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Abstract: High-temperature tensile tests were developed to explore the flow features of an Al-Zn-Mg-
Cu alloy. The fracture characteristics and microstructural evolution mechanisms were thoroughly
revealed. The results demonstrated that both intergranular fractures and ductile fractures occurred,
which affected the hot tensile fracture mechanism. During high-temperature tensile, the second
phase (Al2CuMg) at the grain boundaries (GBs) promoted the formation and accumulation of
dimples. With the continual progression of high-temperature tensile, the aggregation/coarsening
of dimples along GBs appear, aggravating the intergranular fracture. The coalescence and coarsen
of dimples are reinforced at higher tensile temperatures or lower strain rates. Considering the
impact of microstructural evolution and dimple formation/coarsening on tensile stresses, a physical
mechanism constitutive (PMC) equation is herein proposed. According to the validation and analysis,
the predictive results were in preferable accordance with the testing data, showing the outstanding
reconfiguration capability of the PMC model for high-temperature tensile features in Al–Zn–Mg–Cu alloys.

Keywords: high-temperature tensile behavior; fracture mechanism; constitutive model; Al–Zn–Mg–Cu
alloy

1. Introduction

As a kind of alloy with resistance to corrosion and damage, the Al–Zn–Mg–Cu alloy
is essential in a broad range of vital components used in automobiles and aircrafts [1–6].
Appropriate atomic elements are often added to obtain improved mechanical properties
in Al–Zn–Mg–Cu alloys [7], which results in sophisticated thermal deformation features.
Firstly, a multitude of investigations have been conducted to explore the correlation be-
tween substructure development (i.e., dislocation emergence/rearrangement [8] via sub-
grain evolution [9]) and deformation parameters. Moreover, the changing characteristics
of dynamic recrystallization exerting impacts upon the deformation features of Al–Zn–
Mg–Cu alloys were revealed [10,11]. Furthermore, several studies have investigated the
formation/aggregation of dimples affecting high-temperature fracture mechanisms [12].
For instance, Liu et al. [13] found that the dominant form of failure in 7075-aluminum alloys
shifted from ductile fracture to brittle fracture with increasing temperature. Zhou et al. [14]
exposed that the congregation of dimples around the second phase exhibited a significant
influence on the thermal deformation in Al–Zn–Mg–Cu alloys.

In fact, establishing correct constitutive models is critical to exactly numerical sim-
ulation and forecasting thermal formation features in alloys [15–18]. Later, a few consti-
tutive models for reconstituting high-temperature deformation features of alloys were
built [19–22]. Typically, multi-type phenomenological equations [23–27] as well as machine
learning models [28,29] are constructed to visualize thermal-flow-forming features in
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Al–Zn–Mg–Cu alloys and other alloys [30–34]. Additionally, multi-type microstructural
changing mechanisms affecting the flow behaviors have been considered, and physical
mechanism constitutive (PMC) models have been built [25,35–37]. Some PMC models were
specially constructed for discerning the interacting impact mechanisms of dislocations,
grains, and flow stresses of Al–Zn–Mg–Cu alloys [38–40].

Many prior investigations have investigated the high-temperature flow features and
microstructural developments in aluminum alloys. Nonetheless, research on the synthesis
of fracture features as well as high-temperature-tensile-fracture/forming mechanisms
for Al–Zn–Mg–Cu alloys is still lacking. Therefore, this article is devoted to discerning
high-temperature tensile performance in an Al–Zn–Mg–Cu alloy. In particular, based on
the investigations in refs. [13,28], the dimple emergence/aggregation affecting the high-
temperature tensile flow characteristics was explored. Moreover, the formation mechanisms
and evolution features of dimples near the second phase were analyzed. The interaction
between dimple nucleation/coarsening and the second phases was discussed. Additionally,
a physical mechanism constitutive (PMC) model was established for reconstituting the
evolution features of the substructure, dimple, and tensile stress in an Al–Zn–Mg–Cu alloy.

2. Experimental Material and Procedure

An Al–Zn–Mg–Cu (7075 aluminum) alloy was adopted in the current investigation,
which was produced by ALG aluminum Inc. (Nanning, China). The chemical composition
(wt. %) of the as-received Al–Zn–Mg–Cu alloy was 6.65Zn-1.68Mg-0.25Cu-(bal.) Al. Here,
bal stands for balance, which indicates the remaining content of the alloying element. The
geometric dimensions of tensile samples are illustrated in Figure 1.
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The original grain characteristics were discerned by a backscaĴering electron micro-
scope (EBSD). Before the EBSD observation, the cross-section was obtained from the as-
received alloy. Then, these sections were ground with sandpaper and polished with dia-
mond polishing fluid. Furthermore, the polished sections were etched in a solution (20 
mL HClO4 + 180 mL C2H5OH). A scanning electron microscope (SEM) was utilized to ex-
plore fracture mechanisms. Figure 2 reveals the EBSD result of initial grains, and numer-
ous elongated grains are visible. Accordingly, according to the analysis performed with 
the Channel 5 software, the mean value of grain size ( d ) can be calculated as 17.6858 µm. 

Figure 1. The size of the uniaxial tensile sample (/mm).

High-temperature tensile experiments were set up on the CMT-5105GL tensile exper-
imental machine. Every sample was initially heated to tensile temperatures (Ts) using a
constant heating rate (15 ◦C/s), closely followed for 15 min. Subsequently, every specimen
became high-temperature under Ts ranges of 350–500 ◦C and strain rates (

.
ε) of 0.001–0.1 s−1.

Since fractures appeared, the formed specimens were cooled to room temperature in the
heating furnace.

The original grain characteristics were discerned by a backscattering electron mi-
croscope (EBSD). Before the EBSD observation, the cross-section was obtained from the
as-received alloy. Then, these sections were ground with sandpaper and polished with
diamond polishing fluid. Furthermore, the polished sections were etched in a solution
(20 mL HClO4 + 180 mL C2H5OH). A scanning electron microscope (SEM) was utilized
to explore fracture mechanisms. Figure 2 reveals the EBSD result of initial grains, and
numerous elongated grains are visible. Accordingly, according to the analysis performed with
the Channel 5 software, the mean value of grain size (d) can be calculated as 17.6858 µm.
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Figure 2. Initial grain characteristics of the Al–Zn–Mg–Cu alloy: (a) IPF, (b) d.

3. High-Temperature Tensile Characteristics

Figure 3 reflects the high-temperature tensile features in the investigative Al–Zn–Mg–
Cu alloy.
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Figure 3. High-temperature tensile features at (a)
.
ε = 0.1 s−1; (b) T = 450 ◦C.

The evident impacts of tensile parameters on the flow curves can be revealed. The in-
creasing of tensile stresses (σts) follows the identical tendency as true strain (ε). At the initial
small value of ε, the value of σ performs a sharp rising trend for the harden-working (HW)
behaviors induced by the growing/interacting of substructures [18]. While the ε constantly
increases, the reinforced dynamic-recovery (DRV) mechanism characterized as dislocation
rearrangement/annihilation and subgrain development emerges. Synchronously, once the
critical strain (εc) reaches, another softening mechanism (DRX) is activated. Thus, the rela-
tive decline in the value of σ can be detected. In the further progression of high-temperature
tensile fractures, the development of dimples can occur, which contributes to the notable
reduction of σts.

Additionally, the values of σts tend to increase with decreasing Ts or ascending
.
ε

(Figure 3). This is due to the progression of dislocation cross-slipping/rearrangement,
vacancy diffusion, and subgrain development being intensified with decreasing Ts or
ascending

.
ε, inhibiting the DRV behaviors [13]. Moreover, multiple metallurgical character-

istics, e.g., subgrain interaction/rotation and the bulging/expansion of GBs [23], can be
suppressed at lower Ts or higher

.
ε values, which restrains the DRX process [27]. So, the

values of σts apparently raise with decreasing Ts or ascending
.
ε.
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4. Analysis of Fracture Mechanisms

For the
.
ε at 0.001 s−1, the evolution of fracture appearance at different Ts is explored

in Figure 4.
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Evidently, the local necking feature of the tensile-formed specimens appears, and a few
tiny dimples are distributed throughout the fracture surface at 350 ◦C, demonstrating the
occurrence of ductile fracture (Figure 4a). The distribution characteristics of dimples were
statistically evaluated using the Image J2 software. Moreover, the evolution of dimples
showed a tendency to generate numerous tiny dimples rather than enlarge the anteriority
small ones (Figure 4b), which matches the findings in a previous investigation [28]. As
revealed in a high-resolution SEM picture (Figure 4c), the serpentine sliding characteristic
and some inclusions distributed within dimples can be detected. With the Ts increasing to
450 ◦C (Figure 4d,e), the dimples on the fracture surface became deeper and the coalescence
of dimples became obvious. Concurrently, some typical ductile fracture features, i.e.,
serpentine sliding as well as tenacity nests, can be discovered (Figure 4f). The main aspect
of these results is that the vacancy migration, dislocation sliding, and the GB extension were
promoted at higher Ts, which exacerbated the mechanisms of dimple coalescence as well
as serpentine slippage. As the Ts reached up to 500 ◦C, massive tiny dimples descended
and coalesced to form deeper dimples (Figure 4g,h). Additionally, the tearing behaviors of
dimple edges and serpentine gliding tendencies on the interior walls of dimple tended to
become distinct (Figure 4i). This is because the DRV progression can also be reinforced at
500 ◦C [28]. The substructural interaction/annihilation tended to enhance, which reduced
the localized concentration. Simultaneously, the conspicuous DRX development activated
when the Ts of the Al–Zn–Mg–Cu alloy surpassed 400 ◦C. Thus, promoting the extension
rate of DRX GBs encourages the capacity of uniform forming of GBs at 500 ◦C, which
inhibits the generation of tiny dimples.

For Ts of 400 ◦C, the evolution of fracture characteristics with
.
ε is explored in Figure 5.
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regions among dimples showed tearing characteristics owing to the local necking effect,
and typical tearing fracture edges appeared (Figure 5b). This is because the differential
migration rate on different inner wall regions of dimple induces the appearance of blade-
like tearing edges in high-temperature tensile fractures [13]. Besides, visible serpentine
gliding features as well as tenacity nests were found (Figure 5c). With the

.
ε increasing to

0.1 s−1 (Figure 5d,e), the amount of tiny dimples increased, in contrast to that of at 0.01 s−1.
The aggregation of dimples was inhibited at 0.1 s−1, and the tearing features between
adjacent dimples were weakened (Figure 5f). This is because the vacancy migration and
dislocation rearrangement/annihilation are restrained at higher

.
ε, impeding the genera-

tion/coalescence of tiny dimples [35]. Additionally, the tendencies of the mobility and
tearing on inner walls of dimples become weaken at higher

.
ε.

As abovementioned, some conclusions/phases appear as interior dimples. The SEM
images for further exploring the interactions between phases and dimples are shown in
Figure 6.
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Figure 6. SEM observations of longitudinal section fracture morphology at (a) 450 ◦C/0.1 s−1 and
(b) 500 ◦C/0.001 s−1.

Clearly, the precipitation of the second phase exerts a large influence on the formation
of dimples/cracks during high-temperature deformation. As unveiled in Figure 6a, mas-
sive granular second phases scattered along the GBs at 450 ◦C/0.1 s−1. Concurrently, the
generation of tiny dimples around these second phases is clearly visible. Besides, when
the tensile parameter was chosen as 500 ◦C/0.001 s−1, the dimples around the second
phases represent the coalescence tendency, and cracks can also be detected in Figure 6b.
Commonly, the second phase acts as the obstacle for dislocations migrations, which results
in high-density dislocations plied along GBs. Then, the superior localized stress concen-
tration appears near the second phases in the GBs, which aggravates the generation of
dimples. With the continuous increase in high-temperature tensile stress, dimples undergo
coalescence and form cracks.

To reveal the composition of the second phases, an analysis of the energy dispersive
spectrum (EDS) was performed. Figure 7 shows the morphology and EDS analysis results of
the second phases. These second phases were categorized into two main groups: one is the
Al7Cu2Fe phase containing Fe elements, which is resistant to solubilization and conversion.
The other is the Al2Cu/Al2CuMg phase, which can be solvated and transformed through
during high-temperature tensile stress.
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5. The Physical Mechanism Constitutive Model
5.1. Architecture of the Physical Mechanism Constitutive Model

Usually, the variating features of σts for Al–Zn–Mg–Cu alloys in high-temperature
tensile stress are correlated with various physical mechanisms, e.g., HW (hard working),
DRV, and DRX. Correspondingly, the σts can be represented as [41]

σts = σys + Mαµb
√

ρi − σgs (1)

where the Taylor factor (M) equals 3.06 [20], the burger vector (b) equals 2.86 × 10−10 [42],
the material coefficient (α) equals 0.15, µ identifies the shear modulus, ρi identifies the
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dislocation density, σgs identifies the stress relevant to grain size evolution, and the yield
stress (σys) is [43]

σys = Ay
.
ε

ny exp
(−Qy

RT

)
(2)

where the gas constant (R) identifies 8.314 J/mol·K and Ay, Qy, and ny are material parameters.
Commonly, three material parameters (Ay, Qy, and ny) are decided through mathematic

relations of ln σys − ln
.
ε and ln σys − 1/T (Figure 8), respectively. Using the linear fitting

calculation, the Ay, Qy, and ny are found as 1.8357, 0.1381, and 14,614 J/mol, respectively.
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Usually, owing to the impacts of HW, DRV, DRX, and the generation of dimples, the
.
ρi

is formulated as
.
ρi =

.
ρ

hw
i − .

ρ
drv
i − .

ρ
drx
i − .

ρ
pc
i (3)

where
.
ρi identifies the evolution rate of ρi;

.
ρ

hw
i ,

.
ρ

drv
i ,

.
ρ

drx
i and

.
ρ

pc
i are the evolutive rate of

ρi connected with HW, DRV, DRX, and the dimple evolution mechanisms, respectively.
Normally, the variation of

.
ρ

hw
i and

.
ρ

drv
i is formulated as [42]

.
ρ

hw
i =

M fh
√

ρi

b
.
ε (4)

.
ρ

drv
i = fvρi

.
ε (5)

where the material parameters ( fh and fv) are found by,

fh = Ah
.
ε

nh exp
(

Qh
RT

)nh1

(6)

fv = Av
.
ε

nv exp
(

Qv

RT

)nv1

(7)

where Ah, Qh, nh, nh1, Av, Qv, nvand nv1 are the material parameters.
Meanwhile, the variation of

.
ρ

drx
i is found as [2]

.
ρ

drx
i = fx

ρi − ρi0
1 − Xf

.
S (8)

fx = Ax
.
ε

nx exp
(

Qx

RT

)nx1

(9)
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where Xf identifies the DRX fraction; Ax, Qx, nxand nx1 are material parameters; ρi0 =

1 × 1028 m−2 is the original value of ρi; and the gradient of Xf(
.
S) is found as

.
S =

∂Xf
∂t

=
∂Xf
∂ε

× ∂ε

∂t
=

.
Xf ·

.
ε (10)

Commonly, the Xf can be confirmed by [40]

Xf = 1 − exp[a(
ε − εc

εc
)

fd
] (ε ≥ εc) (11)

εc = 0.85εp (12)

fd = Ad
.
ε

nd exp
(

Qd
RT

)
(13)

where the εc and εp identify the critical strain as well as peak strain, respectively; and
a, Ad, Qd and nd identify material parameters.

For alloys in high-temperature tensile stress, the variation of ρi relating to the dimple
development (

.
ρ

pc
i ) is confirmed by [20]

.
ρ

pc
i = fpρi

.
ε (14)

fp = Apε
np .
ε

np1 exp
(Qp

RT

)
(15)

where the Ap, Qp, np, and np1 are material parameters and Qp is the dimple activation energy.
Additionally, the σgs can be confirmed by [2]

σgs = fgXfd−1/2 (16)

where d is the grain size and fg is the material coefficient. The values of these are defined
as [44]

fg = Ag
.
ε

ng exp
(

Qg

RT

)
(17)

.
d = (ddrx −

4
3

d0(1 − Xf)
1/3)

.
Xf (18)

where d0 is the original grain size;
.
d is the the variating rate of d; and ddrx is the the DRX

grain size, the value of which is defined as [45]

ddrx = Adrx
.
ε

ndrx exp
(
−Qdrx

RT

)
(19)

5.2. Determination of the Material Parameters of the Physical Mechanism Constitutive Model

To ascertain the material parameters in Equations (1)–(19), the multi-objective opti-
mizations functions are chosen as

min∑
(

σ
p
ts − σts

)2
(20)

min∑
(

Xp
f − X f

)2
(21)

min∑(dp − d)2 (22)

where σ
p

ts , X p
f and dp are the forecasting values of σts, X f and d, respectively.

For identifying the materials parameters of the physical mechanism model, an owl
optimization algorithm was adopted [2]. The initial values of the material parameters of



Materials 2024, 17, 2628 10 of 13

Ah, Qh, nh, nh1, Av, Qv, nv, nv1, Ax, Qx, nx, and nx1 were chosen as 450,000.0, 140.0, −0.0009,
0.2000, 200.0, −3000.0, 0.08, 0.00004, −28,000, −120.0, −0.8, and 0.55, respectively. Mean-
while, the initial values of the material parameters of Ad, Qd, nd, Ag, Qg, ng, Adrx, Qdrx,
ndrx, Ap, Qp, np, and np1 are 3.0, −6000, −0.01, 1.5 × 10−4, 20.0, −0.7, 10,000, 4000, 0.007,
400, 30,000, 0.4, and 20.0, respectively. During the current optimized processing of material
parameters, the values of parameters obtained in the former optimized process were chosen
as the initial values of material parameters in the next optimized process. For each opti-
mized process of material parameters, the confidence intervals for parameters were set to
the positive and negative 200% of the former optimized material parameters. Accordingly,
the optimized material parameters are itemized in Table 1.

Table 1. Optimal results of material parameters of the physical mechanism model.

Material Parameter Value Material Parameter Value

Ah 545,002 Qd −6577
Qh 100.58 nd −0.008
nh −0.00001 Ag 1 × 10−4

nh1 0.21222 Qg 24
Av 198 ng −0.653
Qv −3859.5 Adrx 12,173.87
nv 0.06 Qdrx 5505
nv1 5.68 × 10−5 ndrx 0.0197
Ax −30,000 Ap 500
Qx −118.2 Qp 23,300
nx −0.67 np 0.2333
nx1 0.48 np1 24.99
Ad 2.5

5.3. Validation and Analysis

By means of the above-optimized material parameters, the contrastive analyzed results
of predictive σts and testing ones are shown in Figure 9.
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Apparently, the favorable consistency between predictive σts and experimental ones
can be noticed. Correspondingly, two evaluation error indexes, i.e., fitted factor (FF) as well
as average absolute correlation error (AACE) are gained for further assessing the effect of
the PM model. The FF and AACE can be acquired by

AACE(%) =
1
N ∑N

i=1

∣∣∣∣∣ (σts)i − (σ
p

ts )i
(σts)i

∣∣∣∣∣ (23)

FF =
∑N

i=1

(
(σts)i − σ

p
ts

)(
(σ

p
ts )i − σts

)
√

∑N
i=1 ((σts)i − σts)

2∑N
i=1

(
(σ

p
ts )i − σ

p
ts

)2
(24)

where σ
p

ts and σts represent the average values of σ
p
ts and σts, respectively.

According to the calculation analysis, the FF and AACE were determined to be 0.985
and 9.93% (Figure 9d), respectively. These results further demonstrate that the PM model
can finely catch the changing features of tensile stress with various structural variating
mechanisms, i.e., substructural development and dimple evolution.

6. Conclusions

The fracture morphology/mechanisms and tensile stress of an Al–Zn–Mg–Cu alloy
were herein explored. The results are listed as follows.

1. For the Al–Zn–Mg–Cu alloy during high-temperature tensile stress, the ductile frac-
ture, as well as intergranular fracture, mainly contribute to the fracture behavior;

2. The changes of fracture morphology/mechanisms in Al–Zn–Mg–Cu alloys are notice-
ably affected by high-temperature tensile parameters. The formation/multiplication
of dimples is strengthened with reducing Ts or increase of

.
ε, while the conglomera-

tion/coalescence of dimples becomes weakened;
3. The promoted physical mechanism constitutive (PMC) model, as determined accord-

ing to the impacts of substructure development and dimple evolution, is proposed.
The promoted PMC model enjoys a relatively high value of FF (0.985) and a low value
of AACE (9.33%), proving that this model can exactly achieve the reconstitution of
high-temperature tensile features.
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