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Abstract: The aim of this article is to introduce a novel approach to identifying flow regimes and
void fractions in microchannel flow boiling, which is based on binary image segmentation using
digital image processing and deep learning. The proposed image processing pipeline uses adap-
tive thresholding, blurring, gamma correction, contour detection, and histogram comparison to
separate vapor from liquid areas, while the deep learning method uses a customized version of a
convolutional neural network (CNN) called U-net to extract meaningful features from video frames.
Both approaches enabled the automatic detection of flow boiling conditions, such as bubbly, slug,
and annular flow, as well as automatic void fraction calculation. Especially CNN demonstrated its
ability to deliver fast and dependable results, presenting an appealing substitute to manual feature
extraction. The U-net-based CNN was able to segment flow boiling images with a Dice score of 99.1%
and classify the above flow regimes with an overall classification accuracy of 91%. In addition, the
neural network was able to predict resistance sensor readings from image data and assign them to a
flow state with a mean squared error (MSE) < 10−6.

Keywords: computer vision; convolutional neural network; deep learning; image processing;
microchannel flow boiling

1. Introduction

Two-phase flow boiling in microchannel heat sinks is one of the most important topics
in the field of fluid flow and heat transfer, especially due to the promising application
in high heat flux cooling [1–3]. It offers significant advantages for the cooling of power
electronics, computer chips, laser diodes, and other electronic components due to its
large heat transfer surface area and compact design. This approach offers two main
benefits, an increased heat transfer coefficient and increased heat dissipation capacity,
even at low mass flow rates [4]. Microchannel flow boiling heat transfer is currently one
of the most promising approaches for removing significant heat loads from electronic
devices [5]. To further improve the flow boiling mechanism, it is important to have
a better understanding of the vapor bubble dynamics, the flow regime, and the void
fraction inside the microchannel [6]. Typical flow patterns observed in the microchannel
during flow boiling are bubbly, slug, and annular flow, as well as the chaotic mixtures
and transitions that occur between them [7]. The knowledge of these patterns allows
for the derivation of several significant thermal-hydraulic parameters, such as two-phase
viscosity and two-phase density, which can be instrumental in forecasting heat transfer
coefficients and pressure drop in microchannel cooling devices. The void fraction represents
the fraction of the cross-sectional area occupied by the vapor phase compared to the total
cross-sectional area [8]. Typically, this void fraction can be determined with high precision
by optical investigations at specific locations within the microchannel using high-speed
video (HSV) imaging [9]. Alternatively, the flow regime and void fraction are estimated
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from electrical resistance and impedance measurements, relating resistance and impedance
to void fraction and flow regime [10,11]. However, it is a time-consuming task to manually
determine flow regimes and void fractions, whether electrically or optically.

For this reason, in response to the rapid progress of computer vision techniques, a few
researchers have started to use image processing and machine learning to automatically
analyze HSV images of two-phase flows [12]. The use of these tools not only enables
the rapid analysis of several thousand HSV image frames in a matter of seconds while
maintaining a standardized quantitative approach but also serves as a safeguard against
the omission of crucial information due to human error.

In 2011, Hanafizadeh et al. [13] employed basic image processing techniques, including
color format conversion, image subtraction, median filtering, and threshold segmentation,
to create a binary representation of two-phase flow patterns in the up-riser of airlift pumps.
However, the data analysis was still conducted manually, using a ruler, rather than utiliz-
ing computer vision (CV) methods. In another study, Singh et al. [14] conducted a more
advanced image analysis technique that was performed to generate flow regime maps of
flow boiling water in silicon microchannels. The captured HSV images were subjected
to sophisticated image processing steps using background removal, cropping, color for-
mat conversion, histogram equalization, median filtering, edge detection, contour filling,
and binary liquid/vapor region segmentation to determine local void fractions at multiple
locations along the microchannel. The void fractions were then used to automatically iden-
tify and separate bubbly, slug, and annular flow regimes using predefined void fraction
thresholds selected based on careful visual observations.

Very recently, researchers started to apply machine learning techniques to study
flow boiling in microchannels and microchannel pin-fins. However, most of the studies
focus on the prediction of heat transfer coefficients and pressure drops based on universal
consolidated data under the use of artificial neural networks [15–22]. So far, only a handful
of studies have used machine learning based on convolutional neural networks (CNNs) to
automatically detect bubbles, classify flow regimes, and calculate void fractions from HSV
images taken during two-phase flow processes [23–26].

Kim et al. [23] harnessed the Mask R-CNN to create an automated tool for bubble
detection and mask extraction in gas–liquid two-phase flows. Their model was trained with
a combination of experimental and synthetic bubbly flow images from upward bubbly flows
in expansion pipes [27] and from utilizing the BubGAN algorithm [28]. The trained model
reached an average precision of AP50 of 98% on unseen test data from the experimental
bubbly flow. Additionally, the model was tested on unseen bubble-swarm flows [29] not
included in the training set, where it was able to detect 95% of the bubbles. Although the
results are remarkable, the model is limited to detecting bubbly flow at low void fraction
values. It lacks the ability to detect more complex two-phase flows such as slug and annular
flow. The model also does not include flow regime classification.

In another study, Kadish et al. [24] classified vapor quality and flow regimes of vertical
two-phase (vapor-liquid) CO2 flow images captured at frame rates of 10 fps and 30 fps,
respectively, in an 8 mm diameter transparent circular channel using a CNN with ResNet101
for image feature extraction and a deep long short-term memory (LSTM) network to
incorporate temporal information of image sequences. The model was trained on a data
set of 39,261 manually labeled image frames using cross-entropy loss and the Adam
optimization function at a learning rate of 10−4, a batch size of 256 for 60 epochs on an
NVIDIA® Kepler™ K40 M GPU with 12 GB of GPU accelerator memory. For the flow
identification task, there were two output layers in the high-level network architecture
called FrameNet and FlowNet. The FrameNet output layer came directly after the CNN,
skipping the LSTM network. The FlowNet output layer, on the other hand, came after
the LSTM network, using the CNN and the LSTM network for flow regime classification.
The authors validated the performance of both flow classification models using five-fold
cross-validation on unseen test data, resulting in an accuracy of 91.8% for FlowNet and
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92.3% for FrameNet, which in our opinion casts doubt on whether the LSTM network really
helps to improve the classification accuracy of flow regime classification.

In the present study, to the best of our knowledge, we are the first to use state-of-the-art
image processing techniques and deep learning for binary image segmentation, automatic
void fraction calculation, flow regime classification, and RTD sensor signal prediction
during two-phase flow boiling in microchannels. For machine learning, we used a CNN
based on the U-net architecture [30], using a very limited data set of only 4010 HSV image
frames recorded during the flow boiling process in the microchannel as input. The U-net-
based CNN classified microchannel flow boiling into 7 flow regimes: bubbly, bubbly-slug,
slug, slug-annular with bubbles, slug-annular, annular with bubbles, and annular flow.
The RTD sensor signal prediction was intended to be the first step towards automated flow
regime detection based on electrical sensor data without cost-intensive optical inspection.
The information about the present flow regime during microchannel flow boiling by
the automated evaluation of electrical sensor signals from RTDs could pave the way for
automated flow regime control in commercial microchannel heat sinks by initiating AI-
based control signals to adjust the present flow regime by means of the read-out sensor
data. For example, as we have shown in [31], microheaters could be actuated to adjust the
flow regime in microchannels via short, low-power heating pulses.

2. Materials and Methods

In this section, the experimental setup, the computer vision, and deep learning tech-
niques are described. The computer vision and deep learning code can be downloaded
from github.com/shayanjunaidtalat (accessed on 29 April 2024).

2.1. Experimental Flow Boiling Apparatus

The experimental setup that was used to capture microchannel (MC) two-phase flow
boiling videos and sensor data from thin-film platinum RTDs is illustrated in Figure 1.
This setup was also used in similar configurations in [10,26,31–34], where further details
about the setup and its application can be found if the reader is interested. The MC
with a depth of 0.5 mm, a width of 1.5 mm and a length of 65 mm was milled into a
5 mm × 8 mm × 68.6 mm stainless steel block. The RTDs were manufactured on a Pyrex
glass wafer in a clean-room process that is described in detail in [10]. The important
components of the setup for the experiments in this paper are a DI water reservoir, a micro
pump to supply DI water from the reservoir to the stainless-steel MC, a 3D-printed housing
for mechanical fixation and hermetic sealing of the MC, thin-film platinum RTDs on a
transparent Pyrex glass lid mounted above the MC, a glass-wool wrapping around the
housing for thermal isolation from the environment, heater cartridges inserted at the
MC bottom to heat the MC and initiate two-phase flow boiling, a Phantom VEO 410L
high-speed camera mounted on a microscope fixture with a 2× magnifying objective to
capture the videos of the MC flow boiling process at a frame rate of 2000 fps, a linear stage
that moved the microscope fixture with the high-speed camera along the MC to record
flow boiling at different MC locations, and an MFIA impedance analyzer from Zurich
Instruments to read out the RTD measurements.

Figure 2 shows the housing with the MC, the RTDs, and the cartridge heaters in
more detail. The housing lid pressed the glass lid with the RTDs on top of the MC in
such a way that all RTDs were in direct contact with the flow boiling fluid. The MC
was surrounded by an O-ring that ensured a watertight sealing. The boiling process
could be observed through the observation window in the middle of the housing lid.
The spring probes provided electrical contact to the RTDs via the gold contact pads at
each side of the RTDs. The MFIA impedance analyzer was connected via a trigger cable
to the high-speed camera, which provided a time-synchronized video and RTD sensor
data acquisition. The RTDs detected the temperature-induced resistance changes that
were caused by the temperature fluctuations of the flowing fluid (Tf luid) inside the MC.

github.com/shayanjunaidtalat
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The resistance/temperature dependency of the RTDs can be described with the following
formula:

RRTD = α(Tf luid − T0)R0 + R0, (1)

with the measured RTD resistance RRTD, the temperature coefficient of resistance
α = 2.98 · 10−3 ◦C−1, the fluid temperature Tf luid, the RTD room temperature resistance R0,
and the room temperature T0 [10].

Figure 1. Experimental setup to capture two-phase flow boiling videos and resistance sensor data.

Vapor bubbles passing an RTD structure could be detected by an increase of the
measured resistance RRTD due to a temperature increase in Tf luid beneath the RTD to the
boiling temperature of water at atmospheric pressure (≈100 ◦C).

Figure 2. Exploded view of the 3D-printed housing with microchannel (MC), platinum resistance
temperature detectors (RTDs), and heating cartridges (top) and a closeup of the glass lid with the
RTDs (bottom).
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2.2. Video Data Pre-Processing

Due to the length of the MC of 65 mm, it was not feasible to capture the entire
flow boiling phenomenon at once in one video. Therefore, several videos of subsections
were recorded along the MC to cover the whole channel length. Figure 3 shows at the
top a raw unprocessed video frame of such an MC subsection. Each raw frame of a
subsection video underwent a pre-processing pipeline to extract only the meaningful flow
boiling pixel data. As shown at the bottom of Figure 3, the pixel area of the flowing
fluid inside the MC was considered for further processing, while the rest of the pixel
area was discarded. The thin platinum RTDs in Figure 3 were critical for this cropping
process. Three vertical platinum RTDs were present in the video frames of each subsection.
These platinum RTDs acted as separator lines and were manufactured similarly to the
thin-film platinum RTDs for resistance measurements but with a width of only 20 µm
to minimize obstruction of the view into the MC. An algorithm was developed to detect
these vertical lines and crop the area between the outer two platinum RTD separator lines
(ignoring the platinum RTD in the middle) and the MC walls. Therefore, each video
represented a subsection covering the entire length of the flow boiling in the MC. This
cropping process prevented overlapping pixels of subsection areas and focused solely on
the flow boiling in each channel section. Another important reason for the pre-processing
is the substantial reduction of computational cost during the application of computer
vision and deep learning. The cropping reduced the effective frame size by 92 % from
800 × 1280 pixels to 112 × 690 pixels. It is important to be aware of the fact that, in this
pre-process, one separator line of a subsection is always part of a neighboring subsection.
For example, the outer left channel part next to the left separator line in Figure 3 that is
cropped is visible in the neighboring subsection on the left, where this line represents the
separator line on the right. The pre-processing algorithm is robust to varying input frame
pixel sizes and varying lighting conditions.

Figure 3. Raw 800 × 1280 pixel image frame of a video of an MC subsection captured with the
high-speed camera (top). A cropped 112 × 690 pixel version of the image frame after pre-processing,
focusing only on the relevant flow boiling pixel area (bottom).

2.3. Computer Vision for Binary Image Segmentation

During MC flow boiling, the fluid prevails in two states of matter: gaseous and liquid.
This is tailor-made for the application of binary image segmentation to further reduce
the image complexity, bit depth, and memory size of the pre-processed video frames by
setting the pixel intensity of liquid areas to 255 (white) and the pixel intensity of vapor
areas to 0 (black). In preceding work on computer-vision-based vapor bubble segmentation
in two-phase flows, like in [35,36], the vapor bubbles that occurred were small and had
regular spherical or elliptical shapes. In this case, the Hough circle transform can be used to
detect the presence of vapor bubbles whereas the rest of the section is considered as liquid.
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However, in our MC, there was a recurring instance of more complex irregular shapes of
vapor bubbles that could not be detected by the Hough Transform. Other fundamental
challenges were textured lines at the MC background, as well as differentiating the inside of
vapor bubbles from the liquid part. The textured MC background was removed by an image
optimization process (Figure 4) that used adaptive thresholding, blurring, and gamma
correction. This process created an initial segmentation that did not yet differentiate
between vapor bubbles inside liquid sections. A contour detection (Figure 4) and histogram
comparison (Figure 5) finally enabled the differentiation of pixel areas inside the vapor from
pixel areas of the liquid. This was performed by correlating the pixel intensity histograms
of these pixel areas with the same pixel areas of a single liquid-only background photo
(Figure 6) of the same MC subsection captured at adiabatic conditions before the two-phase
flow boiling videos were recorded. The histograms were correlated utilizing the magnitude
of the Pearson correlation coefficient d, which takes values between 1 (full correlation) and
0 (no correlation). It is defined as

d(x, y) = | ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
|, (2)

where

x =
1
n

n

∑
i=1

xi, y =
1
n

n

∑
i=1

yi,

with the histogram size n, the individual histogram data points xi, yi, and the histogram
mean values x, y.

Figure 4. Image optimization process to create initial segmentations from raw video frames using
adaptive thresholding, blurring, and gamma correction.

Figure 5 compares pixel intensity histograms of a liquid contour (H2 in Figure 5b) and
a contour detected inside a vapor bubble (H4 in Figure 5c) of a flow boiling video frame
(Figure 5a) with the pixel intensity histograms (H1 and H3 respectively) of the same pixel
areas of a liquid-only background photo and states the histogram correlations d(H1, H2)
and d(H3, H4).The pixels that were part of the contours and that were therefore used as
data sets for the pixel intensity histograms are highlighted in green-yellow. The pixel
areas in dark purple are not included in the respective histogram data sets. The liquid-only
background images in Figure 5 highlight and discard the same pixel areas as the flow boiling
video frames, even when the whole area was composed of liquid. This was important so
that the same pixel areas were always compared with each other. The histogram correlation
of pixel area 1 was d(H1, H2)= 0.97, and the histogram correlation of pixel area 2 was
d(H3, H4)= 0.76. After analyzing several thousand flow boiling video frames with a
histogram correlation sweep, it was found that for a histogram correlation of d ≥ 0.85,
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most of the compared contour pixel areas were liquid. Respectively, below this value, most
of the pixel areas were vapor inside areas. Therefore, 0.85 was set as threshold value for
labeling contours as liquid. As a last step of the binary segmentation process, all pixel
intensity values of pixels labeled as liquid were set to 255 (white). All other pixel intensities
were labeled as vapor inside and set to 0 (black). The cross-sectional void fraction, which
represents the proportion of the area taken up by the vapor phase in relation to the total
cross-sectional area was automatically calculated for each binary segmentation frame
as follows:

Void fraction =
Pixels with a pixel intensity of 0

Total No. of MC subsection pixels
(3)

Figure 5. Pixel intensity histogram correlations d(H1, H2) and d(H3, H4) of a flow boiling video
frame (a) of the liquid contour H2 (b) and the contour detected inside the vapor bubble H4 (c) with
the pixel intensities H1 and H2 of the same pixel areas of the liquid-only background image shown
in Figure 6.

Figure 6. Liquid-only background photo of the MC subsection used in Figure 5 captured at adiabatic
conditions before the flow boiling process was initiated.

The computer vision algorithm saved all input two-phase flow boiling video frames,
and the resulting binary segmented output frames in designated folders on the computer
hard disk.

2.4. Deep Learning for Binary Image Segmentation, Flow Regime Classification and RTD
Data Prediction

Using classical computer vision methods to distinguish vapor from liquid areas in the
MC gave good results (see Section 3), but some pixel areas were still misclassified as liquid
or vapor despite all efforts to fine-tune the parameters of adaptive thresholding, blurring,
gamma correction, and histogram correlation. This led to the question of whether or not
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deep learning would help to improve the results of binary image segmentation. The first
step was to manually inspect the binary segmentation directory for mis-segmented images,
which were then manually corrected using a custom-built manual segmentation function.
A training and a test data set were then created in an 80:20 ratio. For this purpose, 4010
pre-processed input video frames and manually corrected output binary segmentation
frames were selected from randomly chosen sections of the respective directories to ensure
that data from all recorded videos were selected in both the training and test data sets.
The Dice coefficient below was used as the loss function:

Dice coefficient =
2 · Overlapping pixel area

Total No. of pixels
(4)

The overlapping pixel area is the area of overlap between the predicted binary seg-
mentation of the model and the training or test data, respectively. The Dice coefficient is
one of the most common loss functions used for image segmentation [37].

The deep learning model used for binary segmentation is a modified form of the U-net
architecture published by Ronneberger et al., 2015 [30]. The following modifications were
made to the original model:

• Input layer image channels were set to 3, as the video frames are in RGB format.
• Output layer image channels were set to 1 since the masked images obtained were

in greyscale form, with 0 denoting pixels identified as vapor and 1 denoting pixels
identified as liquid.

• The kernel size of the first convolutional layer was set to 7 × 7 with a rectifier linear
unit (ReLU) activation function. This change helped to process larger images with half
the computational cost.

As with the original U-net model, concatenated skip links were used to ensure feature
reusability. The DL model for binary segmentation was trained using Dice coefficient loss
and the Adam optimization function [38] at a learning rate of 10−5 and a batch size of 32
for 50 epochs on a 6 GB NVIDIA GTX3060 laptop GPU and is referred to as VoidNet in this
paper. The simplified network architecture for all DL models is illustrated as a flowchart
in Figure 7.

Some modifications were made to the deep learning model described above for flow
regime classification (designated as FlowBoilNet) and RTD sensor data prediction (des-
ignated as SensorNet). As shown in Figure 7, FlowBoilNet and SensorNet use only the
Conv2D downscaling path to classify flow regimes and predict RTD signals from extracted
downscaled image features. However, the randomized selection of training and test data
remained constant at an 80:20 ratio.

For the flow regime classification, the 4010 pre-processed video frames were manually
labeled as expected output according to the current flow regime in the form of 3 × 1 tensors.
Figure 8 shows the labeled training and test data distribution for FlowBoilNet. The model
output layer of the modified U-net model was adapted accordingly to output the pre-
dicted flow regime in the form of 3 × 1 tensors. All possible tensors are listed in Table 1.
The loss function was changed to cross-entropy, one of the most common loss functions for
classification problems [39], and the learning rate was set to 10−4.

For RTD sensor data prediction, 12,340 video frames were automatically labeled with
the corresponding measured RTD resistance and split 80:20 into training and testing data.
A trigger cable connecting the impedance analyzer and the high-speed camera synchronized
the video frames with the measured RTD data. The output layer of the modified U-net
model was adjusted to output real numbers representing the predicted RTD resistance.
The mean square error (MSE) was used as a loss function to solve the linear regression
problem. An overview of all hyperparameters is shown in Table 2.
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Figure 7. Simplified network architecture of VoidNet for binary image segmentation (green), Flow-
BoilNet for flow regime classification (orange), and SensorNet for RTD signal prediction illustrated
in a single flowchart. The arrow colors visualize the paths taken by each model, with the blue path
being taken by all models.

Figure 8. Training and test data distribution for FlowBoilNet.

Table 1. Tensor output of the flow regime classification model FlowBoilNet.

Flow Regime 3 × 1 Output Tensor

Bubbly [1 0 0]
Slug [0 1 0]
Annular [0 0 1]
Bubbly slug [1 1 0]
Annular with bubbles [1 0 1]
Slug annular [0 1 1]
Slug annular with bubbles [1 1 1]
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Table 2. Training hyperparameters for VoidNet, FlowBoilNet and SensorNet.

Hyperparameter VoidNet FlowBoilNet SensorNet

Loss Dice coefficient Cross entropy MSE
Optimizer Adam Adam Adam
Learning rate 10−5 10−4 10−6

Batch Size 32 32 32
Epochs 50 50 50

3. Results and Discussion

Segmented HSV image frames using the CV method described in Section 2.3 are
shown in Figure 9. The majority of all video frames could be correctly segmented in
binary using CV. From separated and overlapping bubbles of different shapes and sizes
(Figure 9a) to slug and annular flow (Figure 9b), the CV method was able to successfully
segment most of the HSV images even for complex vapor/liquid mixtures. However,
approximately 15% of all frames were incorrectly segmented. This was mainly because the
image processing could not always distinguish the inside of the gas bubbles from the liquid
segments, as shown in Figure 9c, despite careful fine-tuning of the histogram correlation d
to a liquid-only background image (Figure 6).

Figure 9. Results of the binary image segmentation using CV, for separated and overlapping vapor
bubbles (a), slug and annular flow (b), and incorrectly segmented HSV images (c).

Figure 10 shows an input frame from the DL test data set and the corresponding pre-
diction of the trained VoidNet model after 50 epochs compared to the binary segmentation
of the CV method. It can be seen that VoidNet reliably distinguishes between liquid and
gaseous regions. Overall, the VoidNet model achieves a Dice score of 99.1% after 50 epochs
in both the training and test runs, significantly outperforming the CV method.

Figure 10. Binary segmentation of VoidNet after 50 epochs (bottom) compared to the binary segmen-
tation of the CV method (top) for the same input frame (middle).

Figure 11 shows the classification result of FlowBoilNet for all flow regimes given
in Table 1. FlowBoilNet was able to classify flow regimes with an overall classification
accuracy of 91%. The normalized confusion matrix shown in Figure 12 illustrates the
ratio between the true and predicted values of the trained FlowBoilNet model for all
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classified flow rates (Table 1), with the individual flow regime accuracies shown in the
diagonal from top left to bottom right. A normalized confusion matrix is a good way to
visualize the accuracy of each class. This is especially helpful in the case of imbalanced
data sets, as the overall accuracy of 91% does not reveal classification biases across classes.
In Figure 12, it can be seen that for some flow rates, like bubbly, bubbly slug, and annular
flow, FlowBoilNet performs very well and classifies the flow regime correctly with an
accuracy between 97 to 100%. However, for other flow rates, the FlowBoilNet model does
not perform as well, and the classification accuracy even goes below 50% like in the case of
slug flow.

Figure 11. FlowBoilNet classification result for HSV images covering all of the flow regimes listed in
Table 1.

This difference in classification accuracy of the trained deep learning model can be
described by the imbalanced data distribution of the test and training data set shown in
Figure 8. The accuracy of flow regime classification decreases significantly as the amount
of training data for each flow regime decreases. For example, the slug flow regime is the
least represented with 57 frames during the training run. Accordingly, the slug flow regime
has the lowest accuracy at 33%, followed by annular with bubbles at 57% and slug annular
at 63%. However, the normalized confusion matrix demonstrates that flow regimes are
merely confused with very similar neighboring flow regimes; e.g., the slug flow is only
confused with the very similar slug annular and annular flow.
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Figure 12. Normalized confusion matrix of the 50th epoch for flow regime classification of the training
data set using FlowBoilNet.

The prediction of the RTD data is shown in Figure 13 as an example of different kinds
of flow patterns. In general, an impressive loss of <10−6 was achieved in the training
run. However, two divergence peaks occurred in the test run, indicating problems with
overfitting or a lack of generalization.

Figure 13. SensorNet RTD signal prediction result for different microchannel flow boiling patterns.

Overall, the trained deep learning models produced reliable results thanks to the
state-of-the-art U-net architecture, which was able to extract meaningful representations
from the microchannel flow boiling video frames. However, for better results, the use
of more training data could further improve the accuracy of the model. Increasing the
training data set is one of the most effective ways to address the lack of generalization.
The experimental setup is subject to different lighting conditions and slightly tilted mi-
crochannel positions. Training the model on a variety of HSV image frames will result
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in more accurate predictions, especially between very similar flow regimes such as slug,
slug-annular, and annular flow.

4. Conclusions

In conclusion, our study pioneers the application of image processing and deep learn-
ing techniques in microchannel two-phase flow boiling. In particular, the U-net-based
CNN architecture was used to automatically identify flow regimes and void fractions in
microchannel flow boiling. The approach exhibited a high classification accuracy of 91%,
demonstrating the efficiency of CNN in accurately discriminating flow regimes such as
bubble, slug, and annular flow. In addition, our exploration of real-time RTD sensor signal
prediction marks a significant step toward the imageless prediction of two-phase flow in
microchannels. The promising results, including a mean squared error (MSE) < 10−6 in
predicting RTD sensor readings, suggest the potential for automated flow regime control.
While our trained models demonstrated reliability, it is critical to recognize the need for a
more extensive training data set to account for variations in lighting conditions and mi-
crochannel positions. Nevertheless, the implemented approaches, executed on a standard
6 GB NVIDIA laptop GPU using Python, demonstrate adaptability for broader applica-
tions beyond microchannel flow boiling. Looking to the future, this research envisions the
integration of these automated techniques into microchannel heat sink control systems,
potentially revolutionizing the field by leveraging artificial intelligence for improved op-
erational efficiency and control. The results presented here lay the foundation for future
advances in the seamless automation of two-phase flow boiling processes.
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