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Abstract: Analysis of the heavy fractions in crude oil has been important in petroleum industries. It
is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which
sulfur and nitrogen are often characterized in many cases. We conducted research regarding the
molecular species analysis of VGOs. Further refine processes using VGOs are becoming important
when considering carbon recycling. In this work, we attempted to classify compounds within VGOs
provided by Kuwait Institute for Scientific Research. Two VGOs were priorly distillated from Kuwait
Export crude and Lower Fars crude. Quantitative analysis was performed mainly using matrix-
assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOFMS). MALDI-
TOF-MS has been developed for analyzing high-molecular-weight compounds such as polymer
and biopolymers. As matrix selection is one of the most important aspects in MALDI-TOFMS, the
careful selection of a matrix was firstly evaluated, followed by analysis using a Kendrick plot with
nominal mass series (z*). The objective was to evaluate if this work could provide an effective
classification of VGOs compounds. The Kendrick plot is a well-known method for processing mass
data. The difference in the Kendrick mass defect (KMD) between CnH2n−14S and CnH2n−20O is only
0.0005 mass units, which makes it difficult in general to distinguish these compounds. However, since
the z* value showed effective differences during the classification of these compounds, qualitative
analysis could be possible. The analysis using nominal mass series showed the potential to be used
as an effective method in analyzing heavy fractions.

Keywords: atmospheric residue; heavy oil; atmospheric residue desulfurization; molecular
characterization; FT-ICR MS

1. Introduction

The demand for light distillates is increasing rapidly due to the growth of the popu-
lation worldwide. Vacuum gas oil (VGO) is an intermediate fraction from crude oil and
serves as an important source of catalytic cracking and hydrocracking [1–3]. VGO, known
as a heavy distillate, shows difficulties during the cracking process because of the existence
of its intrinsic heteroatoms, such as sulfur and nitrogen. High capital costs are needed
when a new unit process is considered for treating VGO. Nevertheless, global interest in
the production of ultra-low-sulfur fuels has grown significantly. Sulfur compounds in
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liquid fuels generate sulfur oxides and other pollutants during combustion, which later
cause acid rain and other types of environmental pollution. Since it is important to design
the facilities for removing sulfur-containing compounds in liquid hydrocarbon fuels, the
characterization of heavy oil can be essential for the conversion of heavy fractions into low-
boiling-point fractions. Until recently, low-boiling-point fractions such as atmospheric gas
oil have been analyzed in detail using capillary gas chromatography (GC) [4–9]. However,
owing to the low volatility of high-molecular-weight compounds, it is difficult to analyze
heavier distillates via GC. Fourier transform ion cyclotron resonance mass spectrometry
(FTICR-MS) is often used for analyzing heavier materials and can clarify the structure
of high-boiling-point fractions [10–27]. FTICR-MS is a powerful method for analyzing
heavy oils, such as atmospheric residue, vacuum residue and asphaltene. Meanwhile,
conventional analyses for VGO compounds using 1D and/or 2D GC mass spectrometry
(GC-MS) [28–30] have been reported. Chen et al. [12] reported that six basic nitrogen
compounds, N1 (a molecule containing one nitrogen atom), N1O1, N1O1S1, N1O2, N1S1
and N2, were identified using positive-ion mass spectra, while non-basic nitrogen com-
pounds, N1, N1O1, N1S1 and N2, are characterized by negative-ion mass spectra. Among
these nitrogen compounds, N1-class species are predominant. FTICR-MS data indicated
that the basic N1 class species are pyridines, quinolines and benzoquinolines, and most
non-basic N1 class species are derivatives of benzocarbazoles. Schaub et al. [11] reported
that favorable core structures were identified as monosulfur compounds (e.g., thiophenes,
benzothiophenes and dibenzothiophenes). The most abundant S1 class species seems to be
benzothiophenes and dibenzothiophenes. Even though FTICR-MS showed effectiveness in
a detailed speciation of a heavy fraction, the equipment’s installation and operation costs
were highly expensive.

In this work, we attempted to classify compounds in VGOs via matrix-assisted laser
desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The MALDI-
TOF method disperses the target sample uniformly in a matrix that absorbs the wavelength
of an ultraviolet laser (nitrogen laser light: 337 nm) and irradiates the laser. When the laser
irradiates the matrix, the laser light is converted into thermal energy. At this time, the
matrix is rapidly heated and vaporized, and at the same time, the sample surrounded by
the matrix also receives energy from the matrix and vaporizes. This ionizes, accelerates and
detects the sample in the TOF/MS electric field space. The TOF/MS analyzer offers high
sensitivity and selectivity for wide-range screening. It provides accurate measurement of
ionizable component mass with few mass errors. This technique is ideal for both non-target
and post-target analysis. Since the sample is ionized via the matrix, it is possible to measure
a sample (protein, etc.) that is sensitive to heat and easily decomposed without causing
fragmentation. This method can measure up to the highest-mass region compared with
the mass spectrometry methods currently used, and can measure the molecular weight
distribution and perform structural analysis at the same time and in a short time [31].
Although many scientists have identified compounds using both MALDI-TOF-MS and
FTICR-MS [32,33], this work explores the sole employment of MALDI-TOF-MS, mainly
to identify sulfur compounds and nitrogen compounds. It may bring up a fundamental
question: is it possible to classify and identify compounds using MALDI-TOF-MS only? In
general, it is difficult to analyze low-molecular-weight compounds with MALDI-TOF-MS,
unlike the case for analyzing high-molecular-weight compounds. As reported, matrix
selection is one of the most important aspects of MALDI-TOF-MS. This work proposes the
classification of compounds in VGO feeds as well as hydrodesulfurization-treated VGOs by
selecting the appropriate matrix. The analytical procedure was performed after pretreating
samples. The Kendrick mass plot was employed to analyze sulfur and nitrogen in detail.

2. Experimental
2.1. VGO Feeds and Their HDS Reaction

Two different VGOs were used as received from the Kuwait Institute for Scientific
Research. Two VGO samples were obtained from Kuwait Export crude and Lower Fars
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crude, named KEC-VGO and LFC-VGO, respectively. The boiling points of KEC-VGO
and LFC-VGO were 350–538 ◦C and 350–523 ◦C, respectively. In case of HDS products,
two VGOs were treated in a 150 mL batch autoclave (RX Engineering Co. Ltd., Anyang-si,
Republic of Korea), equipped with a magnetic stirrer rotating at 300 rpm in the laboratory.
Each 30 g VGO feed was treated at 370 ◦C for 0.5 h under an initial H2 pressure of 9 Mpa in
the presence of 3 g of CoMo/Al2O3 catalyst. The catalyst was supplied by ART Corporation
(Kawasaki, Japan).

2.2. Solvent Fractionation

Sulfur and nitrogen compounds in both VGOs and their HDS products were fraction-
ated according to an established procedure [1]. The fractionation procedure is shown in
Figure 1 [34]. Activated neutral alumina (80 g) was dried at 180 ◦C for 4 h under vacuum
conditions and then packed into a glass column (30 mm i.d. and 600 mm long). Each VGO
(approximately 10 g) was placed on the top of the column. The extraction sample was eluted
first with 100 mL of n-hexane for the saturated hydrocarbon fraction, and with 100 mL of
n-hexane/dichloromethane (60/40 v/v) for the aromatic and sulfur compound fractions.
The nitrogen compound and polar fraction were eluted by 200 mL of dichloromethane
and 200 mL of methanol, respectively. The solvent of each fraction was evaporated un-
der vacuum conditions, and the saturated hydrocarbon fraction and aromatic and sulfur
compound fractions were collected using a Pasteur pipet. The nitrogen fraction and polar
fraction were dissolved by tetrahydrofuran (THF) and collected.
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Figure 1. Separation method for VGO.

In the MALDI-TOF-MS analysis, a number of peaks were noted after sample sep-
aration, whereas there were no clear peaks in the non-separated sample. When many
compounds are present in a sample, it is possible that one of them will prevent the others
from being ionized, while another compound could facilitate the ionization of the others,
according to a matrix-like effect. Since a crude oil consists of many compounds, it is not
easy task to determine each compound’s individual effect on ionization. However, based on
the appearance of peaks after separation, it is hypothesized that some compounds prevent
the ionization of other compounds, as alluded to previously. In this work, separating the
feed into fractions was a useful method.
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2.3. Sample Preparation for MALDI-TOF-MS

In the previous study, TCNQ (2 7,7,8,8-tetracyanoquinodimethane) was introduced
as the optimal matrix for the analysis of heavy fractions in MALDI-TOF-MS [35]. In this
work, to verify the effectiveness of TCNQ, 4,6-dimethyldibenzothiophene was evaluated
using TCNQ and α-cyano-4-hydroxycinnamic acid (CHCA). The chemical structures of
both matrix chemicals are presented in Figure 2. TCNQ performs as an electron acceptor
because it has four cyano groups, and tends to promote radical compounds. On the
other hand, CHCA has one cyano group, one hydroxyl group and one carboxyl group,
such that CHCA renders compounds not only radical, but also protonated. Thus, the
ionized conditions of peaks obtained by this matrix are difficult to interpret sufficiently
(Figure 3). Figure 4 shows the detected peaks. An amount of 10 g of each fraction of
VGO feeds and their HDS products were dissolved in 1 mL of THF, and 10 mg of TCNQ
was also dissolved in 1 mL of THF. Oil fractions were also mixed with some standard
samples. The samples and matrix in THF were mixed in a 1:1 (v/v) ratio, and then
1 µL of the mixture was spotted on the sample plate. The fraction and nitrogen fraction
amounts were quite small, so these fractions were dissolved in THF and collected after
separation; then, the THF solutions were also mixed with standard samples and a matrix
solvent in a 1:1 ratio. To obtain high-resolution data, external and internal standards
(Table 1) were used. Carbazole, anthracene, 4,6-dimethyldibenzothiophene (4,6-DMDBT),
pyrene, benzonaphthothiophene (BNT), perylene, coronene, dibenzochrysene (DBC) and
dibenzopentacene (DBP) polyethyleneglycol (PEG) were chosen as external standards. The
mixing ratio of these compounds was 40:15:100:15:10:1:5:4:5:1.5 (wt.%) [35] In addition,
anthracene 4,6-DMDBT, perylene, coronene, benzocarbazole, DBC and PEG were used
as internal standards. The chemical structures of the external and internal standards are
presented in Table 2. Each internal standard sample amount of 1 or 10 mg was dissolved in
THF. For example, a 10 µL polar fraction solution of KEC-VGO was mixed with 1 µL of
coronene solution (1 mg/mL), and this mixture was in turn mixed with TCNQ solution in
a 1:1 ratio and spotted on the sample plate. The mixing ratios of each fraction used in this
study are shown in Table 2. Samples were analyzed using MALDI-TOF-MS (JMS-S3000;
Japan Electron Optics Laboratory, Tokyo, Japan). In the polar fraction of KEC-VGO, high-
resolution data were obtained from external and internal standard samples. For example,
the theoretical mass values of benzocarbazoles, benzoacridines, dibenzocarbazoles and
tetrahydrodibenzoacridines are 273.15120, 285.15120, 295.13555 and 297.15120, and the
mass values measured using the external and internal standard methods are 273.15128,
285.15112, 295.13563 and 297.15122, respectively.
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Table 1. Chemical structures of external and internal standards.

Name Structure External Internal

Carbazole
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Table 1. Cont.

Name Structure External Internal

4,6-dimethyldibenzothiophene
(4,6-DMDBT)
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Table 2. Mixing ratio of each fraction and internal standard samples.

Fraction
and

Volume
Anthracene 4,6-

DMDBT Benzocarbazole Perylene Coronene DBC PEG

KEC-VGO
feed

Polar
10 µL - - - - 1 µL

(1 mg/mL) - -

Nitrogen
10 µL - - 10 µL

(1 mg/mL)
1 µL

(1 mg/mL) - 1 µL
(1 mg/mL)

3 µL
(10 mg/mL)

Aromatics + Sulfur
10 µL

(10 mg)
- - 1 µL

(1 mg/mL) - - 1 µL
(1 mg/mL)

1 µL
(10 mg/mL)

KEC-VGO
HDS

products

Polar
1000 µL - 100 µL

(1 mg/mL) - - 0.3 µL
(1 mg/mL) -

Nitrogen
10 µL - 5 µL

(1 mg/mL) - - - 1 µL
(1 mg/mL)

1 µL
(10 mg/mL)

Aromatics + Sulfur
100 µL (100 mg)

1 µL
(1 mg/mL) - - - 1 µL

(1 mg/mL)
1 µL

(10 mg/mL)

LFC-VGO
feed

Polar
10 µL - - - 1 µL

(1 mg/mL) - - -

Nitrogen
10 µL - - 10 µL

(1 mg/mL) - - 3 µL
(1 mg/mL)

3 µL
(10 mg/mL)

Aromatics + Sulfur
10 µL (10 mg/mL)

1 µL
(1 mg/mL) - - - - 1 µL

(1 mg/mL)
1 µL

(10 mg/mL)

LFC-VGO
HDS

products

Polar
1000 µL - 100 µL

(1 mg/mL) - - 0.3 µL
(1 mg/mL) - -

Nitrogen
10 µL - 10 µL

(1 mg/mL) - - - 1 µL
(1 mg/mL) -

Aromatics + Sulfur
100 µL (10 mg/mL) - 50 µL

(10 mg/mL) - - 0.5 µL
(1 mg/mL)

0.1 µL
(10 mg/mL) -

2.4. Kendrick Plot and Nominal Mass Series (z*)

It is known that numerous isomers make it difficult to identify each molecular species
in the heavy fraction. The Kendrick plot was proposed to analyze heavy fractions, and
formed the basis of the Kendrick mass defect (KMD) plot, where the KMD can be plotted
against the nominal Kendrick mass (NKM) [36]. The advantage of the Kendrick plot is
that members of a homologous series have identical KMD values, and the KMD has a
positive correlation with the double-bond equivalent (DBE). The KMD plots are generated
by multiplying the m/z of MALDI-TOF-MS data by 14.00000 and dividing the result
by 14.01565, while the NKM is obtained by rounding the Kendrick mass value to the
nearest integer:

Kendrick mass = m/z × 14.00000/14.01565

Nominal Kendrick mass (NKM) = the nearest integer to the Kendrick mass value

The KMD can be obtained as follows:

Kendrick mass defect = NKM − Kendrick mass

To process high-resolution mass spectral data, a multiple sorting technique based
on nominal mass series (z*) is effective, as is KMD [5]. The difference in KMD between
CnH2n−14S and CnH2n−20O is only 0.0005 mass units. Therefore, it is not easy to distin-
guish between oxygen compounds and sulfur compounds, but the z* for CnH2n−14S and
CnH2n−20O is −10 and −4, respectively, where z* is defined as follows:

z* = the modulus of (nominal mass/14) − 14
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The z* value is between −14 and −1 and is related to the valence number of the
heteroatom. For example, the valence number of a sulfur atom is 2, so the z* of S-containing
compounds is even. On the other hand, the z* of N-containing compounds is odd because
the valence number of a nitrogen atom is 3. However, in the case of a compound with one
sulfur atom and one nitrogen atom (S1N1 class species), the z* is odd because the total
valence number is odd. In other words, compounds with odd z* values are N1, N1S1, N1O1,
N1S1O1, N1S2, N1 O2, N3 and so on, while S1, O1, S2, O2, S1O1, N2, N2S1 and N2O1 have
even z* values. The z* values are well separated to distinguish between compounds with
similar KMDs. Kendrick plots can be relatively complicated due to the presence of many
compounds in oil, but clarity can be achieved by pre-sorting (Figure 3). Thus, masses were
sorted according to the z* value before KMD sorting. In this study, z* = odd for polar and
nitrogen fractions, and even for aromatic and sulfur fractions.

2.5. GPC-UV Measurement

GPC-UV analysis was performed using a 1200 infinity series GPC instrument (Agilent
technologies, Santa Clara, CA, USA) equipped with Diode Array Detector (DAD at 261 nm),
an injection valve with a 300 µL loop. An LF-404 column (4.6 mm × 250 mm, Shodex,
Tokyo, Japan) with 6 µm particle size ‘multi-pore’ gel as the stationary phase was used for
high-resolution spectroscopy, and the LF-G column (4.6 mm × 10 mm, Shodex, Japan) was
used as a guard column. Polystyrene commercial standard samples (SL-105, Shodex, Japan)
were used for calibration. The mobile phase was THF in order to enhance the solubility of
oil samples. Each standard sample was prepared by diluting a nominal concentration of
0.1% in THF and filtered by using a membrane filter (0.45 µm, Teflon, Millipore, St. Louis,
MO, USA) in this study. The oil samples were also dissolved and filtered. The column
temperature was stabilized at 40 ◦C. The THF solvent flowed overnight for stabilization.
The flow rate was fixed at 0.2 mL min−1, and a 5 µL aliquot of the oil sample was analyzed.

3. Results and Discussions
3.1. Classification of Compounds in KEC-VGO Feed and HDS Products
3.1.1. Polar and Nitrogen Fraction in KEC-VGO Feed and HDS Products

As mentioned in the experimental section, pre-z* sorting can be an effective method
to classify the type of compounds present. The m/z of each fraction in KEC-VGO was
determined based on the z* number and plotted on a Kendrick plot (Figure 5). In the
case of odd z* values, many N1 species were classified. In particular, in the polar and
nitrogen fraction, N1 class species were dominant and few S1N1 class species were present
(Table 3). N1 class species are expected to have a carbazole or acridine structure. Based on
the KMD plot, CnH2n−15N, CnH2n−17N, CnH2n−19N, CnH2n−21N, CnH2n−23N, CnH2n−25N
and CnH2n−27N are carbazole, acridine, tetrahydrobenzoacridine, benzocarbazole, ben-
zoacridine, tetrahydrodibenzoacridine and dibenzocarbazole, respectively. N1 class species
were confirmed in the z* = odd polar and nitrogen fraction group, and the states of these
compounds may be radical. Carbazoles and acridines have some benzene rings, so even if
an electron in the pie orbital is removed, carbazoles and acridines in a radical state should
be stable due to the delocalization of pie electrons. The function of the TCNQ matrix is to
achieve a radical state, but not all of the compounds change into a radical state; some are
protonated or become anions. N-containing compounds could be protonated. Because the
nitrogen atom is a Lewis base, a proton can interact with the nitrogen atom in N-containing
compounds. Thus, in the case of compounds with an N atom, not only is a radical structure
detected, but so too is a protonated structure. If a proton is added to N-containing species,
the z* value changes. For example, the z* value of radical benzoacridines is −9, but that
of protonated benzoacridines is −8. Thus, in the polar and nitrogen fractions, nitrogen
species could be detected in the even z* group, but it is possible to separate protonated
compounds according to the pre-z* sorting step.
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Table 3. Expected structure of polar, nitrogen and aromatic + sulfur fraction in the KEC-VGO feed
and HDS products. DBE represents the double bond equivalent.

KEC-VGO
Fraction Formula (DBE) Expected Structure Feed HDS Products

Polar

CnH2n-25SN (14) - O
CnH2n-27N (15) Dibenzocarbazole O
CnH2n-25N (14) Tetrahydrodibenzoacridine O O
CnH2n-23N (13) Benzoacridine O O
CnH2n-21N (12) Benzocarbazole O
CnH2n-15N (9) Carbazole O
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Table 3. Cont.

KEC-VGO
Fraction Formula (DBE) Expected Structure Feed HDS Products

Nitrogen

CnH2n-25SN (14) - O
CnH2n-23SN (13) - O
CnH2n-21SN (12) - O
CnH2n-19SN (11) - O
CnH2n-27N (15) Dibenzocarbazole O
CnH2n-25N (14) Tetrahydrodibenzoacridine O
CnH2n-23N (13) Benzoacridine O
CnH2n-21N (12) Benzocarbazole O
CnH2n-19N (11) Tetrahydrobenzoacridine O
CnH2n-17N (10) Acridine O O
CnH2n-15N (9) Carbazole O O

Aromatic
+

Sulfur

CnH2n-30S (15) Cholanthrenthiophene O
CnH2n-28S (14) Chrysenothiophene O
CnH2n-26S (13) Pyrenothiophene O
CnH2n-24S (12) Naphthenephenanthrenothiophene O
CnH2n-30 (16) Dicyclopentapyrene O

CnH2n-20S (11) Benzonaphthothiophene O
CnH2n-28 (15) Perylene O

CnH2n-18S (10) Acenaphthenothiophene O
CnH2n-26 (14) Tetrahydropicene O O
CnH2n-16S (9) Dibenzothiophene O
CnH2n-24 (13) Chrysene O
CnH2n-22 (12) Pyrene O O
CnH2n-12S (7) Tetrahydrodibenzothiphene O
CnH2n-20 (11) Tetrahydrobenzoanthracene O
CnH2n-18 (10) Anthracene O O
CnH2n-16 (9) Octahydronaphthacene O

After the HDS reaction, the values of KMD decreased in both fractions, with com-
pounds of a larger molecular weight being particularly affected. This shows that com-
pounds of a high DBE are hydrogenated into products of a low DBE, and the molecular
size of long alkyl chains of compounds is reduced. In the nitrogen fraction, after the HDS
reaction, acridines and carbazoles were detected, and some compounds were confirmed
within the 0.15 to 0.2 KMD range, but could not be classified.

3.1.2. Aromatic and Sulfur Fraction in KEC-VGO Feed and HDS Products

Several aromatic compounds and sulfur-containing compounds were confirmed
in the aromatic and sulfur fractions. In the plot of aromatic and sulfur fractions, the
KMD of sulfur compounds is larger than that of aromatics compounds. The formulas
of the sulfur compounds are CnH2n−12S, CnH2n−16S, CnH2n−18S, CnH2n−20S, CnH2n−24S,
CnH2n−26S, CnH2n−28S and CnH2n−30S, and the structures corresponding to these for-
mulas are tetrahydrodibenzothiophene, dibenzothiophene, acenaphthenothiophene, ace-
naphthlemothiophene, naphthenephenanthrenothiophene, pyrenothiophene, chrysenoth-
iophene and cholanthrenthiophene, respectively. Aromatic compounds were confirmed in
a small KMD area; the formulas are CnH2n−16, CnH2n−18, CnH2n−20, CnH2n−22, CnH2n−24,
CnH2n−26, CnH2n−28 and CnH2n−30, corresponding to octahydronaphthacene anthracene,
tetrahydrobenzoanthracene, pyrene, chrysene, tetrahydropicene, perylene and dicyclopen-
tapyrene, respectively. After the HDS reaction, a number of sulfur-containing compounds
were reduced and peaks of aromatic compounds with small KMDs appeared. This result
means that under hydrogen pressure, hydrogenation occurs alongside the HDS reaction
on the CoMo catalyst. Interestingly, the molecular weight of some compounds in the HDS
product was larger than that of some compounds in the feed.
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3.2. Classification of Compounds in LFC-VGO Feed and HDS Products
3.2.1. Polar and Nitrogen Fraction in LFC-VGO Feed and HDS Products

As mentioned in the experimental section, pre-z* sorting is an effective method to
classify the type of compounds present. The m/z of each fraction in LFC-VGO was
determined based on the z* number and plotted on a Kendrick plot (Figure 6). As well
as KEC-VGOs, some N1 species were confirmed in the polar fraction of LFC-VGO, and
the types of compounds were similar. However, S1N1 species could not be confirmed in
the polar fraction in LFC-VGOs (Table 3). There were fewer peaks for the polar fraction
of LFC-VGOs compared with that of KEC-VGOs, and the carbon number of the alkyl
chains was small. After the HDS reaction, benzoacridines were present, but no other
compounds were classified. In the nitrogen fraction, N1 species were also dominant in the
LFC-VGO feed, but there were fewer high-DBE species relative to the KEC-VGOs. Species
with a high DBE were converted into compounds with a low DBE after the HDS reaction,
and carbazoles, acridines, tetrahydrobenzoacridines, benzocarbazoles, benzoacridines and
tetrahydrodibenzoacridines were detected. In particular, acridines and carbazoles in the
HDS product of the LFC-VGOs had long alkyl chains compared with those of the HDS
product compounds of the KEC-VGOs.
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3.2.2. Aromatic and Sulfur Fractions in LFC-VGO Feed and HDS Products

Aromatic and sulfur fractions in LFC-VGO showed similar KEC patterns. Sulfur
compounds have large KMD values and aromatics have small KMD values, but some
compounds were plotted in the low KMD range. In the HDS products, a few benzonaph-
thothiophenes, chrysenothiophenes and cholanthrenothiophenes were detected. As for
the other compounds, octahydronaphthacene, anthracene, tetrahydrobenzoanthracene,
pyrene, chrysene, tetrahydropicene and perylene were confirmed to be present (Table 3),
similar to the HDS products of KEC-VGO. In both KEC-VGO and LFC-VGO, the number
of compounds with large KMD values decreased, while compounds with small KMD
values remained after the reaction. This shows that compounds with a high DBE are
hydrogenated because they have some benzene rings. Benzene rings have π bonds that
are easily converted into σ bonds, so the catalyst interacts with π electrons in the benzene
rings and the bonds are cut under high hydrogen pressure. Compounds with abundant
benzene rings have many π electrons; thus, these compounds interact with the surface of
the catalyst, such that compounds with a high DBE are hydrogenated first. Interestingly,
the molecular weight of some compounds in the HDS product is larger than that of certain
compounds in the KEC-VGO. It is possible that compounds with a high molecular weight
and high DBE cannot be ionized, or that the concentration is quite small. Gel permeation
chromatography (GPC) analysis was conducted for the feed and HDS products of aromatic
and sulfur fractions in the VGOs. Based on the results of the GPC analysis, the molecular
size decreased (Figure 7), so the molecular weight became smaller after the HDS reaction,
and some compounds with a high molecular weight and high DBE could not be ionized.
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4. Conclusions

Prior to the application of MALDI-TOF-MS analysis, sample fractionation was per-
formed using liquid chromatography in the presence of packed alumina as a pre-separation
procedure. The spectra proved to be more effective in analyzing VGOs, as a greater num-
ber of peaks appeared after fractionation than in the non-pre-separated samples. Careful
matrix selection is one of the most important aspects of MALDI-TOF/MS. In this work,
4,6-DMDBT was investigated as a standard sample to find the most suitable measurement
conditions. TCNQ proved to be the best matrix as it ensured that the ionized compound
was in a radical state due to its four cyano groups. In order to obtained high-resolution data,
internal standard and external standard methods were evaluated and shown to be effective,
as long as standard samples were used, and the mass defect was kept to a minimum. The
Kendrick plot is a well-known method for interpreting mass data. The employment of
nominal mass series (z*) is an effective alternative method. Since the difference in KMD
between CnH2n−14S and CnH2n−20O is only 0.0005 mass units, it is not an easy task to
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distinguish these compounds without further refining the data. However, the z* value was
different between these compounds; therefore these species can be classified on the basis
of this value. Using z* values, compounds of each fraction in the VGOs were apparently
classified. In the case of the polar and nitrogen fractions of both VGOs, N1 species were
dominant and a few S1N1 species were also present. Compounds in the polar fractions of
the KEC-VGO feed had longer alkyl chains compared with those of the LFC-VGO feed,
and in the nitrogen fractions, alkyl chains of the KEC-VGO feed were longer than those of
the LFC-VGO feed. After the HDS reaction was applied to both VGOs, compounds of a
high molecular weight and high DBE were reduced in number. This supports the idea that
alkyl chains were cut, and benzene rings were hydrogenated in the presence of hydrogen.
Though it was not expected, there was no major difference in the plots of the aromatic and
sulfur fractions between the KEC-VGO and LFC-VGO feeds. Sulfur-containing compounds
corresponded to high values of KMD in the Kendrick plot, while aromatic compounds
corresponded to low values of KMD. After the HDS reaction, almost all sulfur compounds
were reduced and aromatic compounds appeared with a low DBE. Although the com-
pounds were hydrogenated, the molecular weight of some species in the HDS product was
larger than that of compounds dispersed in the feed. It may be possible that species of a
larger molecular weight were present in the VGO, but were hardly detected due to the low
concentrations or inappropriate conditions for ionization.
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