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ABSTRACT
The intestinal microbiota is an important environmental factor implicated in CRC development. 
Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical 
models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently 
unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and 
validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of 
Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through 
qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, 
except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was 
primarily driven by a subset of cases distinguished by high levels of these bacteria, which we 
labeled as “Superhigh”. The bacterial Superhigh status showed a significant association with CIMP 
(odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In 
TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from 
non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly 
associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). 
Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. 
C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific 
bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the 
development and progression of CIMP in colorectal cancer.
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Introduction

Colorectal cancer (CRC) poses a significant global 
health burden due to its high prevalence and mor
tality rates.1 While hereditary factors, such as germ
line mutations, contribute to a small proportion of 
CRC cases,2 the majority are sporadic, indicating 
a multifaceted interaction between genetic and 
environmental factors in its development.3 

Numerous studies have aimed to understand the 
epigenetic landscape of CRC, revealing a complex 
relationship between DNA methylation patterns and 
the pathogenesis of CRC.4 CpG island methylator 
phenotype (CIMP) is characterized by a distinct 
pattern of hypermethylation in multiple CpG loci 
throughout the cancer genome. Initially identified in 
CRC patients,5 CIMP has been observed in various 
cancers. In gliomas, CIMP is predominantly caused 

by IDH1/2 mutations, which lead to the accumula
tion of the oncometabolite 2-hydroxyglutarate, 
a competitive inhibitor of the TET family of DNA 
dioxygenases.6 Mutations in succinate dehydrogen
ase are also associated with CIMP in stromal 
tumors.7 While mutations in the TCA cycle genes 
have been linked to CIMP in other cancers, CIMP in 
CRC lacks well-defined genetic alterations. This sug
gests that external factors may potentially contribute 
to CIMP in CRC, as genetic aberrations alone can
not be solely account for its cause.

The human gut microbiota comprises a densely 
populated and metabolically active microbial com
munity that plays a pivotal role in protecting the 
intestinal mucosal barrier, supplying essential nutri
ents, and modulating the host immune system for 
proper immune function.8 Dysbiosis, characterized 
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by an imbalance in composition and disturbance 
function of the gut microbiota, has been associated 
with chronic inflammation and tumorigenesis in the 
gut.9 Studies have revealed hypermethylation of DNA 
in the gastric mucosa of patients infected with 
Helicobacter pylori, as well as in patients with Epstein- 
Barr virus (EBV). Fusobacterium nucleatum, fre
quently associated with colorectal cancer pathogen
esis, has been found to be disproportionately enriched 
in colorectal cancer patients with CIMP compared to 
those without CIMP. Previous investigations identi
fied a significant association between F. nucleatum 
and Bacteroides fragilis and CIMP in colorectal 
cancer,10,11 suggesting a distinct gut microbiota as 
a key player that associates with CIMP in colorectal 
cancer (without inferring cause vs. effect). To test this 
hypothesis, we selected four bacterial species- 
Bacteroides fragilis, Escherichia coli, Fusobacterium 
nucleatum, and Klebsiella pneumoniae-with signifi
cant enrichment in CRC patients12–15 to examine 
the association between CIMP and bacterial enrich
ment in CRC tumor tissue. We evaluated the relation
ship between CIMP status and bacterial enrichment 
in colorectal cancer tumor specimens, as well as adja
cent normal samples. Our findings were verified 
using data from The Cancer Genome Atlas. 
Furthermore, we performed 16S rRNA gene sequen
cing to identify additional bacterial taxa displaying 
enrichment in colorectal cancer tumor tissue, parti
cularly those characterized by CIMP.

Materials and Methods

Human colorectal cancer tissue samples

A total of 169 fresh frozen colorectal adenocarci
noma tumors and 165 adjacent normal tissues 
(cohort 1 and 2) were obtained from patients 
undergoing surgery at the Fox Chase Cancer 
Center. Tissue samples were selected to include 
approximately equal numbers from the proximal 
and distal colons. Additionally, 34 colorectal ade
nocarcinoma tumor genomic DNA samples were 
obtained from a previous study.10

DNA extraction

Fresh frozen human CRC tumor or adjacent normal 
tissue samples were lysed in 2% SDS and 25 mM 

EDTA tissue lysate solution with proteinase K (20 
ug/mL). The lysates were incubated at 56°C for 
an hour and then transferred to 37°C until tissues 
were completely lysed. Proteins were precipitated 
with 10 M ammonium acetate and removed from 
homogenized tissue lysates by centrifugation at 
12000RPM. Subsequently, DNA was precipitated 
using isopropanol, washed with 70% ethanol, and 
dissolved in LTET buffer (10 mM Tris pH 8.0, 0.1  
mM EDTA, 0.1% Tween20). The DNA concentra
tion was measured with the Qubit dsDNA Broad 
Range assay kit (Thermo Fisher, #Q32853).

Digital Restriction Enzyme Analysis of Methylation 
(DREAM)

Digital Restriction Enzyme Analysis of 
Methylation (DREAM) was performed on 115 
CRC tumor and 15 adjacent normal genomic 
DNA samples (Table S1), following a previously 
described method.16 Briefly, the CRC genomic 
DNA samples were purified with 1X AMPure 
XP beads to remove fragments shorter than 200 
base pairs to obtain high molecular weight 
DNA.17 The purified genomic DNA underwent 
sequential digestion with SmaI and XmaI, both 
recognize CCCGGG sites in DNA. This sequen
tial digestion yielded distinct sequence patterns 
for methylated and unmethylated sites: SmaI only 
cuts unmethylated sites with blunt ends, while 
XmaI targets any remaining methylated sites 
with a 5’ CCGG overhang. These digested DNA 
fragments were utilized to construct Illumina 
libraries using NEBNext adapters and indexed 
primers (NEB #E7335S/E7500S). Methylation 
percentage was calculated as the fraction of 
methylated signatures determined by XmaI diges
tion out of the total of enzyme-digested sites as 
previously described.16

Bacterial strains

Bacterial genomic DNA samples were obtained 
from the American Type Culture Collection 
(Bacteroides fragilis ATCC 25285D–5, 
Fusobacterium nucleatum ATCC 25586D–5, and 
Klebsiella pneumoniae ATCC 700721D–5) (Table 
S2). Escherichia coli genomic DNA was isolated 
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from E. coli K12 lab strain and E. coli NC101 
adherent-invasive strain cultured in LB medium.

Quantitative PCR

Genomic DNA was extracted from the human 
CRC tumor and adjacent normal tissues and quan
tified with the Qubit dsDNA BR Assay (Thermo 
Fisher #Q32850). TaqMan primers and probes 
were used to quantify the abundance of B. fragilis, 
F. nucleatum, and K. pneumoniae in the genomic 
DNA of human CRC tumor and adjacent normal 
tissue as previously described.18–20 The primer set 
for E. coli was designed based on previously 
described primers21 (Table S3). Each bacterial pri
mer/probes set was tested for the primer efficiency 
and specificity with bacterial genomic DNA (Table 
S2). The E. coli primers were evaluated against both 
the E. coli K12 lab strain and the E. coli NC101 
adherent-invasive strain. The cycle at threshold 
(Ct) values of each bacterial species were normal
ized to the Ct values of human DNA detected by 
SLC24A3 or PGT genes.10,22 All assays were per
formed twice in triplicates, and the results were 
averaged.

16S rRNA gene sequencing

A total of 114 pairs of tumor and adjacent normal 
samples were evaluated for the sequencing from 
the cohort 1 (Table S1). The V3-V4 hypervariable 
region of 16S rRNA gene was amplified using the 
selected universal primers for Illumina barcode 
indexes, following previously described methods23 

(Table S4). To ensure proper microbial genomic 
DNA extraction and library generation, 
ZymoBIOMICS Microbial Community Standard 
(Zymo, #D6300), ZymoBIOMICS Microbial 
Community DNA Standard (Zymo, #D6305), 
B. fragilis gDNA, E. coli gDNA, F. nucleatum 
gDNA, and K. pneumoniae gDNA were included 
in the library generation. The generated library 
samples were sequenced using the Illumina MiSeq 
(300bp paired-end).

Illumina EPIC array analysis

EPIC array data files of 76 CRC tumor tissue and 
77 CRC adjacent normal tissue samples were 

processed and normalized using the ChAMP 
R package.24 We filtered out low-quality probes 
and imputed missing values with champ.filter()24 

and normalized with champ.norm()24 using the 
beta-mixture quantile normalization (BMIQ) 
method.25

The cancer genome atlas data analysis

TCGA Level 2 Illumina HumanMethylation 
450K array data for 295 colon adenocarcinoma 
(COAD) and 98 rectum adenocarcinoma 
(READ) patients, and Level 1 whole exome 
sequencing (WXS) data were downloaded using 
TCGAbiolinks.26 From the methylation array 
datasets, 393 primary solid tumor samples and 
45 solid normal tissue samples were selected 
based on the availability, and technical repli
cates were averaged. To identify cancer-specific 
sites, 370,964 sites were filtered based on low 
methylation variability (STDEV <0.2), low aver
age β-value (β-value <0.1) in primary solid nor
mal samples, and high methylation variability in 
tumor samples (STDEV >0.2). These 18,289 
cancer-specific CpG sites were converted to bin
ary methylation status at the threshold of 0.2 β- 
value to compensate for the tumor purity.

The unaligned reads from TCGA-COAD and 
TCGA-READ WXS data were downloaded and re- 
aligned to the human CHM13 reference genome27 

with bwa-mem2 to ensure the removal of human 
read contamination in the initial extraction. 
Subsequently, the unaligned reads were re- 
extracted and classified using Kraken2 with the 
full KrakenUniq database containing human, 
archaea, bacteria, viral, plasmid, and 
UniVec_Core.28 The classified counts were sum
marized at the genus level and estimated by 
Bayesian Re-estimation of Abundance with 
Bracken.29 Genus-level abundance values for each 
sample were normalized using the number of reads 
assigned to human (counts per million) for down
stream analysis.

16S rRNA sequencing data analysis

The 16S rRNA sequencing data obtained from the 
paired 114 CRC tumor and adjacent normal sam
ples were trimmed using cutadapt30 (Table S1). 
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DADA2 was used to filter, trim, estimate error 
profiles, merge paired end reads, remove chimeras, 
and assign taxonomy by fitting amplicon sequen
cing variant (ASV) sequences to a pre-trained naïve 
Bayes classifier from the Silva v138 database. 
Species assignments were made by DADA2- 
formatted Silva v138 reference sequences.31 

Community standards described above were used 
to assess the accuracy of the species-level assign
ment and determine possible contaminants. ASV- 
level counts, taxonomic information, and sample 
metadata were imported into R using the phyloseq 
package.32 ASVs not assigned to at least the 
Phylum level and ASVs present in fewer than 1% 
of samples were filtered out. ASV-level counts were 
agglomerated to the species level and analysis of 
compositions of microbiota with bias correction 2 
(ANCOM-BC2)33 was used for differential abun
dance testing and to produce adjusted log-counts 
for ordination by PCA. Taxa were defined as sig
nificantly differentially abundant in each condition 
following testing with ANCOM-BC2 if their 
p-value was smaller than 0.05. The adjusted log 
abundances were calculated by adding 
a pseudocount (log(count +1)) to avoid taking log 
(0) and then adjust the log counts by subtracting 
the estimated samples fraction. Previously reported 
common laboratory contaminants in 16S rRNA 
sequencing data were removed before the further 
downstream analysis.34

Statistical analyses

All statistical analyses were performed using R.35 

Unsupervised hierarchical clustering of DREAM 
methylation and TCGA methylation array data 
was performed using ward.D2 clustering method 
in the pheatmap R package.36 Group-level compar
isons were performed using the Wilcoxon signed 
rank test or Kruskal-Wallis test where appropriate. 
Principal component analysis (PCA) was used to 
show variance between the Superhigh and the 
Non-Superhigh bacterial cases and to compare bac
terial enrichment across different CIMP classes. 
Permutational multivariate analysis of variance 
(PERMANOVA) was used to confirm differences 
in the microbiota between tissue types or CIMP 
statuses with the vegan R package.37 The ANCOM- 
BC2 R package33 was used to address zero-inflation 

and over-dispersion in count data.38 Odds ratios 
and p-values for clinical and molecular associations 
with the Superhigh group were calculated by creat
ing a contingency table and the Fisher’s Exact Test. 
Correlations between tumor and adjacent normal, 
as well as between 16S rRNA gene sequencing and 
bacterial qPCR, were tested by Pearson correlation. 
Volcano plots comparing abundances between tis
sues and CIMP statuses were constructed using the 
adjusted log-counts and the negative log10 of 
p-values determined by the ANCOM-BC2 
R package. Shannon’s diversity index for 16S 
rRNA gene sequencing abundance counts of CRC 
tumor and CIMP tumors was calculated using the 
vegan R package. All plots were generated using the 
ggplot2 R package.39 No significant influence by 
technical artifacts was observed in any of the data
sets studied.

Data availability

Sequence data from this article are available in the 
NCBI GEO (accession number: GSE237525, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE237525). Further information and 
requests for resources and reagents should be 
directed to and will be fulfilled by the Lead 
Contact, Jean-Pierre J. Issa, MD (jpissa@cor
iell.org).

Results

CIMP classification of CRC tumor samples

Based on previous work, we hypothesized the role 
for a distinct gut microbiota in CIMP in colorectal 
cancer. Kelly et al. (2017) have previously devel
oped an enhanced CIMP classifier in AML,40 which 
we subsequently adapted for CRC methylation ana
lysis. Utilizing the DREAM platform, we detected 
the methylation status of 26,370 CpG sites follow
ing the initial quality filtering, ensuring 
a minimum of 30 reads/site in at least 85% of the 
115 tumor samples (Table S1), including individual 
technical replicates to ensure high confidence and 
high coverage sites. Given that much of the methy
lation variation is attributed to aging,5 we used the 
adjacent normal samples to eliminate aging- 
specific methylation sites. CpG sites were selected 
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based on high variability (STDEV >20%) of methy
lation across tumor samples, coupled with low 
variability (STDEV <10%) and low average (aver
age <2%) methylation in the adjacent normal sam
ples, resulting in the identification of 1,317 cancer- 
specific CpG sites. To mitigate variability due to 
normal cell infiltration, we transformed these can
cer-specific sites using binary values denoting 
methylated (1) and unmethylated (0) states, with 
methylated defined as greater than or equal to 10%, 
and unmethylated defined as less than 10%. The 
samples were assigned to CIMP categories based 
on unsupervised hierarchical clustering. The clus
ter with the highest number of methylated sites was 
labeled as CIMP-High (left cluster), the cluster with 
an intermediate number as CIMP-Low (right clus
ter), and the cluster with sparsely methylated sites 
as CIMP-Negative (middle cluster) (Figure 1a).

As previously reported,41,42 we observed that 
CIMP-High cluster exhibited enrichment for 
female patients, proximal colon tumors, and 
methylation of MLH1 (Table S5, Figure 1b-e). 
The CIMP-High cluster showed a higher frequency 

of hypermethylated MLH1 (High 58.1%, Low 3.0%, 
Negative 2.1% p-value <0.001) and CDKN2A (High 
51.6%, Low 33.3%, Negative 14.9% p-value <0.001) 
compared to the CIMP-Low or the CIMP-Negative 
cluster. Furthermore, proximal tumors were more 
prevalent in the CIMP-High cluster (High 84.2%, 
Low 44.1%, Negative 48.9, p-value <0.01) com
pared to the distal tumors, along with an older 
average age (High 72.2 years old, Low 70.0 years 
old, Negative 63.4 years old, p-value <0.01).

CIMP-High were further categorized into two 
clusters: CIMP-High-A and CIMP-High-B. The 
CIMP-High-A cluster showed a higher frequency 
of hypermethylated MLH1 (High-A 89.5%, High-B 
8.3%, p-value <0.001) and CDKN2A (High-A 
63.2%, High-B 33.3%, p-value >0.05) compared to 
the CIMP-High-B cluster (Table S6). The CIMP- 
High-A cluster was enriched for proximal tumors 
(High-A 95.2%, High-B 61.5%, p-value <0.05) and 
an older average age (High-A 77.6 years old, High- 
B 63.5 years old, p-value <0.001).

To increase the sample size, we analyzed the 
Illumina EPIC array data from previously reported 

Figure 1. Categorical analysis of hierarchical clustering of methylation data CIMP status of CRC patient tumor samples. (a) 
Unsupervised hierarchical clustering of 115 CRC tumor samples based on 1317 CpG sites from DREAM methylation data. b-e) Bar 
plots showing the patient statistics (b) sex, (c) tissue side, (d) MLH1 methylation status, and (e) CDKN2A methylation status in each 
CIMP status. Fisher’s exact test was used to test for statistical significance for each comparison in b-e.
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seventy-six cases43 (Table S1). 27474 cancer- 
specific CpG sites were selected and assigned to 
binary methylation status at a 0.2 Beta-value 
threshold. Unsupervised hierarchical clustering of 
the binary cancer-specific sites revealed three dis
tinct clusters (CIMP-High, CIMP-Low, and CIMP- 
Negative) with patterns consistent with those 
observed in the DREAM data (Figure S1). 
Furthermore, analysis of the EPIC array data also 
showed distinct CIMP-High-A and CIMP-High-B 
classes. Similar to the DREAM methylation data, 
the CIMP-High-A cluster displayed a higher pre
valence in the proximal colon (High-A 100%, 
High-B 40%), a higher proportion of female 
patients (High-A 75%, High-B 60%), and 
a greater frequency of MLH1 methylated samples 
(High-A 50%, High-B 10%) in the EPIC array data. 
We merged the two cohorts for bacterial associa
tions analysis.

Enrichment of multiple bacterial species in 
CIMP-Positive CRC

Previously, our laboratory reported an associa
tion between CIMP-High CRC and 
Fusobacterium.10 Here, we aimed to confirm 
this finding and establish an association between 
additional bacterial species associated with CRC 
and CIMP-Positive tumors. Using quantitative 
real-time PCR (qPCR), we detected Bacteroides 
fragilis, Escherichia coli, Fusobacterium nuclea
tum, and Klebsiella pneumoniae in 203 CRC 
tumor and 165 paired adjacent normal samples 
(Material and Methods) (Table S1 and S7). 
Consistent with previous findings,10,12,15,44 we 
observed a significant enrichment of all indivi
dual bacterial species in tumor tissue compared 
to adjacent normal tissue (Figure 2a). Next, we 
compared the bacterial enrichment in CIMP- 
Positive (CIMP-High and CIMP-Low) and 
CIMP-Negative groups. We observed 
a significantly higher enrichment of B. fragilis, 
F. nucleatum, and K. pneumoniae in CIMP- 
Positive compared to CIMP-Negative tumor 
samples (Wilcoxon signed-rank test, p < 0.05, 
Figure 2b and Figure S2A). In contrast, E. coli 
did not show a significant association with CIMP 
(Figure 2b).

Bacterial superhigh enrichment in CIMP-Positive 
CRC

It has previously been suggested that bacterial bio
films underlie the development of some CRCs, and 
such biofilms would result in highly aberrant bac
terial enrichment, as observed previously for 
F. nucleatum.10 To study this in the current dataset, 
we ranked the bacterial enrichment of 203 tumor 
samples for B. fragilis, F. nucleatum, and 
K. pneumoniae (Figure 2c). Following the approach 
used in our previous study,10 we determined 
thresholds at the inflection point of bacterial abun
dance and identified a subset of samples with high 
enrichment, which we termed as bacterial 
Superhigh cases. To confirm the effectiveness of 
the enrichment thresholds for the Superhigh cases 
using an unbiased statistical approach, we per
formed principal component analysis (PCA) on 
the bacterial enrichment qPCR data. PCA plots 
were color-coded by the binary Superhigh status, 
as shown in Figure 2c and by the CIMP status in 
Figure S2C (Figure 2d). Outlying points in the PCA 
plot predominantly belonged to the Superhigh 
group, while tightly clustered data points around 
the origin primarily represented the Non- 
Superhigh samples. This analysis highlights that 
the enrichment thresholds effectively identified 
the Superhigh cases and successfully segregated 
them into a distinct group of bacterial outliers in 
the PCA. For B. fragilis, F. nucleatum, and 
K. pneumoniae, a total of twenty-six bacterial 
Superhigh cases were identified, and they showed 
significant associations with CIMP and CIMP 
characteristics such as MLH1 methylation 
(Table 1). The Superhigh group had 3.1 times 
higher odds (95% CI, 1.19–9.78) of being CIMP- 
Positive and 4.2 times higher odds (95% CI, 1.52– 
11.5) of having MLH1 methylation (Figure 2e). 
Other CIMP characteristics, including CDKN2A 
methylation, sex, tissue side, and age all showed 
trends for higher odds in the Superhigh cases.

Bacterial enrichment in CRC adjacent normal tissue

A previous study reported that tumor type-specific 
bacteria have a higher bacterial load in tumor- 
adjacent normal breast cancer tissue than in healthy 
breast samples.45 Other previous studies have also 
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shown the enrichment of Fusobacterium in adjacent 
normal tissue of colorectal cancer samples.10,15,22 

Based on this, we investigated whether CIMP- 
specific bacteria are also enriched in adjacent normal 
tissue samples. Our analysis revealed statistically 
significant Pearson correlation coefficients between 
bacterial abundance of paired tumor and adjacent 
normal samples in B. fragilis (r = 0.76, p < 0.001), 
F. nucleatum (r = 0.71, p < 0.001), and 
K. pneumoniae (r = 0.71, p < 0.001) (Figure 3a). 
The significance of correlation testing and the 
adjusted p-values were both statistically significant 
(p < 0.001, adjusted.p < 0.001). We further 

investigated whether the Superhigh tumor cases 
had higher bacterial enrichment in their adjacent 
normal pairs. Most of the adjacent normal pairs of 
the Superhigh cases had higher bacterial enrichment 
than the median (Figure 3b). The adjacent normal 
pairs of the Superhigh tumor samples had signifi
cantly higher B. fragilis and F. nucleatum enrich
ment than the Non-Superhigh adjacent normal 
sample pairs (Figure 3c, p < 0.001). No significant 
difference was observed between the adjacent 
enrichments of the Superhigh and the Non- 
Superhigh in K. pneumoniae, possibly due to an 
insufficient number of samples.

Figure 2. Enrichment of CRC-associated bacteria in CIMP-Positive CRC tumor samples. a-b. Comparison of bacterial enrichment by 
qPCR between (a) paired tumor and adjacent normal samples (n = 165), (b) CIMP-Positive and CIMP-Negative tumor samples (n =  
203). Significance was calculated by Wilcoxon test. (c) Ranking of the CRC tumor samples by bacterial enrichment. Tumor samples with 
high bacterial enrichment are classified as Superhigh samples. (d) Principal component analysis (PCA) of the CRC-associated bacteria 
(B. fragilis, F. nucleatum, and K. pneumoniae) enrichment. The circled area is expanded in the inset PCA plot. (e) Odds ratios of the 
association of the bacterial Superhigh status, determined by the three bacterial species, with different parameters including the CIMP 
status, MLH1 methylation, CDKN2A methylation, colorectal tissue side, sex, and age. Blue dots represent the point estimates of the 
odds ratio, and the lines represent the 95% confidence intervals around the estimates. Fisher’s exact test was used to test for statistical 
significance for each comparison.
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Association between bacteria and CIMP in TCGA 
data

We analyzed the 450K methylation array data from 
393 tumor and 45 normal tissue samples in TCGA- 
COAD and TCGA-READ datasets to verify the 
findings from the CRC human tissue samples 
(Table S1, see Materials and Methods). 
Unsupervised hierarchical clustering of the 18,289 
selected sites (see Materials and Methods) resulted 
in three CIMP classes and clearly distinct classifi
cation of CIMP-High subsets, CIMP-High-A and 
CIMP-High-B (Figure 4a). CIMP-High group 
exhibited a higher frequency of female patients, 
was more localized in the proximal colon, and 
had a greater MLH1 methylation and CDKN2A 
methylation frequency than CIMP-Low or CIMP- 
Negative groups (Figure 4a, Table S8). Similarly, 
a significantly higher frequency of MLH1 methy
lated samples was observed in CIMP-High-A clus
ter than in CIMP-High-B cluster (88% (30/34), 4% 
(1/23), p-value <0.001, data not shown). These 
classifications were concordant with the observed 
clusters in DREAM data. Additionally, we com
pared our genome-wide approach with two pre
viously reported CIMP gene panel classifications: 
the 8-gene panel from Nosho et al.46 and the 5-gene 
panel from Weisenberger et al..47 Using the Nosho 

panel, 38 out of 393 samples were classified as 
CIMP-High (348 CIMP-Low/Negative samples, 7 
undetermined). Most of these were also classified 
as CIMP-High using our approach, but the panel 
misclassified 46% of the CIMP-High cases identi
fied by the genome wide approach. Using the 
Weisenberger panel, 167 out of 383 samples were 
classified as CIMP-Positive but this panel misclas
sified 38.9% of the CIMP-Positive samples we 
identified.

We next analyzed the extracted bacterial 
reads from the whole exome sequencing data 
(see Materials and Methods) at the genus level. 
Ranking analysis of the 392 tumor samples 
revealed that the abundance of Bacteroides, 
Fusobacterium, and Klebsiella resembled the 
pattern of the Superhigh cases in the bacterial 
qPCR (Figure 4b). The abundance counts 
encompass all species within the three genera. 
The Superhigh group exhibited a higher disper
sion than the aggregated grouping of the Non- 
Superhigh group in the PCA plot (Figure 4c). 
Among the bacterial Superhigh group, the odds 
ratio for association with CIMP was 2.9 (95% CI 
1.2–7.7, p < 0.01) and MLH1 methylation was 
3.5 (95% CI 1.3–9.0, p < 0.01) (Figure 4d, 
Table S9).

Table 1. Association between characteristics of CIMP and the Superhigh bacterial group.
Superhigh (n = 26) Non-Superhigh (n = 177) p-value

CIMP status 0.013
Positive 20 (76.9%) 92 (52.0%)
Negative 6 (23.1%) 85 (48.0%)

MLH1 methylation status* 0.0025
Methylated 10 (38.5%) 22 (12.7%)
Unmethylated 16 (61.5%) 151 (87.3%)

CDKN2A methylation status* 0.33
Methylated 8 (30.8%) 43 (24.9%)
Unmethylated 18 (69.2%) 130 (75.1%)

Sex 0.31
Female 14 (53.8%) 82 (46.3%)
Male 12 (46.2%) 95 (53.7%)

Tissue Side† 0.066
Distal colon 8 (32.0%) 86 (50.3%)
Proximal colon 17 (68.0%) 85 (49.7%)

Pathologic Stage‡ 0.098
Stage 1 2 (7.7%) 6 (3.8%)
Stage 2 4 (15.4%) 29 (18.2%)
Stage 3 13 (50.0%) 106 (66.7%)
Stage 4 7 (26.9%) 18 (11.3%)

Age 0.066
Over 70 14 (53.8%) 64 (36.2%)
Under 70 12 (46.2%) 113 (63.8%)

*.missing 4 data points. 
†.missing 7 data points. 
‡.missing 18 data points. 
Fisher’s exact test for all characteristics. 
Bold denotes the significance
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CIMP-specific microbiota

We performed 16S rRNA gene sequencing on the 
same set of human CRC tumor (n = 114) and adja
cent normal samples (n = 114) (Table S1) to iden
tify additional bacterial taxa in the colon that are 
associated with CIMP. We used ANCOM-BC233 to 
evaluate differential abundance at the species level. 
PCA of a total of 1,212 identified genera/species 
did not reveal discernible clustering between tumor 
and adjacent normal (p-value = 0.081, 
PERMANOVA) (Figure S4A), indicating that the 
observed associations are limited to specific bac
teria. To identify these, we searched for cancer- 
specific significant taxa based on the level of 
enrichment and statistical significance (|log2FC| > 
0.5, p-value <0.05) determined by ANCOM-BC2 
(Figure 5b). Twenty-three significant genera/ 

species were identified (Table S10). We confirmed 
the distinct clustering of tumor and adjacent nor
mal samples by the selected taxa using PCA clus
tering and PERMANOVA test (p-value <0.001) 
(Figure 5a). Campylobacter, Fusobacterium nuclea
tum, Hungatella hathewayi, Enterobacter, and 
Leptotrichia were all significantly more enriched 
in tumor tissue than in adjacent normal tissue 
(Figure 5c, Figure S4), and all six bacterial taxa 
were previously reported to exhibit co-occurrence 
and association with CRC tumor tissue.48–50

The enrichment of F. nucleatum in CRC tumor 
samples, as determined by 16S rRNA gene sequen
cing, was concordant with the qPCR analysis result 
(Figures 5c and 2a). In contrast, the results for 
B. fragilis and K. pneumoniae showed less concor
dance (Figure 2a, Table S10). We performed 

Figure 3. Bacterial enrichment in CRC adjacent normal is associated with CIMP. (a) Scatterplot showing the enrichment of 115 paired 
tumor samples (y-axis) and adjacent normal samples (x-axis) by qPCR in B. fragilis, F. nucleatum, and K. pneumoniae. Linear regression 
lines (black) are built on each correlation. Pearson correlation coefficients and p-values are indicated in each plot. (b) Comparison of 
the delta Ct values between 115 paired adjacent normal and the tumor samples by bacterial qPCR. Blue and cream lines connect each 
paired adjacent normal and tumor samples. Blue dots represent bacterial Superhigh cases determined by high bacterial enrichment in 
tumor samples across the three bacterial species. (c) Comparison of the Superhigh and the Non-Superhigh cases determined by tumor 
samples in adjacent normal samples. Significance was calculated by Wilcoxon test.
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a Pearson correlation analysis to illustrate the rela
tionship between the qPCR and the 16S rRNA gene 
sequencing results for the three bacterial species 
(Figure S6). The Pearson correlation coefficients 
revealed a moderate positive correlation between 
the 16S relative abundance and bacterial qPCR 
enrichment in B. fragilis (r = 0.56, p < 0.001) and 
F. nucleatum (r = 0.68, p < 0.001), and a weaker 
positive correlation in K. pneumoniae (r = 0.39, 
p < 0.001).

We then examined the taxa associated with CIMP- 
Positive tumors and identified seven significant gen
era/species (Table S11). A PCA plot revealed distinct 
clusters representing CIMP-Positive and CIMP- 
Negative clusters (p < 0.001, PERMANOVA, 
Figure 5d). Bergeyella, Campylobacter concisus, and 
Fusobacterium canifelinum were significantly 
enriched in CIMP-Positive tumor samples (p < 0.05, 
p < 0.01, p < 0.05, ANCOM-BC2 (Figure 5f)). To 
explore whether these additional bacterial taxa could 
strengthen the association between the gut microbiota 
and CIMP in CRC, we combined the binary bacterial 
Superhigh status defined by the bacterial qPCR and 
the 16S rRNA gene sequencing analyses.

We ranked each taxon based on the relative 
abundance of 114 tumor samples to determine 
the bacterial Superhigh cases from the CIMP- 
Positive enriched taxa (Figure S5A). We classi
fied 45 Superhigh cases based on the enrichment 
of the three taxa (Figure S5B). The 16S 
Superhigh group had 5.6 times higher odds of 
being CIMP-Positive than the Non-Superhigh 
group (95% CI 2.2–16.0, p < 0.001, Figure S5C). 
Hierarchical clustering of the binary bacterial 
Superhigh status of 114 CRC tumor samples, 
determined by the combined six bacterial taxa, 
showed a distinct separation between the 
Superhigh and the Non-Superhigh cases 
(Figure 5g). The collective Superhigh group had 
5.1 times higher odds of being CIMP-Positive 
(95% CI 3.6–7.3, p < 0.001) and 6 times higher 
odds of having MLH1 methylation (95% CI 3.7– 
10.1, p < 0.001) than the Non-Superhigh group, 
and primarily localized on the proximal colon 
and showed stronger association with older 
patients (Figure 5h).

We examined the association between CIMP- 
High subgroups and the bacterial Superhigh 

Figure 4. Validation of the CIMP classification method by DREAM using TCGA colon adenocarcinoma and rectum adenocarcinoma 
methylation array data set. (a) Unsupervised hierarchical clustering of 393 primary solid tumor and 45 solid tissue normal samples 
based on 18,289 CpG sites from TCGA COAD and READ 450K methylation array data. (b) Superhigh ranking analysis of bacterial reads 
from 392 TCGA COAD and READ tumor whole exome sequencing data. (c) PCA of the enrichment of the three CRC-associated bacteria 
in TCGA datasets. The circled area is expanded in the inset PCA plot. (d) Odds ratios of the association of the bacterial Superhigh cases 
by TCGA cohorts with different parameters such as the CIMP status, MLH1 methylation, CDKN2A methylation, colorectal tissue side, 
sex, and age. Fisher’s exact test was used to test for statistical significance for each comparison.
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group as well. The odds of being CIMP-High-A 
were 2.7 times higher (95% CI 1.4–5.3, p < 0.01) 
in the Superhigh group than being CIMP-High 
-B. Thirteen taxa were identified in the compar
ison between CIMP-High vs. CIMP- 
Low&Negative classes (Figure S3B). A PCA plot 
showed clear distinct dispersion patterns between 
CIMP-High and CIMP-Low&Negative (Figure 

S3A) (p < 0.001, PERMANOVA). Including 
Campylobacter concisus, eight out of the thirteen 
were enriched in CIMP-High tumors (Figure 
S3C, Table S12). Parasutterella and Selenomonas 
have been previously associated with CRC and 
reported to have a significance co-occurrence 
with F. nucleatum, Campylobacter, and 
Leptotrichia.51,52

Figure 5. Discovery of CIMP-associated taxa in CRC tumor samples by 16S ribosomal RNA sequencing. (a) PCA of 23 bacterial taxa 
selected by the tissue type comparison using ANCOM-BC2. P-values were calculated by PERMANOVA. (b) Volcano plot showing the 23 
significant bacterial taxa enriched in tumor or adjacent normal CRC cases. (c) Bacterial enrichment comparison by 16S rRNA gene sequencing 
paired tumor and adjacent normal samples (n = 228). (d) PCA of 7 bacterial taxa selected by the comparison between CIMP statuses using 
ANCOM-BC2. (e) Volcano plot showing the 7 significant bacterial taxa enriched in CIMP-Positive or CIMP-Negative tumor samples. (f) Bacterial 
enrichment comparison between CIMP statuses by 16S rRNA gene sequencing tumor samples (n = 114). (g) Unsupervised hierarchical 
clustering of the binary Superhigh data of B. fragilis, F. nucleatum, K. pneumoniae, Bergeyella, C. concisus, and F. canifelinum. (h) Odds ratios of 
the bacterial Superhigh group to be associated with different parameters such as the CIMP status, MLH1 methylation, CDKN2A methylation, 
colorectal tissue side, sex, and age compared to the Non-Superhigh group. Fisher’s exact test was used to test for statistical significance for 
each comparison.
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A reduction of alpha diversity has been com
monly observed in tumor microbiota.53,54 We 
therefore determined alpha diversity in our dataset. 
Shannon’s diversity index was calculated (see the 
Materials and Methods) based on the 16S rRNA 
gene sequencing abundance counts (Figure S7). 
We observed a decrease in alpha diversity in the 
tumor samples compared to the adjacent normal 
samples (Figure S7A, p = 0.0014). Interestingly, the 
diversity index showed the most significant 
difference in CIMP-Low tumor samples (Figure 
S7B, p = 0.013). As expected, based on our hypoth
esis, the diversity index was lower in the Superhigh 
tumors compared to the Non-Superhigh tumors 
(Figure S7C, p = 0.012).

Discussion

CpG island methylator phenotype in colorectal 
cancer cannot solely be attributed to genetic aber
rations. This highlights the significant impact of 
environmental factors on the aberrant changes in 
DNA methylation. Notably, the gut microbiota has 
been implicated in colorectal cancer,55,56 with the 
previous study on a significant association between 
CIMP and F. nucleatum.10 In this study, we identi
fied CRC tumor samples with high bacterial abun
dance as bacterial Superhigh based on the 
enrichment of CRC-associated bacterial species, 
B. fragilis, F. nucleatum, and K. pneumoniae. We 
found a significant association between the bacter
ial Superhigh cases and CIMP characteristics. The 
classification of CIMP using DREAM was consis
tent with previously known CIMP characteristics, 
including its common localization in the proximal 
colon, higher prevalence in female patients, and 
MLH1 hypermethylation (Table S5). Our genome- 
wide analysis of CpG sites yielded a consistent and 
successful clustering of CIMP classification. This 
resolved the limited consensus on the CIMP defi
nition previously observed due to the utilization of 
various CIMP gene sets in determining the CIMP 
status in tumor samples. Additionally, the genome- 
wide analysis identified two distinct subclasses of 
CIMP-High, High-A and High-B, where High-A is 
more significantly enriched with MLH1-methyated 
cases (Table S6). Interestingly, two MLH1- 
methylated tumor samples were in the CIMP-Low 
and CIMP-Negative groups (Figure 1a). The 

CIMP-Low MLH1-methylated sample had very 
low bacterial detection, and it may be an example 
of MLH1 methylation that develops independently 
of CIMP. The MLH1-methylated CIMP-Negative 
sample had a very high F. nucleatum enrichment. 
Although it could also be an example of MLH1 
methylation that develops by non-CIMP mechan
isms, this case could also be a missed CIMP-High 
case due to low tumor purity.

We examined the association between CIMP 
and CRC-associated bacterial species: B. fragilis, 
E. coli, F. nucleatum, and K. pneumoniae, and we 
observed a statistically significant association 
between B. fragilis, F. nucleatum, and 
K. pneumoniae, and CIMP and MLH1 methylation. 
This finding reinforces the previous report on 
F. nucleatum and B. fragilis in CIMP-Positive 
CRC tumors10,11,57 and introduces K. pneumoniae 
as a CIMP-associated bacteria for the first time to 
our knowledge. K. pneumoniae is both commensal 
and opportunistic microbial organism in the 
human body.58,59 The enrichment of 
K. pneumoniae in tumor tissue in our study might 
raise concerns about potential contamination in 
healthcare settings. While this argument cannot 
be entirely ruled out, numerous studies have 
demonstrated a specific association between 
K. pneumoniae and inflammation, as well as 
tumorigenesis in the colon.12,60

It is worth noting that the association of these 
species is based on the bacterial Superhigh status of 
CRC tumor samples, determined by high bacterial 
abundance of the three bacterial species collectively 
(Figure S2B). In contrast to the other three species, 
we did not observe a significant association 
between E. coli and CIMP (Figure 2b). E. coli in 
CRC has been associated with DNA damage by its 
colibactin-producing strains. A significant associa
tion between APC:c.835–8 A > G somatic mutation 
and an induction of a mutational signature in 
human intestinal organoids repeatedly exposed to 
genotoxic pks+ E. coli have been reported.11,61 Our 
finding supports a role of E. coli in mutagenesis 
through a CIMP-independent mechanism in CRC.

We performed a comparative analysis on bacter
ial enrichment between paired tumor and adjacent 
normal tissue samples to determine whether 
methylation changes associated with bacterial spe
cies are also present in the adjacent normal tissue. 
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A high correlation between the bacterial enrich
ment in paired tumor and adjacent normal samples 
(Figure 3a) suggests that the bacterial enrichment 
found in the Superhigh tumor cases may have 
originated from the adjacent normal tissue and 
then amplified as the tumor developed. Notably, 
the adjacent normal pairs of the Superhigh bacter
ial tumor samples showed higher bacterial abun
dance than other adjacent normal samples 
(Figure 3b-c). Considering a crucial role of CIMP 
during the early stage of colorectal tumor 
formation,62,63 the bacterial enrichment in the 
tumor-adjacent tissue may significantly contribute 
to the development and progression of CIMP in 
colorectal cancer.

A recent study by Gihawi et al.64 showed that 
a significant methodological errors in a previous 
study, which had led to an overestimation of the 
amount of bacterial DNA present in TCGA tumor 
sequencing data. The authors demonstrated that 
contamination from mislabeled sequences and 
human reads introduced false positive bacterial 
reads in the analyzed samples. To address this 
issue, we re-aligned the WXS reads from TCGA- 
COAD and TCGA-READ datasets to the CHM13 
human reference genome. The resulting unaligned 
reads were then classified using Kraken2 with the 
KrakenUniq database (see Methods and Materials). 
Genus-level counts were estimated using Bayesian 
re-estimation of abundances with Braken.29 Our 
TCGA data analysis revealed that the bacterial 
Superhigh cases had 2.9 times higher odds of 
being CIMP-Positive and 3.5 times higher odds of 
being MLH1 methylated than the Non-Superhigh 
cases (Figure 4d, Table S9). Although the overall 
data analysis revealed significant odds regarding 
the bacterial Superhigh cases being CIMP-Positive 
and frequency of MLH1 promoter methylation, it is 
important to acknowledge that TCGA data collec
tion was not initially designed for bacterial enrich
ment study, which poses limitations including less 
accurate representation of the bacteria taxa pre
sented in the samples.65

Furthermore, we identified enrichment of 
a distinct group of bacterial taxa that might play 
a role in CIMP development in CRC tumor by 
comparing the abundance counts from 16S rRNA 
gene sequencing. A high enrichment of 
Campylobacter, Fusobacterium nucleatum, 

Hungatella hathewayi, Enterobacter, Leptotrichia, 
and Selonomonas were detected in CRC tumor 
tissues, and the co-occurrence of these bacteria 
has been reported in CRC.50,52 Bergeyella, 
Campylobacter concisus, and Fusobacterium canife
linum were significantly enriched and associated 
with CIMP-Positive tumor tissues. A combined 
group of six CIMP-associated bacterial taxa from 
the qPCR and 16S rRNA gene sequencing showed 
a strong association, which supports the polymi
crobial hypothesis14 regarding the gut microbiota’s 
association with CIMP in CRC tumorigenesis. 
Additionally, we observed a decrease in alpha 
diversity of colon tissue microbiota represented 
by Shannon’s diversity index in CRC tumor sample 
comparisons using the abundance counts from the 
16S rRNA gene sequencing. Alpha diversity speci
fically decreased in the Superhigh tumor samples 
compared to the Non-Superhigh tumor samples 
(Figure S7C), as expected from aberrantly high 
enrichment of a limited group of bacterial taxa.

While the causal relationship between gut micro
biota and CIMP is not fully understood, the strong 
association between the Superhigh enrichment of 
the bacterial taxa in CIMP-Positive CRC tumor 
samples supports the close interaction between the 
colonic epithelium and distinct polymicrobial 
groups in the gut. This interaction often involves 
bacterial invasion into the protective mucosal layer, 
a phenomenon commonly observed in tumorigenic 
biofilms. Biofilms are bacterial communities that 
adhere to the intestinal mucosa and form 
a protective matrix.66 Previous studies have indi
cated an increase in the tumorigenic potential of 
biofilms in the progression from normal mucosa to 
tumor tissue, and a high enrichment of distinct 
bacterial taxa within these tumor-associated 
biofilms.14,67 The strong correlation between the 
bacterial Superhigh tumor samples and their paired 
adjacent normal samples (Figure 3c) suggests 
a preexisting bacterial field defect that facilitates 
a formation of biofilm. Interestingly, the mucus 
layer from healthy individuals is devoid of bacteria 
and shows consistent biofilm formation across dif
ferent colon locations.68 However, a notable differ
ence in bacterial invasion into the mucosal layer was 
observed between tumor and adjacent normal tis
sues in CRC patients, with significantly higher levels 
in the proximal colon compared to the distal colon. 
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The concurrent overlap between CIMP-Positive 
tumors and tumorigenic biofilms suggests that 
members of the invasive bacterial biofilms in 
tumor samples may be linked to CIMP in CRC. 
Further investigation into the CIMP status of bio
film-positive CRC tumor samples and the associa
tion between bacterial taxa in the biofilm and CIMP 
tumors would provide additional insights into the 
etiology of CIMP.

Recent work by Tricarico et al. demonstrated 
that inactivation of Tet1-Tdg induced hypermethy
lation in CpG islands using the Tet1–/– TdgN151/ 

+ApcMin/+ mutant mouse model.69 TET family 
inactivation by the oncometabolite, 
D-2-hydroxyglutarate (D-2HG), resulting from 
IDH1/2 mutation, is a well-known cause of CIMP 
in glioma.6 The absence of TET or IDH mutations 
in CRC CIMP70 suggests that the gut microbiota 
may play a role in TET inactivation. The gut micro
biota produces various metabolic products that 
influence host immunity and epigenetic regulation 
in the surrounding colonic epithelium.71 This 
implies that bacterial metabolites may interfere 
with epigenetic regulators such as TET, contribut
ing to CIMP and cancer progression and initiation. 
Further investigation into bacterial metabolites 
produced by the CIMP-associated bacterial taxa 
observed in our study will be essential to identify 
potential oncometabolites and to provide insight 
into bacterial contributions to CIMP-positive can
cer formation.

This study has several limitations. Antibiotics 
administration to patients prior to colonoscopy or 
surgical resection is common practice and the sam
ples were not controlled for this, which could 
potentially skew the composition of gut micro
biota. Also, while 16S rRNA gene sequencing is 
a valuable tool for gut microbiota classification, it 
lacks the ability to discern the ratio between human 
and bacterial DNA, which limits the ability to 
identify relatively high-level bacteria enrichment. 
Thus, validation of the sequencing results with 
targeted qPCR analysis is needed. Our data do 
not address the mechanism of the bacteria-DNA 
methylation link, which should be explored in 
future studies. Another limitation arises from add
ing small numbers to avoid taking the log of zero, 
which can affect data interpretation.72 To address 

this common and unresolved limitation with count 
data, we used ANCOM-BC2 to manage zeros and 
to address over-dispersion of count data through 
a linear model on log-transformed counts.33,38

In conclusion, our study revealed a significant 
enrichment of a distinct group of bacterial taxa, 
including B. fragilis, F. nucleatum, and 
K. pneumoniae, in CIMP-Positive CRC tumor sam
ples, which we termed as the bacterial Superhigh. 
We identified a significant association between 
these bacterial Superhigh cases and CIMP in 
CRC. Given that CIMP in CRC is not characterized 
by frequent mutations in the DNA methylation 
regulatory pathways, our findings emphasize the 
gut microbiota as a prominent environment factor 
in the etiology of CIMP in CRC and highlight their 
potential as a valuable diagnostic and therapeutic 
target to mitigate CRC risk.
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