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Abstract: Nonalcoholic fatty liver disease (NAFLD), nowadays the most prevalent chronic liver
disease in Western countries, is characterized by a variable phenotype ranging from steatosis to
nonalcoholic steatohepatitis (NASH). Intracellular lipid accumulation is considered the hallmark
of NAFLD and is associated with lipotoxicity and inflammation, as well as increased oxidative
stress levels. In this study, a lipidomic approach was used to investigate the plasma lipidome of
12 NASH patients, 10 Nonalcoholic Fatty Liver (NAFL) patients, and 15 healthy controls, revealing
significant alterations in lipid classes, such as glycerolipids and glycerophospholipids, as well as
fatty acid compositions in the context of steatosis and steatohepatitis. A machine learning XGBoost
algorithm identified a panel of 15 plasma biomarkers, including HOMA-IR, BMI, platelets count,
LDL-c, ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4 ω6/FA 20:5 ω3, CAR 4:0, LPC 20:4, LPC O-16:1,
LPE 18:0, DG 18:1_18:2, and CE 20:4 for predicting steatohepatitis. This research offers insights into
the connection between imbalanced lipid metabolism and the formation and progression of NAFL
D, while also supporting previous research findings. Future studies on lipid metabolism could lead
to new therapeutic approaches and enhanced risk assessment methods, as the shift from isolated
steatosis to NASH is currently poorly understood.

Keywords: untargeted lipidomics; non-alcoholic fatty liver disease; plasma; machine learning

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is nowadays a global public health prob-
lem [1], affecting more than 1 billion people worldwide [2,3]. The disease spectrum ranges
from Nonalcoholic Fatty Liver (NAFL), which is characterized by simple steatosis with or
without inflammation, to Non-Alcoholic Steatohepatitis (NASH), which is defined by the
coexistence of steatosis, inflammation, and hepatocellular ballooning. Recently, due to the
strong association of NAFLD/NASH with metabolic risk factors, such as metabolic syn-
drome (MetS), type 2 diabetes (T2DM), insulin resistance (IR) as well as obesity, metabolic
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dysfunction-associated steatotic liver disease (MASLD) has been proposed as the latest
term to describe steatotic liver disease associated with MetS [4].

The molecular mechanisms in the pathogenesis of NAFL and its progression to NASH
are poorly understood; however, the storage of lipid droplets inside hepatocytes as a
result of intracellular lipid accumulation is considered the hallmark of NAFLD [5]. The
accumulation derives from increased fatty acid absorption, increased de novo lipogenesis,
and impaired fatty acid export and oxidation [6]. These cellular dysfunctions contribute to
alterations in lipids’ homeostasis, leading to lipotoxicity [7,8]. A thorough investigation
of the various lipid species along the different stages of NAFLD may provide important
insights into the mechanisms underlying disease progression [9]. Up to today, liver biopsy
remains the clinical gold standard for the definitive diagnosis. Nonetheless, this approach
is notably invasive and expensive, posing potential risks of side effects and sampling
errors. On the other hand, ultrasonography serves as a functional tool for diagnosing only
fatty liver disease and not steatohepatitis, while the accuracy of this method is operator-
dependent [10].

Extensive lipidomic studies have been conducted in both liver biopsies and blood
plasma either on human subjects or mouse models to shed light on the biochemistry
behind the progression of NAFLD but also towards the exploration of potential specific
NASH biomarkers in blood [11]. A correlation between alterations in liver and blood
lipidome during NAFLD progression is assumed since the liver is the primary organ of
lipid metabolism and plasma lipids under fasting conditions primarily reflect the lipids
excreted from this tissue [5]. Until now, plasma lipidomic analyses have revealed several
lipid mediators, including fatty acids, sphingolipids, phospholipids, diacylglycerols, and
triacylglycerols, as potential key contributors to the mechanism of disease progression
toward NASH. Indeed, pro-inflammatory and pro-apoptotic factors are linked to increased
concentrations of specific lipid species, such as saturated fatty acids and phospholipids,
as well as to disruptions in ceramide-signaling or changes in cholesterol homeostasis [12].
However, it has not yet been established whether these modifications are reflected in the
circulating lipids or whether NASH has a specific lipidomic profile [13].

For the non-invasive diagnosis of NASH, various diagnostic tests and numerous
scores or indexes have been developed, incorporating clinical variables and/or plasma
biomarkers to predict the presence of fibrosis [14], including the BARD score [15], the
FIB-4 index [16], the fatty liver index (FLI) [17], the NAFLD fibrosis score (NFS) [18], the
FibroTest [19], the FAST Fibroscan-Aspartate Aminotransferase Score [20], LSM [21], and
the Liver Stiffness Measurement (LSM). Additionally, a number of published studies have
explored the effectiveness of Machine Learning (ML) approaches in predicting the different
phenotypes of NAFLD [22–25]. These studies have used various datasets derived from
simple blood tests or multi-omics analyses, encompassing logistic regression, random
forests, and the XGBoost algorithm for data analysis [26].

The aim of the present study was to characterize the lipidomic profiles associated with
the increasing severity of NAFLD and the presence of NASH in patients. The differentiated
lipids signatures in the plasma of 15 controls and 22 patients with NAFL and NASH,
categorized via liver biopsy, were investigated to identify lipids that may be associated
with the disease. Using this information, we explored the application of an ML model
for the prediction of NASH, NAFL, or healthy individuals with high accuracy based on
specific plasma lipid species.

2. Results
2.1. Anthropometric and Clinical Characteristics of Study Population

This case-control study comprised 37 individuals, including patients suspected of
NAFLD and controls. According to current clinical practice guidelines, the patients were
submitted to a percutaneous ultrasound-guided plugged liver biopsy and were catego-
rized as NAFL (27.0%) and NASH (32.5%), based on the NAFLD Activity Score (NAS)
evaluation, while the control group comprised 40.5% of the participants, as described
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by Kalopitas et al. [27]. The demographic and clinical characteristics of the three study
groups are presented in Table 1. Parameters such as BMI, MetS, HOMA-IR, and waist
circumference were found to differ significantly between the studied groups. In addition,
the biochemical parameters ALT, AST, GGT, insulin, HDL-c, total triglycerides, ferritin, uric
acid, albumin, HbA1c (%), and NAFLD Activity Score (NAS) were found to differ between
the control and the NASH group. ANCOVA analysis was performed to adjust the waist
circumference between the groups at the continuous variables, and the adjusted p-values
are presented in Table 1. After the adjustment, HOMA-IR, the hepatic enzymes ALT, AST,
and GGT, insulin, and triglycerides exhibited statistically significant differences between
the control and NASH patients.

Table 1. Baseline characteristics of the study population and comparison between control, NAFL,
and NASH groups.

Parameters Total Population Control NAFL NASH p-Value
Adjusted p-Value

with Waist
Circumference

Demographics and clinical characteristics

Sex (Male) 37 (22) 15 (8) 10 (6) 12 (8) 7.81 × 10−1 7.81 × 10−1

Age (years) 54.0
(46.0–60.0)

53.0
(41.5–55.0)

57.0
(53.2–60.0)

57.5
(45.8–65.5) 3.05 × 10−1 8.76 × 10−1

BMI (kg/m2)
29.3

(24.9–31.8)
25.3

(24.0–28.7)
31.1

(26.6–33.0)
31.6

(28.6–35.2) 1.70 × 10−3 a,b 5.11 × 10−1

Diabetes Mellitus 13 (35.1%) 3 (20%) 3 (30%) 7 (58.3%) 1.08 × 10−1 1.08 × 10−1

Arterial Hypertension 12 (32.4%) 3 (20%) 4 (40%) 5 (41.7%) 4.09 × 10−1 4.09 × 10−1

Metabolic Syndrome 16 (43.2%) 3 (18.7%) 4 (25%) 9 (56.3%) 1.60 × 10−2 a,b 1.60 × 10−2 a,b

Waist Circumference (cm) 100
(95.0–112)

95.0
(83.5–98.0)

106
(97.0–118)

111
(100–120) 2.00 × 10−3 a,b 3.62 × 10−3 a,b

HOMA-IR 3.50
(1.90–6.20)

1.90
(1.05–2.55)

3.30
(1.92–8.00)

6.10
(4.80–8.88) 1.66 × 10−4 b 5.02 × 10−3 b

Biochemical parameters

NAS 3 (1.75–5) 0 2.5 (2–3) 5 (4–6) 6.16 × 10−6 b 6.16 × 10−6 b

ALT (U/L) 28.0
(22.0–51.0)

20.0
(15.5–26.0)

35.5
(23.2–50.5)

48.5
(39.0–92.5) 3.20 × 10−4 b 9.94 × 10−5 b

AST (U/L) 27.0
(20.0–39.0)

20.0
(18.0–23.5)

27.0
(23.8–31.0)

43.5
(35.8–52.2) 6.44 × 10−5 b 1.14 × 10−4 b

GGT (U/L) 23.0
(13.0–54.0)

13.0
(11.0–20.0)

25.0
(18.5–56.2)

52.5
(35.0–93.5) 2.23 × 10−3 b 4.82 × 10−2

ALP (U/L) 72.0
(55.0–93.0)

58.0
(53.5–89.0)

77.5
(62.8–96.8)

86.5
(64.8–94.2) 2.81 × 10−1 6.58 × 10−1

Insulin (µlU/mL) 12.3
(7.40–25.8)

9.50
(4.40–11.2)

14.4
(7.45–31.6)

25.4
(21.9–27.8) 2.00 × 10−4 b 3.53 × 10−2 b

Platelets (×103) (K/µL)
226

(182–274)
217

(206–255)
253

(187–314)
215

(175–251) 3.69 × 10−1 4.22 × 10−1

HbA1c (%) 5.50
(5.20–6.00)

5.40
(5.10–5.70)

5.50
(5.22–5.75)

6.15
(5.72–7.02) 4.67 × 10−2 b 1.32 × 10−1

FBG (mg/dL) 96.0
(88.0–110)

89.0
(84.5–96.5)

94.5
(85.0–111)

109
(94.8–134) 6.25 × 10−2 1.86 × 10−1

Total cholesterol (mg/dL) 185
(147–202)

177
(155–200)

192
(125–215)

192
(168–200) 5.66 × 10−1 5.83 × 10−1

LDL-c (mg/dL) 101
(77.0–126)

99.0
(76.0–128)

114
(60.5–126)

96.0
(81.0–120) 8.61 × 10−1 8.32 × 10−1

HDL-c (mg/dL) 50.0
(42.0–60.0)

56.0
(53.5–64.0)

45.5
(32.2–54.8)

43.0
(40.8–49.2) 6.30 × 10−3 b 5.02 × 10−2

Triglycerides (mg/dL) 116
(85.0–178)

84.0
(60.0–100)

128
(95.2–150)

192
(144–283) 2.00 × 10−4 b 1.26 × 10−3 b

Ferritin (ng/mL) 149
(79.7–249)

97.0
(65.2–160)

136
(84.4–293)

200
(140–564) 2.75 × 10−2 b 2.98 × 10−1

Uric acid (mg/dL) 4.90
(4.30–5.80)

4.80
(4.00–5.10)

4.85
(4.70–5.92)

5.60
(4.40–6.75) 3.00 × 10−2 b 2.48 × 10−1

Albumin (gr/dL) 4.58
(4.38–4.70)

4.60
(4.36–4.70)

4.57
(4.51–4.68)

4.50
(4.36–4.62) 1.00 × 10−2 b 4.89 × 10−1

Continuous variables are presented as median (25th–75th percentile). Categorical parameters are presented as
counts and percentages for each parameter’s category. A one-way ANOVA and Kruskal–Wallis tests were conducted
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for normally and non-normally distributed continuous parameters, respectively, while a Chi-square (χ2) test

was conducted for the categorical variables, in order to assess the statistical significance of the comparison

between the three distinct NAFLD groups. The threshold for statistical significance was set at p < 0.05. Ab-

breviations: BMI Body Mass Index, HDL-c high-density lipoprotein, LDL-c low-density lipoprotein, ALT Ala-

nine transaminase, AST Aspartate Aminotransferase, GGT Gamma-glutamyl Transferase, ALP Alkaline Phos-

phatase, FBG Fasting Plasma Glucose. Statistically significant parameters between the groups: a control–NAFL,
b control–NASH.

2.2. Investigation of Plasma Lipids Profile in Patients with NAFLD and Controls

The applied lipidomic workflow facilitated the identification of 359 lipid species, and
215 of them were quantified. Overall, fatty acyls constituted 13.1%, glycerophospholipids
37.3%, glycerolipids 34.9%, and sphingolipids 14.7% of the identified lipid species in blood
plasma. Figure 1 illustrates the subclasses of lipids species quantified in the plasma of
patients with NAFLD and healthy controls. For a comprehensive overview, the detailed
table, including the annotations of molecular species, the molecular formulas, the monoiso-
topic masses, and the retention time data of all the identified lipids species, is available in
Table S1. The validity of the analytical data has been assessed by the analysis of the quality
control (QC) samples. The PCA score plots projecting all samples and QC samples provide
an indication of satisfactory analytical precision (shown in Figure S1).
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Figure 1. Lipid subclasses quantified in plasma of NAFLD patients based on targeted and un-
targeted analyses of acylcarnitines, ceramides, fatty acids, and esterified lipids. Abbreviations:
FA: Fatty Acids, CAR: Carnitines, Cer: Ceramides, SM: Sphingomyelins, LPC: Monoacylglyc-
erophosphocholines, LPC-O: Monoalkylglycerophosphocholines, LPE: Monoacylglycerophospho-
ethanolamines, PC: Diacylglycerophosphocholines, PC-O: 1-alkyl,2-acylglycerophosphocholines, PC-
P: 1-alkyl,2-acylglycerophosphocholines, PE: Diacylglycerophosphoethanolamines, PE-O: 1-alkyl,2-
acylglycerophosphoethanolamines, PE-P: 1-(1Z-alkenyl),2-acylglycerophosphoethanolamines, PI:
Diacylglycerophosphoinositols, CE: Cholesterol Esters, DG: Diglycerides, and TG: Triglycerides.

To investigate whether there is a distinct lipidomic signature associated with the sever-
ity of NAFLD, a multivariate statistical analysis was performed based on the quantified
lipid species. The unsupervised PCA models constructed could not clearly classify the
three groups (data shown in Figure S1). However, the separation of the NASH patients from
the other 2 groups could be achieved by partial least squares regression (PLS) analysis, as is
presented in the score plot provided in Figure S2. A pairwise OPLS-DA analysis between
the studied groups also revealed the differentiation of NASH patients from controls, as
is illustrated in the OPLS-DA score plot in Figure 2. Characteristics of the constructed
unsupervised and supervised models and validation parameters are provided in Table S2.
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Figure 2. OPLS−DA score plot showing the classification of NASH and controls based on the plasma
lipidome.

Based on multivariate and univariate analyses, nine lipids were identified to contribute
to this classification. These statistically significant lipid species are provided in Table 2
along with the estimated p-values < 0.05, VIP scores, Log2FC, CV%, median concentrations,
and their lower and upper bounds of the 95% confidence intervals (CI). The adjusted
p-values, based on ANCOVA analysis that was performed for the waist circumference, are
also included in Table 2. Three diglyceride species, namely, DG 16:1_18:0, DG 18:0_18:1,
DG 18:1_18:1, three phosphatidylcholines PC 16:0_16:1, and PC 18:0_18:1, PC 18:0_22:5,
and two phosphatidylinositols, PI 16:0_20:4 and PI 16:1_18:1, and the cholesterol ester CE
20:4, demonstrated a significant impact in the discrimination of the two groups, as all of
them, with the exception of CE 20:4, were found to be elevated in the blood plasma of
NASH patients. Regarding the discrimination of NAFL patients from controls or NASH
patients, no valid model could be constructed based on the blood lipid profiles (data shown
in Figure S1).

Table 2. Lipids with statistical significance according to the clinical manifestation of NAFLD.

Plasma

Control–NASH Control (N = 15) NASH (N = 12)

Lipids p Value p Value Adj Waist VIP Log2FC CV%
Median

95% Lower CI 95% Upper CI
Median

95% Lower CI 95% Upper CI
µM µM

CE 20:4 7.00 × 10−4 3.20 × 10−3 7.4 −0.76 3.89 1093 959 1295 664 564 783
DG(16:1_18:0) 6.85 × 10−4 3.18 × 10−3 1.3 1.68 8.43 4.87 4.13 5.15 9.59 8.22 21.9
DG(18:0_18:1) 7.41 × 10−4 1.57 × 10−3 0.6 1.48 6.17 1.33 1.13 1.51 2.8 2.17 5.79
DG(18:1_18:1) 1.67 × 10−3 1.15 × 10−2 1.6 1.03 8.44 14.9 13.3 17.1 23.0 19.9 43.9
PC(16:0_16:1) 1.85 × 10−2 2.00 × 10−2 1.3 0.78 0.99 17.9 13.2 20.2 26.5 19.8 39.7
PC(18:0_18:1) 2.66 × 10−2 2.90 × 10−2 1.6 0.42 0.75 50.0 44.7 55.4 65.7 50.7 82.6
PC(18:0_22:5) 1.35 × 10−2 4.49 × 10−2 0.7 0.47 0.91 12.2 11.7 13.8 18.7 15.1 20.2
PI(16:0_20:4) 7.30 × 10−3 1.42 × 10−2 0.7 0.91 17.1 4.03 3.17 5.62 6.67 3.89 12.3
PI(16:1_18:1) 7.85 × 10−3 1.36 × 10−2 0.8 1.01 20.8 3.35 3.03 4.81 6.20 5.15 9.56

Data obtained by untargeted and targeted analyses were processed together, consider-
ing both the lipidomic data and the clinical and biochemical information of the patients.
Therefore, the classification observed between NASH patients and controls through multi-
variate analysis was further evaluated using an ML approach. This approach considered
not only the lipids but also various biochemical parameters to enhance the predictive ability
of the data.

2.3. Machine Learning Analysis for NAFLD Patients’ Classification

To explore the capability of the extensive information derived from the lipidomics data
in distinguishing NAFLD patients from controls, an ML approach was utilized. Various
predictive ML models, using the XGBoost algorithm, were created and assessed with the
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objective of categorizing the participants into controls, NAFL, and NASH patients. The
one-vs-rest (OvR) multiclass classification strategy was employed, where each specific
group was tested against all the other groups, including the comparisons of controls vs.
NAFL–NASH, NAFL vs. controls–NASH, and NASH vs. controls–NAFL.

In the initial models for all comparisons, only the data from the lipidomic analysis
were included, referred to as the unadjusted models. Among these comparisons, only
the NASH vs. controls and NAFL gave satisfying values of the evaluation metrics (MCC:
0.403 ROC AUC score: 0.675 (0.671–0.679 CI 95%), cutoff value: 0.659, accuracy: 70.3%,
sensitivity: 75.0%, specificity: 68.0%, PPV: 52.9%, and NPV: 85.0%). The subsequent step
involved adjusting the model by incorporating values of biochemical markers, namely,
BMI, waist circumference, NFS, FIB-4, HOMA-IR, hepatic enzymes ALT, AST, GGT, ALP,
platelets, HbA1c %, total cholesterol, total triglycerides, LDL-c, HDL-c, ferritin, and the data
obtained from targeted methods, including 13 acylcarnitines, 4 ceramides, 20 fatty acids,
and their ratios [27], attaining the optimal performance for the model (MCC: 0.721, ROC
AUC score: 0.837 (0.834–0.841 CI 95%), cutoff value: 0.625, accuracy: 86.4%, sensitivity:
91.6%, specificity: 84.0%, PPV: 73.3%, and NPV: 95.5%). The XGBoost algorithm success-
fully ranked the lipids and the parameters in the dataset according to their importance in
achieving discrimination. When the greedy algorithm was applied to evaluate the impact
of the number of features on the overall model’s performance (reference model), optimal re-
sults were achieved by utilizing the initial 15 most significant lipids and parameters namely,
HOMA-IR, BMI, platelet count, LDL-c, ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4/FA
20:5, CAR 4:0, LPC 20:4, LPC O-16:1, LPE 18:0, DG 18:1_18:2, and CE 20:4. The outcomes
included the following: MCC of 0.721, a ROC AUC score of 0.900 (0.897–0.901 CI 95%),
cutoff value: 0.422, accuracy: 86.5%, sensitivity: 100%, specificity: 80.0%, PPV: 70.6%, and
NPV: 100%. Figure 3a illustrates the confusion matrix, depicting the outcomes of sample
separation achieved by the model. In Figure 3b, the corresponding ROC AUC plot is
presented. The model successfully classified 20 out of 25 individuals (80.0%) in the control
and NAFL group and accurately identified 12 out of 12 patients (100%) in the NASH group.
Table 3 provides a summary of the biochemical parameters and lipids from the dataset
involved in the optimized model. The concentration distribution of lipids and biochemical
parameters between the two groups are also depicted in Figure 4. The optimal model was
validated using the permutation test, of which results are provided in Figure S3.
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Table 3. Lipids enhanced the classification of NASH patients as derived from the XGBoost algorithm.

Total Population NASH Control–NAFL

p-Value Median 95% Lower CI 95% Upper CI Median 95% Lower CI 95% Upper CI Median 95% Lower CI 95% Upper CI

HOMA-IR 2.61 × 10−4 3.50 2.20 4.80 6.10 4.80 8.95 2.2 1.70 2.90
BMI (kg/m2) 1.04 × 10−2 29.3 25.7 31.2 31.6 28.5 35.3 26.0 24.4 30.4

Platelets(×103)
(K/µL) 1.87 × 10−1 226 205 251 216 172 253 226 207 274

LDL(mg/dL) 8.10 × 10−1 101 82.0 121 96.0 80.0 121 101 77.0 126
Ferritin(ng/mL) 2.62 × 10−2 149 98.7 218 200 132 569 101 76.0 163

AST(U/L) 8.47 × 10−5 27.0 23.0 35.0 43.5 35.5 52.5 22.0 20.0 27.0
FA 12:0 (µM) 5.50 × 10−4 73.4 71.7 74.0 75.2 73.8 86.7 71.7 71.2 73.4

FA 18:3 ω3 (µM) 1.11 × 10−3 66.0 65.2 68.9 70.8 66.9 81.5 65.3 64.7 66.0
FA 20:4 ω6/
FA 20:5 ω3 4.79 × 10−1 5.86 5.74 6.14 5.79 5.51 6.20 5.92 5.66 6.27

CAR 4:0 (µM) 4.18 × 10−1 0.09 0.07 0.11 0.11 0.09 0.13 0.07 0.07 0.11
LPC(20:4) (µM) 9.60 × 10−3 7.99 6.71 8.75 6.16 5.07 7.81 8.66 7.99 9.76

LPC(O-16:1) (µM) 3.25 × 10−1 0.74 0.68 0.85 0.73 0.67 0.86 0.77 0.67 1.00
LPE(18:0) (µM) 7.95 × 10−2 2.43 1.97 2.86 2.53 2.28 3.44 2.02 1.90 2.88

DG(18:1_18:2) (µM) 8.19 × 10−3 15.2 12.6 18.0 22.0 17.5 35.2 13.0 12.3 16.5
CE 20:4 (µM) 4.00 × 10−4 957 766 1056 664 564 783 1056 957 1295
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3. Discussion

In this study, we explored the results obtained from a lipidomic-based examination
of plasma samples, collected from 37 controls and patients with suspicion of NAFLD,
classified into NAFL or NASH based on liver histology. Our analysis focused on variations
in lipidomes, specifically in fatty acids, acylcarnitines, ceramides, sphingomyelins, phos-
phatidylinositols, (Lyso)phosphatidylethanolamines, (Lyso)phosphatidylcholines, diglyc-
erides, triglycerides, and cholesterol esters, aiming to identify lipids that could be linked to
the phenotype and complexity of NAFLD. Untargeted and targeted approaches in lipids
analysis were combined with biochemical markers from a simple blood test and baseline
characteristics providing a panel of lipids and biochemical parameters which was used
to develop an ML predictive algorithm able to evaluate the stratification of the disease.
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The one-vs-rest (OvR) multiclass classification strategy was utilized, exhibiting satisfactory
values for the evaluation metrics MCC and AUC ROC only for the NASH vs. controls
and NAFL comparison. According to our final ML model, accurate prediction of NASH
patients was attained utilizing lipidomic data, markers from a simple biochemical test, and
baseline characteristics, incorporating 15 features into the model.

Using ML to predict diseases enables broader identification, timely intervention,
and precise treatments to enhance or manage disease progression. Previous research
has also explored the effectiveness of ML in predicting or diagnosing different stages of
NAFLD. The primary reference for these studies is a recent publication by Nourenddin
et al., who developed the metabolomics-advanced steatohepatitis fibrosis score (MASEF).
This algorithm utilized a multivariate logistic regression model that incorporated 12 lipids
(2 triglycerides, 5 glycerophosphatidylcholines, 1 cholesterol ester, 1 ceramide, and
3 sphingomyelins), BMI, ALT, and AST enzymes, achieving the highest AUC in the valida-
tion cohort of 565 patients with high-risk metabolic dysfunction-associated steatohepatitis
(MASH). The MASEF score characteristics included an AUC of 0.789 (0.750–0.827, 95%
CI), cutoff of 0.33, accuracy of 69.0%, sensitivity of 78.2%, specificity of 65.2%, PPV of
48.1%, and NPV of 87.9% [23]. In addition to this study, Atabaki-Pasdar et al. employed
a least absolute shrinkage and selection operator (LASSO) model for feature selection to
develop a series of random forest models and predict whether liver fat content was <5%
or ≥5% in a population of 1514 non-NAFLD and NAFLD individuals, respectively, using
a combination of multi-omics and clinical variables as predictors. Their optimal model
achieved an AUC score of 0.82, accuracy of 74.0%, sensitivity of 74.0%, and specificity of
73.0% using nine clinically available features [22]. In the study by Perakakis et al., an ML
model for NASH prediction was also devised, including 31 NASH/NAFL patients and
49 healthy individuals, where a one-vs-rest (OvR) approach was employed. In total, they
measured 365 lipid species in addition to glycans and hormones. The optimal models
included either 29 lipid species or a total of 20 features, incorporating lipids, glycans, or
hormones. Although the authors achieved high performance with an AUC score of 0.95,
accuracy of 88.0%, sensitivity of 89.0%, and specificity of 94.0%, the extensive array of
laboratory markers they utilized is not typically included in routine clinical care, thus,
this model would likely necessitate specific additional testing and could not be easily
applied to existing Electronic Health Record (EHR) data [24]. The primary goal of the
study of Yaghouti et al. was to create an ML model that utilizes clinical data and blood
parameters to predict NASH using the NAS in 181 patients. Among the various classifiers
explored, the random forest model, in combination with Sequential Feature Selection (SFS),
demonstrated the optimal performance, with an accuracy of 81.3%, sensitivity of 86.0%,
and specificity of 70.5% [25]. In our approach, the XGBoost algorithm, which is widely
used in ML approaches, was employed, utilizing gradient boosting with decision trees
as the underlying learners. In contrast to random forests, where individual trees work
independently to address the problem, XGBoost constructs its trees sequentially. Each tree
is trained to mitigate the prediction error left by the preceding tree, thereby enhancing
the prediction accuracy. This approach offers an alternative method for constructing more
sophisticated and precise models using trees while managing the depth and complex-
ity of each individual tree. Additionally, XGBoost has exhibited robust performance in
various studies related to NAFLD that employed an ML approach [28,29]. Based on our
results, we achieved accurate prediction results for NASH patients against controls-NAFL
groups, including an MCC of 0.721, a ROC AUC score of 0.900 (0.897–0.901 CI 95%), cutoff
value: 0.422, accuracy: 86.5%, sensitivity: 100%, specificity: 80.0%, PPV: 70.6%, and NPV:
100%. These predictions were achieved by utilizing lipidomic data, markers from a simple
biochemical test, and baseline characteristics, namely, HOMA-IR, BMI, platelets, LDL-c,
ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4/FA 20:5, CAR 4:0, LPC 20:4, LPC O-16:1, LPE
18:0, DG 18:1_18:2, and CE 20:4.

Some of the aforementioned biochemical markers are widely acknowledged as risk
factors closely associated with NAFLD, such as HOMA-IR and BMI. In our study, elevated
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HOMA-IR values were observed in the NASH group, indicating hepatic and adipose
tissue IR attributing to NAFLD progression [30,31]. The role of platelets in the progression
of NASH has been recognized. The higher concentration of platelets observed in the
liver of NASH patients is related to both NAS and the formation of intrahepatic NETs.
The interaction between platelets and neutrophils has been identified as a key factor in
NET-induced thromboinflammation. A recent study by Arelaki et al. found a negative
association between NETs and platelets in liver biopsies, which may explain the low
peripheral platelet counts observed in some patients with early stages of NASH, which
aligns with our findings [32]. Ferritin constitutes the primary storage protein for iron
in the liver [33] and it is also identified as an acute phase protein that can be triggered
in response to systemic inflammation [34]. In our study, ferritin levels were found to be
elevated, suggesting that an increase in iron deposition plays a crucial role in initiating the
production of reactive oxygen species through the Fenton reaction, which may lead to liver
inflammation, elevated oxidative stress, and ultimately contribute to steatohepatitis and
fibrosis [35].

Recent metabolomic and lipidomic studies have demonstrated that NAFLD is accom-
panied by disturbed levels of diacylglycerols (DGs), free cholesterol, phosphatidylcholines
(PCs), and altered metabolism of saturated fatty acids (SFAs), monounsaturated fatty acids
(MUFAs), and polyunsaturated fatty acids (PUFAs), including ω3 and ω6 fatty acids [13].
Our results revealed that FA 12:0 is more prevalent in patients with NASH, indicating a
possible link between NASH and the accumulation of saturated fatty acids in hepatocytes,
leading to oxidative stress and inflammasome activation resulting in cell damage and
apoptosis [27]. PUFAs have various biological functions, including proinflammatory and
anti-inflammatory properties, highlighting a possible relation in the development of NASH.
In our study, FA 18:3 ω3 was significantly higher in NASH patients, indicating increased
lipid oxidation and PPARα activation, which results in enhanced energy expenditure. This
finding exhibits an association with the results from Kalhan et al., where they found sig-
nificantly higher levels of FA 18:3 ω3 in the steatosis group in comparison with NASH
patients [36,37]. Furthermore, FA 20:4 ω6 (AA) and FA 20:5 ω3 (EPA) are precursors to im-
portant inflammatory mediators and their ratio can provide insight into inflammation and
nutritional status of cell membranes. An imbalanced AA/EPA ratio in favor of AA has been
linked to the development of various metabolic disorders, including obesity, cardiovascular
disease, and NAFLD. Although the exact mechanism underlying the connection between
the AA/EPA ratio and NAFLD is not yet clear, a study by Tutino et al. suggested that the
inflammatory effects of AA contribute to liver injury [38]. In our study, the AA/EPA ratio
was identified as a significant factor for group classification by the algorithm; however, the
ratio was found in similar levels between the compared groups. The analysis of existing
data highlighted significant discrepancies regarding the concentrations of PUFAs and their
association with the progression of NAFLD across multiple studies [39–41]. The XGBoost
algorithm identified CAR 4:0 as a significant compound for the classification of NASH
patients and control–NAFL groups. In particular, acylcarnitine species in serum have been
associated with the promotion and secretion of inflammatory cytokines from immune cells
in individuals with NAFLD [42,43].

Phospholipids are essential for the structure and function of the plasma membrane,
for very low-density lipoprotein (VLDL), and for signaling pathways like PI3K. When PC
levels are reduced, the liver secretes less VLDL cholesterol, leading to lipid accumulation
in hepatic cells [44] and an imbalance in the ratio of hepatic PC to PE [45]. In our study,
PC 16:0_16:1 was found to be elevated in the NASH group, indicating the association
between the composition of fatty acids and circulating PCs. Puri et al. [46] investigated the
composition of fatty acids in plasma PCs, revealing that the levels of palmitoleic acid were
increased in PCs in both NAFL and NASH patients, whereas palmitic acid levels did not
differ significantly compared to normal. This observation was also confirmed by another
study, where circulating PCs were increased in NAFL and NASH patients compared to
healthy controls [47]. Regarding LPC species, LPC 20:4 levels were significantly decreased
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in NASH patients, while LPC O-16:1 concentration remained at similar levels across the
study groups. These lipids are abundant in HDL-c particles and their decreased level in
NASH patients may reflect the known negative association between HDL-c and liver fat
content [48]. The XGBoost algorithm identified LPE 18:0 as a phospholipid with the ability
to discriminate NASH and control–NAFL groups in our study. In a relative publication,
LPE levels were found to be higher in a steatosis group compared to in normal liver
tissue, but not in NASH, suggesting increased lipid turnover rather than hydrolysis [11].
Two PI species, namely, PI 16:0_20:4 and PI 16:1_18:1, were found to be elevated in the
NASH group of our study. A similar finding was observed by Ma et al., who revealed that
patients with steatosis and NASH had higher plasma concentrations of PI compared to
healthy controls. PI and its related metabolites serve as crucial second messengers that
participate in the signaling pathways of mitogen-activated protein kinase and protein
kinase B (PKB/Akt) [49].

Certain lipid mediators, including neutral lipids, are often associated with lipotoxicity
and are considered to play a crucial role in the progression of NASH. Our investigation
revealed that DGs and CEs were notable factors in distinguishing NASH patients from
the control–NAFL group. Specifically, NASH patients exhibited elevated concentrations of
DGs in their plasma, while CE 20:4 levels were reduced in this group. Prior research by
Gorden et al. indicated that DGs were less abundant in NASH compared to the steatosis
group, and slightly lower in NASH than in normal individuals [11]. The DG trends in
NASH reflected those observed in cirrhosis, and several CE species also displayed lower
levels in NASH compared to steatosis. In a relative study, the fatty acids derived from DG
species contained palmitic, stearic, and oleic acids in controls, NAFL, and NASH patients.
Notably, palmitoleic acid levels significantly increased in both NAFL and NASH within
DGs. Furthermore, there was a noteworthy decrease in stearic acid (FA 18:0) levels and a
corresponding rise in its downstream product, oleic acid (FA 18:1 n9), in DG in both NAFL
and NASH groups [46].

Nevertheless, this study is limited by the relatively modest sample size and the
absence of data pertaining to participants’ dietary habits. The optimal combination of
features might differ depending on the specific population under investigation, given that
NASH prevalence varies among different ethnicities. Enhancing the model by training
it on a more extensive dataset that incorporates diverse ethnic groups could provide
valuable insights into the pathophysiological mechanisms associated with NASH onset
and progression. Additionally, refining the model to predict the exact NAS and fibrosis
stage would be a significant advancement. However, validating the diagnostic potential
of this biomarker panel requires a rigorous process involving a substantial and diverse
participant cohort across multiple centers. Moreover, practical implementation in clinical
practice will necessitate considerations related to repeatability and cost-effectiveness.

4. Materials and Methods
4.1. Study Population

The current study was a case-control trial, comprised of three different groups of sub-
jects: individuals with verified NAFLD, including both NAFL and NASH, as determined
by biopsy results, and a control group, consisting of healthy individuals. The criteria of
the study are described in detail in an earlier publication of our group [27]. The initial
diagnosis of NAFLD was conducted radiologically and the absence of fatty liver disease
was determined in healthy controls by normal values of MRI-PDFF (Magnetic Resonance
Imaging-Proton Density Fat Fraction), normal liver biochemistry, and the absence of other
chronic liver diseases. Patients with NAFLD were further stratified into two subgroups,
NAFL and NASH, based on their liver biopsies. All participants provided written informed
consent and were recruited into the study between June 2021 and June 2023. The research
adhered to the principles outlined in the Declaration of Helsinki [50], received approval
from the Institutional Review Board of the Medical School of Aristotle University of Thes-
saloniki, and underwent scrutiny and approval by the Bioethics Board of the Medical
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School of Aristotle University of Thessaloniki, with the assigned protocol number being
4.399/26/01/2021. Blood was collected from all individuals for lipid analysis after an
overnight fast and a homogeneous low-fat diet for the past 24 h. Blood was centrifuged,
plasma was separated and immediately stored at −80 ◦C until the analysis. In this study,
the patients met both the old and the new nomenclature criteria.

4.2. Chemicals and Materials

Methanol (MeOH), acetonitrile (ACN), methyl-tert-butyl-ether (MTBE; ≥99%), and
formic acid (all ULC/MS-CC/SFC grade) were obtained from CHEM-LAB NV (Zedelgem,
Belgium). Isopropanol (IPA) was purchased from Fisher Scientific (International Inc.,
Hampton, NH, USA). Ammonium formate (NH4HCO2; MS grade) and 2,6-di-tert-butyl-4-
methylphenol (BHT) were obtained from Sigma-Aldrich (Merck, Darmstadt, Germany).
Deionized water (ddH2O) was ultra-purified by a Millipore (Bedford, MA, USA) instrument
delivering water quality of a resistivity ≥ 18.2 MΩ·cm. SPLASH® LIPIDOMIX® was
purchased from Avanti Polar Lipids (Avanti Polar Lipids, Inc., Alabaster, AL, USA).

4.3. Acylcarnitines, Ceramides, and Fatty Acids Analyses in Plasma

Analyses of acylcarnitines, ceramides, and fatty acids in plasma were performed using
methods developed by our group. Briefly, for carnitine analysis, a HILIC-MS/MS method
was used for the quantitation of 13 acylcarnitines [51]. Four (4) ceramides species, namely,
Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0), and Cer(d18:1/24:1) were determined
by UHPLC-MS/MS [52]. Fatty acids were esterified to their methyl esters and analyzed
using the GC-MS method [53]. In total, 20 fatty acid methyl esters were quantified.

4.4. Extraction Protocol for Plasma Lipidomics Analysis

For the UHPLC-TOF-MS/MS lipidomics analysis, 50 µL of plasma samples were
thawed on ice for 30 min. Five (5) µL of SPLASH® LIPIDOMIX® were added to each
sample with subsequent incubation on ice for 15 min. For lipid extraction, 375 µL MeOH
and 1250 µL of MTBE were added, followed by vortexing. Samples were shaken for
30 min at room temperature. Phase separation was enhanced by adding 375 µL of H2O
and the samples were shaken for another 10 min at room temperature. After the end of
incubation, samples were centrifuged for 10 min at 4 ◦C and 10,000 rpm. The organic
phase was collected, transferred into 2 mL Eppendorf tubes, and evaporated to dryness
under vacuum (SpeedVac, Eppendorf Austria GmbH, Wien, Austria). The dried samples
were reconstituted with IPA (200 µL for negative ionization mode and 400 µL for positive
ionization mode). The injection volume for positive ionization was 3 µL, while for negative
mode the injection volume was 10 µL. A Quality Control sample (QC) was prepared as
representative by mixing equal volumes of each serum sample. Group-specific QC samples
for control, NAFL, and NASH were prepared as well. Diluted QCs (1:2, 1:4, 1:8) in IPA
were also analyzed to evaluate the dilution integrity of the detected lipids. All solvents
contained 0.01% (w/v) BHT and were cooled on ice before use.

4.5. Instrumentation

An UHPLC Elute system equipped with an Elute autosampler was used. The au-
tosampler vial tray was maintained at 8 ◦C whereas the needle was washed with 2500 µL
of a strong wash solvent (IPA/ACN/MeOH/H2O at a ratio of 30/30/30/10) and 1000 µL
of a weak wash solvent (ACN/H2O, 60/40) before and after each injection. A 30 min
gradient elution was employed using a binary solvent manager. The mobile phase A
consisted of ACN/H2O (50:50) and mobile phase B of IPA/ACN/H2O (85:10:5), both
containing 5 mM ammonium formate and 0.1% formic acid (FA). The gradient profile was
as follows: 0–20 min—10 to 86% B, 20–22 min—86 to 95% B, 22–26 min –95% B isocratic,
26–26.1 min—95 to 10% B, 26.1–34.0 min—10% B isocratic, and column re-equilibration.
The flow rate was set at 0.3 mL/min. An Acquity UPLC CSH C18, 2.1 × 100 mm, 1.7 µm
column (Waters Ltd., Elstree, UK) equipped with a pre-column Acquity UPLC CSH C18
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Van-Guard (Waters Ltd., Elstree, UK) was used for chromatographic separation and main-
tained at 50 ◦C.

A TIMS TOF mass spectrometer (Bruker, Billerica, MA, USA) was used in both positive
and negative ionization modes for MS and MS/MS data acquisition. Data-dependent
acquisition (DDA) was performed to enhance the annotation of lipids. The parameters at
source were set as follows: end plate offset was set to 500 V and the capillary voltage was set
at ±4500 V for positive and negative modes, respectively. Nitrogen was used as the dry gas
at the rate of 10 L/min and dry temperature of 200 ◦C. The nebulizer gas was set at 2.0 bar.
The peak detection threshold was set at 100 counts. In DDA analysis, auto MS/MS was
applied for the 10 most intense ions per scan using Dynamic MS/MS spectra acquisition
with 6 and 10 Hz as minimum and maximum spectra rates, respectively. Collision energy
was set at 20 V for precursor ions below 100 m/z, 30 V for precursor ions with m/z ranging
from 100 to 1000, and 40 V for precursor ions with m/z ranging from 1000 to 2000 m/z.
Calibrant (sodium formate, 10 mM) was infused into MS during 0.1–0.3 min with a flow
rate of 10.0 µL/h.

4.6. Identification and Qualification of Lipids Species

Identification of lipid species was performed in Lipostar2 (version 2.0.2 Molecular
Discovery Ltd., Hertfordshire, UK) equipped with the LIPID MAPS structure database
(version September 2021) [54]. The raw data files from the QC and group-specific QC
samples acquired in positive and negative ionization modes were imported directly into the
software and aligned using the default settings. Automatic peak picking was performed
with the Savitzky–Golay algorithm using the following parameters: window size set to
7, degree to 2, multi-pass iterations to 1, and minimum S/N ratio to 3. Mass tolerance
settings were set to 10 ppm with an RT tolerance of 0.2 min. The filters “Retain lipids with
isotopic pattern” and “Retain lipids with MS/MS” were applied to keep only features with
isotopic patterns and MS/MS spectra for identification. The following parameters were
used for lipid identification: 5 ppm precursor ion mass tolerance and 20 ppm product ion
mass tolerance. The automatic approval was performed to keep structures with a quality of
3–4 stars.

To confirm the accuracy of lipid annotations, the retention time of given lipid species
against their Kendrick mass defect to the hydrogen base was plotted using an in-house
script in the Python programming language. For a comprehensive understanding of how
retention time mapping was conducted for various lipid (sub)classes, a more detailed
description is referenced by Lange et al. [55].

For the quantification of sphingolipids, phospholipids, and glycerolipids, Skyline
v.21.1.0.146 (MacCoss Lab) [56] was employed. Only data from the positive mode were
used, and each lipid underwent quantification by selecting the corresponding precursor
ion for peak integration. The peak boundaries were defined, manually adjusted, and
verified. To normalize the obtained peak areas, specific lipid species from the SPLASH®

Lipidomix Mass Spec Standard (Avanti) were utilized: d18:1-18:1(d9) SM for ceramides
and sphingomyelins, 18:1(d7) Lyso PC for lysophosphatidylcholines, 18:1(d7) Lyso PE for
lysophosphatidylethanolamines, 15:0-18:1(d7) PC for phosphatidylcholines, 15:0-18:1(d7)
PE phosphatidylethanolamines, 15:0-18:1(d7) DAG for diglycerides and 15:0-18:1(d7)-15:0
TAG for triglycerides.

Type I isotopic correction and correction for the incomplete labeling of deuterated
internal standards (ISTDs) were applied. The quantitative values for lipid species were
determined by dividing the corrected peak area for each lipid species by the peak area of
the respective ISTD and then multiplying it by the concentration of the specific ISTD for
each lipid class.

4.7. Data Analysis and Visualization

Univariate statistical analysis was conducted in the Python programming language
and GraphPad Prism v8.0.1 software. Continuous data in baseline characteristics are pre-
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sented as median (25th–75th percentile), while categorical data are expressed as counts
and percentages. The distributions were evaluated using the Shapiro–Wilk test. A one-
way ANOVA was conducted for normally distributed features followed by Bonferroni
adjustment, while the Kruskal–Wallis test was used for non-normally distributed fea-
tures. Post hoc Dunn’s test was applied when the p-value was less than 0.05. The chi-
square test was utilized in categorical parameters. Statistical significance was defined as
p-value < 0.05, and the differentiated lipids are presented as median concentrations with
lower and upper bounds of the 95% confidence intervals (CI). Following this, ANCOVA
analysis was conducted to account for waist circumference differences between groups,
a significant parameter affecting intra-abdominal fat. This adjustment aimed to ensure
that the observed differences between the groups could be attributed to the varying stages
of disease. Non-normally distributed features were logarithmically transformed before
the ANCOVA analysis. An adjusted p-value <0.05 was considered significant. Only lipids
with a p-value < 0.05 before and after the ANCOVA analysis were considered statistically
significant. To assess the statistical significance of variables derived from the algorithm, a
comprehensive statistical analysis was conducted. Student’s t-test was applied to parame-
ters demonstrating a normal distribution, while the Mann–Whitney U test was employed
for variables exhibiting non-normal distribution characteristics, as both the control and
NAFL groups were combined and compared against NASH patients for the analysis.

Multivariate statistical analysis was carried out using SIMCA 13.0.3 (UMETRICS AB
Sweden) [57], and the data were processed using an unsupervised principal component
analysis (PCA), partial least squares analysis (PLS), and orthogonal-partial least squares
discriminant analysis (OPLS-DA). The identification of significant lipids was performed
using an “S-plot” with absolute p and p (corr) values cut off. Features meeting the criteria
of p > |0.05| and p (corr) > |0.5| were considered statistically significant. To assess the
model quality, parameters such as the goodness of fit in the X (R2X) and Y (R2Y) variables,
as well as predictability (Q2), were assessed through the software. A p-value from the CV
ANOVA analysis indicating the statistical significance of the model was calculated using
the software as well. Logarithmic transformation of the data and pareto scaling were used
in all models.

A machine learning (ML) approach was employed, using the XGBoost algorithm [58]
with the aim of exploring the potential of differentiated lipid species to predict distinct
disease stages. ML predictive models were generated using a double cross-validation
(nested) approach, where the F1 score was used as the optimization metric [59]. The opti-
mal 1-score cutoff was determined as the point where Youden’s J statistic (or J point) was
maximized, corresponding to the point where sensitivity + (1-specificity) was maximum.
Matthews Correlation Coefficient (MCC) and receiver operating characteristic area under
the curve (ROC AUC) scores were used as the models’ performance metrics and were
evaluated along with accuracy, sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). The AUC is reported, along with a 95% CI calculated with
1500 stratified bootstrap replicates. Each model underwent evaluation five times, employ-
ing distinct randomization settings in each iteration to gauge the robustness of the results. A
one-vs-rest (OvR) multiclass classification strategy was used, testing each individual group
against all other groups (control vs. NAFL–NASH, NAFL vs. control–NASH, and NASH
vs. control–NAFL) [60]. Subsequently, a greedy algorithm was employed to identify the
optimal combination of the most significant features in the dataset, aiming for the optimal
prediction results. Initially, the prediction model was trained using the complete set of
features in the dataset. Thereafter, the features were sorted in descending order, considering
the significance coefficient assigned to them by the XGBoost algorithm. Various subsets of
the original dataset were produced, progressively integrating an increased number of the
most significant features. These subsets ranged from 1 to 25 features and were ultimately as-
sessed for the predictive performance of the models they produced. The optimal predictive
model was then validated using the permutation test as described by Lindgren et al. [61].
A collection of 200 permuted response variables was generated by randomly rearranging
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the entry values of the original response variable. These permuted response variables
were individually utilized to construct the corresponding prediction models. During each
iteration, the values of evaluation metrics were computed and recorded. Finally, the out-
comes of the permuted models were compared with those of the reference model, which
was developed using the intact response variable. All data and statistical analyses were
performed using in-house scripts developed in the Python programming language.

5. Conclusions

The high-dimensional nature of lipidomic data, coupled with the multitude of lipids
and clinical markers, often require advanced ML approaches to unravel the intricate
lipidomic interactions, utilizing a large pool of biomarkers for risk-stratification and shed-
ding light on their role in NAFLD. Our research findings reveal that patients with NASH
exhibit a unique plasma lipid profile, which differentiates them from NAFL patients and
controls. This plasma lipid profile appears to align with the level of histological activity,
suggesting that plasma lipids could serve as a beneficial biomarker for identifying NASH.
The novelty of this study is demonstrated by the precision of the obtained results and the
powerful diagnostic performance of the generated model, which contribute to the existing
body of evidence and emphasize the need for further investigation in this area. However,
further validation of our results is needed in larger patient populations.

Supplementary Materials: The following supporting information can be downloaded at the following
location: https://www.mdpi.com/article/10.3390/ijms25115965/s1. Figure S1: PCA score plot for
three studied groups and QC samples was constructed. Control group is illustrated in green, NAFL
group in purple and NASH group in blue, whereas QC samples are depicted in grey and clustered
together. Figure S2: PLS score plot of plasma samples of the three studied groups. Controls are
clustered together on the negative part of the y-axis, NASH patients are grouped together on the
positive side of the same axis and NAFL patients are scattered throughout the eclipse b. Permutation
plot PLS model validation [Y Intercepts: R2 = (0.0, 0.229), Q2 = (0.0, −0.196)]. Figure S3: Optimal
model validation test. Plot of permutation test results. Blue dots represent the performance of
200 models generated using the corresponding permuted response variables (NASH vs. control–
NAFL), while the blue square represents the performance of the reference model generated using the
intact response variable. Model performance is assessed using the Matthews Correlation Coefficient
(MCC) metric. The x-axis corresponds to the correlation of each permuted response variable with
the intact one, using Spearman’s correlation test. The performance of the test models is consistently
significantly lower than that of the reference model, ruling out the possibility of random correlation
of the predictor variable matrix with the response variable. Table S1: Summary of all identified lipids
in the blood plasma of patients with NAFLD and controls. Information is provided regarding the
lipid’s species, molecular formula, monoisotopic masses, the adducts and retention time for each
lipid species. Table S2: Characteristics of the constructed unsupervised and supervised models. In
models based on NAFLD groups pareto (PAR) scale was used.
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