucosae 1, and Lactobacillus johnsonii BFO1. This study
demonstrated their differential cell adhesion capabilities, enabling them to use a wide
range of host cell receptor sites [17].

Another study found that a probiotic mix including the bacteria Akkermansia muciniphila
and Clostridioides difficile occupies the ecological niche and acts as competitors by crowd-
ing out the pathogenic bacteria through mucopolysaccharide productivity [18]. In the
mechanism of nutritional competition, bacterial biopolymers generated by Bifidobacterium
and Lactobacillus are used as carbon sources by the gut microbiome to antagonize harmful
bacteria and maintain a stable and shaped ecological environment [19]. Remarkably, probi-
otic intake has been associated with the adaptation of the physiological gut microbiome
for carbon source competition via single nucleotide polymorphism [20]. Litvalk and his
colleagues in 2019 found that in two model organisms, chickens and mice, Salmonella has a
competitive advantage due to the increased oxygenation of the intestinal epithelium, while
commensal enterobacteria protect the host by competing for oxygen. This prevents and
reduces colonization by opportunistic pathogens [21]. Another mechanism of probiotics
is regulating intestinal homeostasis through the secretion of metabolites. Intestinal Lacto-
bacillus stimulates lactic acid production, activating hypoxia-inducible (HIF)-2o-mediated
signaling, which is able to improve gut health [22]. This is evidenced by a significant
reduction in Vibrio cholerae through probiotic administration in infant mice via lactic acid
production [23]. In premature infants, Bifidobacterium bifidum and Lactobacillus acidophilus
supplementation increases fecal acetate and lactate, while lowering the intestinal pH re-
sults in the accumulation of opportunistic gut pathogens like Klebsiella, Escherichia, and
Enterobacter [24]. An interesting experiment showed that Escherichia coli Nissle 1917 ECN
inhibits biofilm formation and disperses mature biofilm in pseudomonas aeruginosa to
inhibit enterohemorrhagic Escherichia coli (EHEC). Probiotic Escherichia coli outcompetes
pathogenic biofilms during dual-species biofilm formation [25]. In addition, the secretion
of organic acids such as butyric acid, acetic acid, and propionic acid by probiotics is yet
another important feature associated with their inhibitory activity against pathogens. Or-
ganic acids decrease pH conferring inhibitory activities on pathogens [26]. In summary,
the competitive exclusion and secretion of metabolites such as lactic acid are a few of the
underlying mechanisms involved in the regulation of intestinal homeostasis by probiotics.

4. Maintenance of Intestinal Epithelial Barrier by Probiotics

Intestinal epithelial cells act as the mediators of both the external and internal intestinal
environments, working in conjunction with tight junctions (T]s) to form the mechanical
intestinal barrier. In addition to the mechanical barrier, the intestinal barrier also includes a
chemical barrier primarily composed of the mucus layer, with an immune barrier present
as well. Disruptions or alterations to the intestinal mucus layer can increase the risk of
conditions like leaky gut syndrome and IBD [27]. The single layer of intestinal epithelial
cells is organized into villi and crypts [28]. Pathogens must first penetrate the mucosal
barrier before reaching the epithelium. Changes in the content and structure of mucus
can impact the barrier function, as harmful gut microbes can degrade the mucus [16]. An
important study by Krndija et al. in 2019 found that the homeostatic renewal of adult gut
epithelium is supported by the active migratory forces of dually polarized epithelial cells,
which are based on actin-rich basal protrusions moving in a specific direction [29].
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Multiple studies suggest that probiotics protect the barrier function by promoting
mucus secretion. For example, Lactobacillus plantarum BMCMI12 secretes extracellular
proteins that weaken pathogen adhesion and protect the intestinal barrier [30]. The integrity
of the epithelial barrier is also enhanced by probiotics. For instance, the probiotic mixture
VSL#3 or Lactobacillus rhamnosus GG maintains the integrity of the epithelial barrier in
mice [26]. Remarkably, the metabolites of probiotics such as butyric acid maintain barrier
integrity by enhancing oxygen consumption in the epithelium, subsequently increasing the
expression of barrier-protective HIF-responsive genes [30]. Another interesting finding is
that probiotics reduce intestinal permeability, helping to protect the human gut. This was
reported by Caballero France wherein probiotics prompt goblet cells to produce mucin,
inhibiting the adherence of pathogens [16].

One study showed that the Limosilactobacillus reuteri D8 strain stimulates the regen-
eration of intestinal stem cells by increasing the number of Paneth cells in the crypts,
promoting the repair of intestinal mucosa [31]. In a similar context, administering Akker-
mansia muciniphila for 4 weeks accelerated the proliferation of Lgr5* intestinal stem cells and
promoted the differentiation of Paneth cells and goblet cells in the small intestine [32]. An-
other study found that the ingestion of Lactobacillus reuteri ATCC PTA 4659 could maintain
the integrity of the intestinal barrier and help to protect the mucosal layer by enhancing the
expression of epithelial heat shock proteins 25 (HSP25) and 70 (HSP70), thereby strengthen-
ing epithelial cell structural protein interactions [33]. Furthermore, the supplementation of
Bifidobacterim adolescentis IVS-1 and Bifidobacterium lactis BB-12 to obese patients increased
the total Bifidobacteria and strengthened gut barrier function [34].

Another mechanism of probiotic-mediated barrier regulation is by enhancing the
action of TJ proteins on epithelial cells [35]. In this context, lipopolysaccharide (LPS),
representing an intestinal-derived bacterial toxin, consisting of a lipid and a polysaccharide,
could activate Toll-like receptor 4 (TLR4) and downstream NF-kB signaling pathway. This
causes a decrease in TJ protein expression and an increased likelihood of LPS translocation.
This can cause a localized and systemic inflammation through cytokine production. A
probiotic formulation, combined with dexamethasone, enhances intestinal barrier integrity
by blocking LPS translocation and inhibiting the TLR4/NF-kB pathway, alleviating symp-
toms in an autoimmune hepatitis mouse model [36]. The increase in taurine levels by
probiotics can also trigger the expression of T] proteins, which in turn can reduce intestinal
permeability and inhibit gut leakage [37].

A randomized controlled trial in dogs reported that a compound probiotic powder
could improve the homeostasis of the intestinal mucosa by regulating the expression of
T] proteins, E-cadherin, and occludin [38]. Probiotics protect the mucosal structure by
promoting mucin secretion. For example, Akkermansia muciniphila releases one or more
active metabolites that enter epithelial cells [39]. Bacteroides thetaiotaomicron has been
shown to increase the intestinal mucus layer thickness by promoting mucin 2 (MUC2)
production, restoring the intestinal mucosal barrier, and reducing LPS translocation [40].
It is interesting to note that odorant-binding proteins influence the microbiota and host
physiology in patients with IBD [41].

Probiotics modulate the intestinal barrier by influencing mucosal barrier-associated
effector immune cells, such as lymphocytes. Lactobacillus plantarum G83, which was isolated
from giant panda feces, demonstrated protection against enterotoxigenic Escherichia coli K88
infection in a mouse model [42]. Interestingly, commensal fungi like Candida albicans or Sac-
charomyces cerevisiae offer protection to the host against mucosal injury, thereby enhancing
the circulation of immune cells [43]. In patients with NAFLD, probiotic supplementation
has been shown to increase CD8* cells, which helps regulate intestinal mucosal immune
functions and reduce intestinal permeability [44].

In a study involving weaned piglets, the use of Saccharomyces cerevisiae improved
gut health by enhancing mucosal secretory immunoglobulin A secretion, antioxidant
capacity, and intestinal immunity, thereby reducing pathogen colonization [45]. In summary,
probiotics have been shown to enhance gut mucosal integrity by protecting mechanical,
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chemical, and immune barriers, ultimately reducing inflammation, leaky gut, and pathogen
translocation. Figure 3 illustrates the beneficial effects of probiotics on intestinal barrier
function and homeostasis.

Intestine
Prevention of intestinal Enhancement of
barrier dysfunction barrier function
. i . Immunomodulation and
Secretion of antimicrobial AT
peptides and inhibition of IS HEn 6
bacterial toxin production aftozeagiessivelieactions
\ Probiotics / Reduction of pH
Inhibition of bacterial  w__ - e = (acidification)
adhesion and translocation - \\
/ SR U U O O O A A Inner mucus layer
v 4
A z
A . . v\
Intestinal epithelium Lamina propria /\ Colonocyte, Paneth cell,
Tight Goblet cell
junction
Potential side effects: Digestive discomfort, gas, diarrhea, headaches, histamineT,
allergic reactions, constipation, unwanted weight loss, antibiotic resistance

Figure 3. Beneficial effects of probiotics on the function and homeostasis of the intestinal barrier.
Probiotics impact the intestinal barrier by preventing intestinal barrier dysfunction through enhancing
the expression of tight junction proteins and inhibition of bacterial adhesion and translocation.
Moreover, probiotics lower the luminal pH value through the secretion of anti-microbial active
peptides, acetic and lactic acids, which inhibits the growth of non-commensal pathogens and the
production of their bacterial toxins. They further modulate the host’s immune system, thereby
inhibiting auto-aggressive reactions. However, probiotics can have the depicted side effects such as
digestive discomfort, headaches, constipation, unwanted weight loss, and others. Please note that the
image does not show the full structure of the gastrointestinal wall including its mucosa, submucosa,
muscularis, and serosa.

5. Immunoregulatory Effects of Probiotics

The versatile role of probiotics extends to enhancing the intestinal mucosal immune
defense system, reducing the risk of pathogen penetration through the intestinal epithe-
lium [46]. Probiotics contribute to the host’s innate and adaptive immunity by promoting
T cell differentiation, modulating cytokine levels, and increasing IgA™ cells [47]. These
effector components establish a signaling network between different types of immune cells.
In animal models, Bifidobacterium longum and Bifidobacterium infantis have been shown to
increase interleukin (IL)-10, while inhibiting the levels of IL-12, IL-17, and IL-23 through
increased FOXP3 lymphocyte expression and stimulating T cell differentiation [48]. Notably,
in certain allergies, probiotics have been shown to regulate the balance of T cell subsets by
promoting Th2 to Th1 conversion, thereby reducing allergy symptoms [49].

The innate lymphoid cells regulate epithelial cell interaction, the gut microbiota, and
the adaptive immune system. Group 3 lymphoid cells are enriched in mucosal tissues.
They produce IL-22 and IL17A [50]. Increasing the gut microbial diversity is another
mode of action by which probiotics regulate the host immune system. For example, in
a colitis mouse model, probiotics could increase microbial diversity, modulate the levels
of inflammatory factors, and alleviate symptoms [51]. Notably, several clinical studies
have demonstrated enhanced efficacy of immunotherapy in cancers in combination with
probiotics. In a cancer mouse model, Lactobacillus rhamnosus probiotic M9 (5 x 10° cfu/ day)
effectively restored the mouse gut microbiota, synergistically improving the anti-tumor
effect of anti-PD1 therapy and mouse survival [52]. A melanoma model demonstrated that
Lactobacillus kefiranofaciens ZW18 (1 x 10° cfu/day) had the best anti-melanoma effect when
administered along with PD1-inhibitor anti-cancer therapy, enhancing the body’s immune
response by promoting the infiltration of CD8" T cells [53].
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The chemical and physical barrier of the intestine keeps the gut microbiota and
immune cells separate, preventing abnormal immune reactions and allowing them to co-
exist in harmony within the host [35]. The disruption of mucins, T] proteins, and goblet or
Paneth cells in the intestinal barrier can trigger autoimmune diseases and inflammation [54].
Probiotics such as Escherichia coli Nissle 1917, Lactobacillus plantarum ZLP001, and a few
Lactobacillus reuteri strains regulate these proteins, thereby regulating gut immunity. For
example, the probiotic mixture VSL#3 that consists of eight live bacterial strains, restored
intestinal mucosal T] protein damage and increased the expression of mucin (MUC)2,
MUC3, and MUC5AC in several human colon cancer cell lines [55]. Some Lactobacillus
strains can lower the inflammatory responses by inhibiting the NF-«xB pathway or the
phosphorylation of MAPKSs [56]. Gut microbial metabolites such as SCFAs, amino acids,
bile acids, and vitamins involved in immune regulation are modulated by probiotics
and influence the outcome of intestinal inflammation. SCFAs exert anti-inflammatory
effects by binding to specific receptors on epithelial cells, inhibiting the production of
pro-inflammatory cytokines [57]. Probiotic metabolites such as amino acids and amino
acid derivatives interact with immune cell surface receptors and exert anti-inflammatory
effects [57]. An interesting effect of probiotics is their metabolization of primary bile acids to
secondary bile acids which bind to various GPCR—G-protein coupled receptors or nuclear
receptors to control mucosal immune activity and decrease inflammation [58].

Probiotics have been shown to induce the IgA cycle and stimulate the maturation of
the humoral immune system [59]. They can also boost the population of macrophages and
dendritic cells, which play a crucial role in the immune system by identifying and eliminat-
ing pathogens. Dendritic cells can migrate to mucosa-associated lymphoid tissue or drain
into lymph nodes through the antigen barrier [60]. In one study, it was found that certain
Lactobacillus probiotic strains triggered an inflammatory response in macrophages in vitro
by producing cytokines, regulating reactive oxygen species formation, and activating the
TLR2 pathway [61].

The germ-free mouse models enable the understanding of the relationship between
the gut microbiota and the immune system of the host. One experiment reported an
absent mucus layer and altered IgA secretion in germ-free animals [28]. In brief, probiotics
influence the host’s immune system by interfering with immune cells and inflammatory
factors, regulating the gut microbiome and its metabolites, and repairing the gut barrier.
The immunomodulatory functions of probiotics are illustrated in Figure 4.
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Figure 4. Probiotics are effective in strengthening the host’s immune system. They have various
effects on an individual’s health, including inhibiting the growth of pathogenic bacteria through the
production of antibacterial components and competition for nutrients. Probiotics also compete for
mucosal adhesion sites and stimulate the expression of cytokines that affect cell proliferation and
apoptosis. Additionally, they promote the production of tight junction (TJ) proteins and stimulate or
modulate immune cell function in natural killer (NK) cells and dendritic cells (DC). The increased
production of secretory IgA (sIgA) helps protect the intestinal epithelium from enteric pathogens and
their toxins. More information on the impact of probiotics on immunity and their mechanism of action
on immune cells can be found in other publications [62,63]. Please note that the gastrointestinal wall
is only roughly depicted and does not show its fine structure, which includes the mucosa, submucosa,
muscularis, and serosa.

6. Probiotic Regulation of Signaling Molecules Secretion

It is important to gain a deeper understanding of the metabolites produced by the gut
microbiota, which serve as signaling molecules in host—-gut microbiota interactions [64].
SCFAs act as histone deacetylase inhibitors, preventing excessive histone acetylation [65].
SCFAs interact with G-protein coupled receptors (GPCRs), as demonstrated by the in-
teraction of SCFAs produced by the gut microbiota of pregnant mice with GPR41 on
the sympathetic nerve of the embryo and GPR43 on the pancreas. This promotes the
differentiation of nerve cells and islet 3-cells, shaping the embryo’s metabolic system de-
velopment [66]. Several SCFA-producing probiotics help alleviate symptoms in metabolic
disorders, IBD, and cancers. For example, probiotics have been shown to control blood
glucose levels by influencing gut microbes and SCFA production [67].

One animal study showed that administering Lactococcus lactis G15 and Q14 enhanced
epithelial barrier function, improved glucose tolerance, and decreased lipid levels by
activating SCFA-producing bacteria through the G-protein coupled receptor 43 (GPR43)
pathway in type 2 diabetes mice [68]. In an ulcerative colitis model, supplementing live L.
acidophilus increased SCFA levels and activated GPCRs to inhibit NLRP3 inflammation and
facilitate autophagy [69].
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The dysregulation of the tryptophan-kynurenine pathway is associated with neurolog-
ical disorders and autoimmunity. Probiotic supplementation can help mitigate abnormal
tryptophan—kynurenine pathway metabolism. For example, circulating kynurenine lev-
els were increased in mice under constant stress, and Lactobacillus helped reduce these
levels by blocking intestinal indoleamine 2,3-dioxygenase (IDO1) expression that is the
main enzyme responsible for the conversion of tryptophan to kynurenine and inhibiting
kynurenine metabolism [70]. In a similar context, Lactobacillus plantarum 299V improved
cognitive performance and enhanced SSR1 treatment in patients with depressive disorders
by decreasing the concentration of kynurenine [71].

Table 1 summarizes the metabolites produced by probiotics alone or in interaction
with the gut microbiota and their effects.

Table 1. Sources of probiotic metabolites and their effects *.

Metabolites

Mechanism/Source of Production Effects References

SCFA-acetate

Increased satiety, weight loss, improved
insulin sensitivity, and decreased [72-74]
pro-inflammatory cytokines

Diet and endogenous production
through acetyl-CoA

SCFA-propionate

Decreased weight gain, intestinal and
Dietary fiber fermentation hepatic gluconeogenesis, and decreased [75,76]
pro-inflammatory cytokine levels

SCFA-butyrate

The maintenance of mucosal integrity,
the regulation of local and systemic
Dietary fiber fermentation immunity, anti-obesity effects, the [77-79]
stimulation of leptin synthesis, and the
release of anorexigenic hormones

TMAO

Increased levels are associated with

. . 80
adverse cardiovascular disease [80]

Egg, milk red meat, and fish

Tryptophan metabolites, indole
derivatives, and tryptamine

Anti-microbial effects, anti-obesity
Gut microbiota-derived properties, appetite suppression, and [81,82]
slow gastric emptying

The facilitation of fat digestion and

Primary bile acids (e.g., cholic acid) Liver nutrient absorption, and protection of [83,84]

the mucosal barrier

Secondary bile acids (e.g., deoxycholic

acid and lithocholic acid)

The inhibition of Clostridioides difficile
Produced in colon spore germination and associated [83,84]
colorectal cancer and HCC

Polyamines (e.g., putrescine,
spermidine, and spermine)

Lower Gl—synthesized by the gut The regulation of stress, antioxidant
microbiome effects, and impact on cell proliferation [85]
Upper GI—food-derived and differentiation

* Abbreviations used are as follows: GI, gastrointestinal tract; HCC, hepatocellular carcinoma; SCFA, short-chain
fatty acid(s); TMAO, trimethylamine N-oxide.

7. Human and Animal Trials on Probiotics

Several animal and human studies have proven the importance of probiotic interven-
tion in various diseases and its beneficial effects. Diabetes mellitus is the most common
metabolic disorder posing the greatest challenge to the healthcare system worldwide,
causing life-threatening complications [86,87]. Probiotics have been proven beneficial in
alleviating the symptoms of insulin resistance. A few of the important and interesting
animal and human studies on probiotics have been discussed here. A remarkable study by
Hou and his colleagues demonstrated that probiotic intervention in healthy adults from
six Asian regions increased the abundance of Lactobacillus spp., along with other beneficial
bacteria such as Roseburia, Coprococcus, and Eubacterium rectale, and inhibited harmful bacte-
ria like Blautia and Ralstonia [88]. Another study reported that long-travel-associated gut
dysbiosis can be prevented by the administration of probiotics, as evidenced by an increase
in beneficial microorganisms and the inhibition of harmful microbes such as Klebsiella
pneumoniae and Clostridium leptum [89].
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In neonatal rats, Bacteroides and Bacillus restored the intestinal epithelial barrier func-
tion and inhibited enterocolitis [90]. Piewngam and his colleagues reported that the oral
intake of Bacillus subtilis spores inhibits the fecal streptococci regulator activity of Enterococ-
cus faecalis, thereby preventing bacteremia caused by the translocation of this Gram-positive
commensal bacterium [91]. Another recent prospective study showed that several bacteria
belonging to the Lactobacilli genus interact with intestinal commensal bacteria, thereby
reducing the colonization and growth of Enterobacteriaceae in the intestine [92]. Strikingly,
Huang and colleagues reported that spraying the probiotic fermented liquid (Lacticas-
eibacillus casei, Lactiplantibacillus plantarum, and Lactobacillus rhamnosus probio-M9) into
the living environment of piglets significantly improved their growth and immunity and
decreased the abundance of Escherichia coli [93]. Furthermore, ingesting Limsilactobacillus
reuteri DSM 17648 along with standard triple antibiotic therapy increased the eradica-
tion rate of Helipbacter pylori, alleviating gastrointestinal discomfort by regulating the gut
microbiota [94].

An interesting study revealed that injecting probiotics into obese animals reversed gut
dysbiosis and inflammatory response in mice [95]. Another trial demonstrated that patients
with Crohn’s disease or ulcerative colitis, collectively referred to as IBD, experienced an
increase in probiotic bacteria such as Bifidobacterium and Lactobacillus when consuming
yogurt. This resulted in improved intestinal function [96]. A randomized controlled trial
showed that live Lactobacillus plantarum 299V could reduce intestinal permeability and
suppress inflammatory response in patients with obstructive jaundice [97]. Another in-
triguing clinical trial found that 12 weeks of Bifidobacterium longum therapy significantly
reduced the expression of several pro-inflammatory cytokines in patients with IBD, includ-
ing IL-6, IL-8, and TNF-« [98]. The immunomodulatory effect of microbial metabolites
derived from probiotics was evidenced by a decrease in inflammatory response caused by
renal macrophages, a decrease in gut microbiota imbalance, and an increase in beneficial
metabolites protecting the kidney in a double renal ischemia-reperfusion mouse model
after Lactobacillus casei Zhang supplementation with 1 x 10° cfu per day [99].

In diet-induced obese mouse models, the administration of the probiotics Bifidobacterium
animalis and Lactobacillus paracasei for 12 weeks, along with prebiotics, significantly alleviated
diet-induced metabolic and immunity disorders [100]. An interesting randomized controlled
trial showed that Lactobacillus acidophilus LA-5 and BB-12 at 1 x 10° cfu/day for six weeks
improved glucose tolerance in type 2 diabetic subjects, with an increase in acetic acid and a
decrease in TNF-oc and Resistin [101]. Several clinical trials have demonstrated that probiotics
can decrease blood glucose levels, glycated hemoglobin, and diabetes symptoms in patients
with type 2 diabetes mellitus and gestational diabetes mellitus [102,103]. Similarly, insulin
secretion was improved in a diabetic mouse model after the administration of probiotics by
triggering glucagon-like peptide 1 (GLP-1) and GPR43/41 expression [104]. Additionally,
administering a Bifidobacterium strain has been shown to alleviate metabolic syndrome, and
Bifidobacterium animalis ssp. lactis GCL2505 decreased visceral fat and increased glucose toler-
ance [105]. A significant finding reported that Propionibacterium freudenreichii with probiotic
potential inhibits colorectal cancer proliferation and promotes the apoptosis of cancer cells
by producing acetate and propionate [106]. A groundbreaking discovery on Clostridium
butyricum suggests it could relieve Parkinson’s disease by increasing GPR41/GPR43 levels
and GLP-1 receptors in the brain in mouse models [107]. A probiotic strain of Lactobacillus
gasseri exerts anti-inflammatory effects in mouse colitis models, maintaining the integrity of
the gut barrier [108]. Table 2 summarizes several important randomized controlled trials on
the effect of probiotics in type 2 diabetes mellitus.
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Table 2. Selected randomized controlled trials on the effects of probiotics in therapy of type 2 diabetes
mellitus *.

Intervention Treatment Duration of Intervention Changes from Baseline Reference
Lactobacillus acidophilus (2 x 10° cfu),
Lacticaseibacillus casei (7 x 10° cfu),
s Lactobacillus rhamnosus (1.5 x 10° cfu), .
Prob12);1csial]é>:1(1;e7s//21:;1)acebo Lactobacillus bulgaricus (2 x 108 cfu), 8 weeks A%-Il:g)il(cngégd]:z) ;i% 27 [109]
P Bifidobacterium breve (2 x 10" cfu), o T ’
Bifidobacterium longum (7 x 10° cfu), and
Streptococcus thermophiles (1.5 x 107 cfu)
Synbiotic food / placebo food . AFPG (mg/dL): 22.3 Alnsulin ;
Yy’ (62//61:2)) Lactobacillus sporogenes (1 x 107 cfu) 6 weeks (uI{J/E;’r{L): )71_75 106 [110]
Twice weekly 1500 mg capsules containing FPG (mg/dL): 158.69 + 16.38 vs.
Probiotic capsules/placebo Lactobacillus acidophilus, Lactobacillus 6 weeks 158.56 + 13.7 [111]
capsules (16/18) bulgaricus, Lactobacillus bifidum, and Insulin (ng/mL): 0.35 £ 0.11 vs.
Lacticaseibacillus casei 0.41 +0.16
Synbiotic shake/placebo shake Lactobacillus acidophilus (2 x 10%° cfu), 30 davs FPG (mg/dL): 116.78 + 18.96 vs. [112]
(10/10) Bifidobacterium bifidum (2 x 100 cfu) Y 191.11 + 18.31
AFPG: (mg/dL): 6.04 = 8.41
Synbiotic bread /control bread A total of 3 times adayina40g 8 weeks AHbAIlc (%): —0.28 £ 0.06 [113]

(30/30)

package for a total of 120 g/day Alnsulin (uIU/mL):

—2.05 £+ 1.03

* Abbreviations used are as follows: cfu, colony-forming unit(s); FPG, fasting plasma glucose; HbAlc, glycated
hemoglobin.

8. Probiotics and Obesity

Obesity, a pandemic in recent times, is closely related to the disorders of the intestinal
flora [114]. The intestinal flora has the capacity to prevent the local inflammation of adi-
pose tissue by enhancing immunity and preventing adipose tissue inflammation. Factors
contributing to the pathogenesis of fatty liver disease include adipose tissue dysfunc-
tion/inflammation, the dysbiosis of the gut microbiota, and gut barrier function regulating
several intrahepatic metabolic and inflammatory pathways. Therefore, probiotics and
prebiotics may play a therapeutic role in fatty liver diseases by modulating the gut micro-
biome [115]. One study reported that the genetic sequencing of fecal samples from obese
patients showed significantly fewer Bacteroidetes and more Firmicutes compared with lean
volunteers [116]. In an interesting study, normal cecal microbiota was introduced into adult
germ-free mice and two weeks later, despite a reduction in food intake, adult germ-free
mice had a 60% increase in insulin resistance and body fat [117].

9. Probiotics and Skin

The intestinal microbiota is closely related to skin diseases such as acne, psoriasis, and
atopic dermatitis. For example, probiotics are very effective in treating atopic dermatitis by
enhancing immunity. A study conducted in Norway reported that the incidence of atopic
dermatitis can be effectively decreased by supplying probiotic milk to women and infants
pre- and post-delivery [118]. Another interesting study showed that Bifidobacterium levels
in the intestines of patients with atopic dermatitis were lower as levels were negatively
correlated with the severity of the disease in patients with atopic dermatitis compared to
healthy controls [119].

Another common skin disease is acne, which is characterized by changes in keratin,
inflammation, hormone-induced hyper seborrhea, and decreased immunity [120]. Studies
have reported that Lactococcus sp. HY449 directly inhibits the occurrence of Propionibacterium
acnes through the production of anti-microbial proteins [121]. Furthermore, consuming
probiotic Lactobacillus bulgaricus tablets and Lactobacillus acidophilus has been shown to
improve the condition of patients with acne [118]. An animal study demonstrated that
an oral solution containing Lactobacillus reuteri significantly reduced the number of major
histocompatibility cells around the hair follicles compared to controls [121].

Another skin condition, psoriasis, is a chronic inflammatory skin disease presenting
as erythematous thick scaly plaques on the skin. The association of psoriasis and the gut
microbiota can be evidenced by the severe dysregulation of the gut flora in patients with
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psoriasis, decreased diversity of certain taxa, and alterations in abundance [122]. Scher and
colleagues demonstrated that the gut microbiota in patients with psoriasis was less diverse
and that, further, the abundance of individual phyla is different in patients suffering from
psoriatic arthritis and psoriasis of the skin [123].

Yan et al. showed that the prevalence of psoriasis was negatively associated with
the concentration of Actinomycetes as assessed by psoriasis activity and severity index
score [124]. The oral administration of Lactobacillus pentosus GMNL-77 effectively treated
skin inflammation in mice [125]. Figure 5 depicts the implications of probiotics in notable
diseases.

Heart Failure
Obstructive ut- / -\ i
Pulmonary ﬁut_ . Atherc;snc(;eross
Diseases g % Thrombosis
/ \

Acne Vulgaris

[Encephalitis | GURx —

Brain Skin
Axis Axis
Meta-
bolism
T2 Diabetes Obesity
Mitochondrial
Dysfunction

Figure 5. Applications of probiotics in the therapy of human diseases. The manipulation of the gut
microbiota may be beneficial in treating diseases of the heart, skin, brain, and lung through what are
known as interorganic axes (e.g., gut-heart axis, gut-skin axis, gut-brain axis, and gut-lung axis).
The diseases listed are just a few examples where probiotics have shown benefits. Additionally, they
have a positive impact on general metabolism, making them useful in the treatment of type 2 diabetes,
obesity, and cancer, likely by addressing mitochondrial dysfunction. For more information on the
relationship between microbiota, the gut, and organs, as well as potential treatment approaches
for various pathologies, please see reference [126]. This figure has been adapted from the work of
Gebrayel and colleagues [127].

10. Probiotics: Method of Delivery

Recently, the methods of probiotic delivery have gained attention. For example,
Bifidobacterium longum encapsulated with artificial enzymes could enhance the colonization
time of probiotics in the gut, enhancing its anti-inflammatory effect [128]. In a similar
context, another study reported that probiotics encapsulated by prebiotics were specifically
enriched around colon cancer lesions in mice, effectively inhibiting colon cancer [129].
Strikingly, live Lactobacillus rhamnosus encapsulated in nanoparticles can modulate the
lung microbiota along with promoting host immune recovery [130]. Finally, the latest
technologies such as single cell-omics, isotope tracking, and CRISPR/Cas technology will
unravel new host delivery strategies and immunomodulatory effects of probiotics.

In addition, the response to probiotic supplementation is known to vary with gender
and genetic differences. One study investigated the sex-dependent effects of probiotics on
gut microbiota profiles and found a significant reduction in pro-inflammatory gut microbes
in women compared to men after probiotic supplementation. Furthermore, peripheral
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immune cell profiling showed that probiotics decreased the proportions of dendritic cells
and CD14 monocytes in men, but not in women. This indicates sex-specific responses in the
regulation of the gut microbiota by probiotics [131]. Another study demonstrated a high
proportion of Firmicutes in female athletes compared to males after probiotic supplementa-
tion [132]. An interesting study conducted at Gothenburg University reported differences
in the clinical symptoms of Salmonella infection between male and female patients after
Lactobacillus plantarum supplementation [133]. In summary, the response to probiotics
varies with multiple factors such as gender and race. Moreover, these studies demonstrate
that defining a probiotic can be complicated and may be highly challenging because there
are many factors that might impact the biological activity of a specific “probiotic”.

11. Taxonomic and Metabolomic Profiling

Nowadays, it is well-accepted that the loss or abundance of specific taxonomic groups
is associated with a number of disorders such as type 2 diabetes, obesity, IBD, and some
types of cancers. Therefore, taxonomic profiling may provide important mechanistic
insights relevant to understanding the initiation or progression of these diseases. Con-
sequently, mathematical frameworks have been established for analyzing gut microbial
communities in cohorts suffering from different diseases. For example, the global inter-
species metabolic interaction network of the human gut microbiota, NJ516, has identified a
community-scale infrastructure of metabolic influence with the type 2 diabetes mellitus gut
ecosystem [134]. Other studies focus on the metabolites produced by the gut microbiome.
In one landmark study, the authors combined integrative metagenomic and metabolomic
information from the gut microbiome with optimization techniques from machine learning
and proposed an ecology-based computational algorithm, GutCP, that identified high-
consensus cross-feeding interactions between 72 prominent gut microbial species and
221 gut metabolites. This suggests that mathematical models and artificial intelligence
have the potential to provide tractable information about the ecological inference in the gut
microbiome [135].

However, machine learning methods and artificial intelligence in microbiome analysis
still have some limitations and bottlenecks [136,137]. Nevertheless, the success of artificial
intelligence, along with the evaluation of big data sets from defined cohorts, will pave the
way for future applications and the development of gut microbiota-targeted strategies for
the treatment and prevention of human diseases [138].

12. Conclusions

The modulation of the gut microbiota through reshaping host-microbiota interactions
can be achieved with strategies such as probiotics and personalized nutrition as adjunctive
therapy. Pathogenic microorganisms alter the homeostasis of the gut microbiota, leading
to an increased risk of related diseases. Probiotics inhibit these pathogens by stimulating
epithelial barrier function, secreting anti-microbial components, competitively excluding
pathogens by binding sites, and limiting their access to nutrients. The diversity, variability,
and complexity of the gut microbiota can be disrupted by multiple factors, causing various
illnesses. Interventions with probiotics and their modulation of the gut microbiota help
sustain good health and alleviate these diseases. Despite the beneficial effects of probi-
otics, there are variations in some trials that do not show beneficial effects. Therefore,
intensive research could provide a deeper understanding of probiotics for practical and
clinical applications. Progress in analyzing the gut microbiome through the adoption of
systems biology approaches and the use of artificial intelligence will effectively promote
an understanding of the impact of the microbial community and its metabolites in the
pathogenesis of individual diseases. Undoubtedly, this will also be beneficial in developing
novel microbe-targeted therapies for modifying the gut microbiota or its metabolites in
personalized and precision medicine.
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Abbreviations

cfu colony-forming unit(s)

GPCR G-protein coupled receptor(s)
HIF hypoxia-inducible factor

IBD inflammatory bowel disease
IL interleukin

LPS lipopolysacchride(s)

SCFA(s) short-chain fatty acid(s)

TJ(s) tight junction(s)

TLR4 Toll-like receptor 4
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