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Abstract: Vehicular networks have become a critical component of modern transportation systems
by facilitating communication between vehicles and infrastructure. Nonetheless, the security of
such networks remains a significant concern, given the potential risks associated with cyberattacks.
For this purpose, artificial intelligence approaches have been explored to enhance the security of
vehicular networks. Using artificial intelligence algorithms to analyze large datasets can enable the
early identification and mitigation of potential threats. However, developing and testing effective
artificial-intelligence-based solutions for vehicular networks necessitates access to diverse datasets
that accurately capture the various security challenges and attack scenarios in this context. In light of
this, the present survey comprehensively examines the vehicular network environment, the associated
security issues, and existing datasets. Specifically, we begin with a general overview of the vehicular
network environment and its security challenges. Following this, we introduce an innovative
taxonomy designed to classify datasets pertinent to vehicular network security and analyze key
features of these datasets. The survey concludes with a tailored guide aimed at researchers in the
vehicular network domain. This guide offers strategic advice on selecting the most appropriate
datasets for specific research scenarios in the field.

Keywords: vehicular networks; artificial intelligence; security; Internet of Vehicles; datasets

1. Introduction

A vehicular network is a variant of a communication network that connects and
brings together vehicles and roadside infrastructures within Intelligent Transportation
Systems (ITSs). Vehicles are equipped with smart devices connected to the network that
detect vehicles, update and store the driving status, and identify communications with
other vehicles and the internet. Indeed, each vehicle in the network is equipped with
communication-supporting devices such as Event Data Recorders (EDRs) and sensors.
Sensors collect vehicle information (e.g., location, speed, and acceleration) and share it
with the neighboring vehicles and adjacent roadside units (RSUs) using wireless interfaces
(e.g., Long-Term Evolution (LTE) and Dedicated Short-Range Communication (DSRC)).
DSRC operates on the 5.9 GHz frequency band, providing high-bandwidth, low-latency
communication between vehicles and infrastructure. These types of equipment com-
municate over multiple in-vehicle networks. For instance, the vehicle comprises 100 to
200 electronic control units (ECUs) communicating across multiple network segments using
Ethernet, FlexRay, CAN, and wireless technologies, such as LTE, Bluetooth, Wi-Fi, and
other proprietary technologies. The use of such developed communications technologies
in vehicles is anticipated to ensure seamless connectivity to various existing networks.
However, in contrast with vehicular ad hoc networks (VANETs), which have a limited
number of types of communication, the Internet of Vehicles (IoV) allows several smart
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devices to connect to the network and makes the network huge and scalable. It allows
vehicles to be able to connect to everything V2X (Vehicle-to-Everything) [1] and share
knowledge about the vehicle and its surroundings. Generally, V2X communication can be
divided into in-vehicle or intra-vehicle networks and inter-vehicle networks (see Figure 1).
The intra-vehicle communication models encompass Vehicle-to-Sensors (V2S) [2], Vehicle-
to-Driver (V2D) [3], and Device-to-Device (D2D). Meanwhile, inter-vehicle interaction
models are established to connect the vehicle with the environment. In particular, this
communication model includes V2V, V2I, Vehicle-to-Pedestrian (V2P), Vehicle-to-Home
(V2H), Vehicle-to-Roadside (V2R), Vehicle-to-Barrier (V2B), and Vehicle-to-Grid (V2G) [4]
models. Owing to the continuous progression of vehicular networks [5], security becomes
of paramount importance because of the direct effects on user safety.

Although vehicular networks have an open nature to the environment for connectivity,
this has led to several security issues and challenges in communication reliability. Therefore,
V2X systems became more prone and vulnerable to cyber-attacks where they could easily
be hacked. There are diverse vehicular network security issues and threats that come from
various types of inter-element communication, embedded sensors, system architecture,
mobility, and the network’s real-time operational characteristics. Therefore, security in
the vehicle is highly dependent on the medium used for communication, operation, and
infrastructure. Ultimately, the delays in information transmission may lead to multiple
privacy issues [6]. Thus, attackers may influence the vehicles, the user safety, and the
driving track if they successfully take access.

Intra-Vehicle Inter-Vehicle

V2S

V2I

V2D

V2V

V2R

V2I

D2G
Everything (V2X)
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Figure 1. Vehicular communication scheme: intra-vehicle and inter-vehicle Iinteractions.

A vehicular network is a variant of a communication network that connects and
brings together vehicles and roadside infrastructures within Intelligent Transportation
Systems (ITSs). Vehicles are equipped with smart devices connected to the network that
detect vehicles, update and store the driving status, and identify communications with
other vehicles and the internet. Indeed, each vehicle in the network is equipped with
communication-supporting devices such as Event Data Recorders (EDRs) and sensors.
Sensors collect vehicle information (e.g., location, speed, and acceleration) and share it
with the neighboring vehicles and adjacent roadside units (RSU) using wireless interfaces
(e.g., Long-Term Evolution (LTE) and Dedicated Short-Range Communication (DSRC)).
DSRC operates on the 5.9 GHz frequency band, providing high-bandwidth, low-latency
communication between vehicles and infrastructure. These types of equipment com-
municate over multiple in-vehicle networks. For instance, the vehicle comprises 100 to
200 electronic control units (ECUs) communicating across multiple network segments using
Ethernet, FlexRay, CAN, and wireless technologies, such as LTE, Bluetooth, Wi-Fi, and
other proprietary technologies. The use of such developed communications technologies in
vehicles is anticipated to ensure seamless connectivity to various existing networks. How-
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ever, in contrast with vehicular ad hoc networks (VANETs), which have a limited number
of types of communication, the Internet of Vehicles (IoV) allows several smart devices to
connect to the network and makes the network huge and scalable. It allows vehicles to
be able to connect to everything V2X (Vehicle-to-Everything) [1] and share knowledge
about the vehicle and its surroundings. Generally, V2X communication can be divided
into the in-vehicle or intra-vehicle network and the inter-vehicle network. The intra-vehicle
communication models encompass Vehicle-to-Sensors (V2S) [2], Vehicle-to-Driver (V2D) [3],
and Device-to-Device (D2D). Meanwhile, inter-vehicle interaction models are established
to connect the vehicle with the environment to address these issues; automated monitoring
systems and frameworks based on artificial intelligence (AI) have been a promising solution
in detecting attacks on the IoV [7]. Specifically, researchers have shown great interest in V2X
network attack detection [8] using solutions based on machine learning (ML) [9] and deep
learning (DL) [10]. These different AI approaches and frameworks are tested and validated
based on a trained model. The authors of [11] discussed the importance of leveraging ML in
IoV security risk mitigation and trust management. It provides an in-depth examination of
the usage of ML for these potential threats using ML techniques. These trained models need a
huge source of vehicular information. For example, the authors of [12] proposed a Zero-X, a
cutting-edge security framework designed for the IoV, addressing the mounting cybersecurity
threats amplified by 0-day attacks. The evaluations on recent datasets validate the efficacy in
detecting various attack types while maintaining a minimal false positive rate. Hence, ML
emerges as a promising solution for attack detection, offering the capability for a single frame-
work to detect multiple attack types while validating its effectiveness across diverse attack
scenarios. Meanwhile, ML has been integrated with various other technologies to achieve
similar objectives. For instance, in [13], the authors conducted a thorough examination of cyber
threats targeting Connected Autonomous Vehicles (CAVs), encompassing issues such as inter-
and intra-vehicular communication, ML, and quantum-computing-based attacks. This study
not only assesses the effectiveness of existing countermeasures but also proposes additional
strategies to empower CAV cybersecurity. Moreover, it delves into the implications of emerg-
ing technologies like ML, federated learning, and blockchain on CAV security, offering insights
into risk mitigation measures. With this wide adoption of these different techniques, there are
limited resources and information, and most of them are private. Therefore, available datasets
and open resources represent a big challenge for IoV security solutions. This challenge
highlights the need for more research studies that focus on assessing and surveying public
datasets for vehicular network security. The limited number of studies that concentrate on
vehicular network datasets, especially in the context of vehicular network security, may
significantly undermine the efficacy of security solutions. Furthermore, prior investigations
have been proposed with a need for more precision to particular resources and targets. They
should have conducted an exhaustive analysis of the available intra- and inter-vehicular
environment security datasets. Therefore, the primary objective of this review paper is to
undertake a critical study and review of the existing datasets in IoV-based solutions for
security enforcement. Furthermore, this study provides a comprehensive exposition of the
different datasets used for IoV network security enforcement solutions. In particular, this
communication model includes V2V, V2I, Vehicle-to-Pedestrian (V2P), Vehicle-to-Home
(V2H), Vehicle-to-Roadside (V2R), Vehicle-to-Barrier (V2B), and Vehicle-to-Grid (V2G) [4]
models. Owing to the continuous progression of vehicular networks [5], security becomes
of paramount importance because of the direct effects on user safety.

Despite the fact that vehicular networks maintain open connectivity with their environ-
ment, this openness has introduced numerous security issues and challenges in ensuring
reliable communication. Therefore, V2X systems have become more prone and vulnerable
to cyber-attacks, where they could easily be hacked. There are diverse vehicular network
security issues and threats that come from various types of inter-element communication,
embedded sensors, system architecture, mobility, and the network’s real-time operational
characteristics. Therefore, security in the vehicle is highly dependent on the medium used
for communication, operation, and infrastructure. Ultimately, the delays in information
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transmission may lead to multiple privacy issues [6]. Thus, attackers may influence the
vehicles, the user safety, and the driving track if they successfully make access.

This paper intends to highlight vehicular network security datasets and help re-
searchers select the best datasets for their work. The study’s specific goals are as follows:

• A brief vehicular network background is presented.
• The existing inter- and intra-vehicular network communication datasets are introduced.
• A detailed taxonomy of possible intra-vehicular and inter-vehicular communication

dataset categories is proposed.
• A guide to selecting suitable vehicular network security datasets for research needs

is provided.

The remainder of this paper is organized as follows: Section 2 provides related works
on vehicular networks datasets. Section 3 outlines a brief overview of the vehicular network
environment. Next, Section 4 describes the primary taxonomy of the two types of vehicular
network datasets for security, and we discuss the possible classifications. Section 5 presents
the existing inter-vehicular communication datasets. Then, Section 6 addresses the intra-
vehicular communication datasets. Finally, there is a discussion in Section 8 that guides
future researchers to select the most suitable dataset, and Section 9 concludes the paper.
Table 1 lists the notations used in the paper.

Table 1. Table of Nomenclatures.

Abbreviation Meaning

AI Artificial Intelligence
ADUS Archived Data User Service
BSM Basic Safety Messages
CALM Continuous Air-interface, Long and Medium range
CAN Controller Area Network
CSV comma-separated values
C-V2X Cellular vehicle-to-everything
DL Deep Learning
D2D Device-to-Device
DSRC Dedicated Short-Range Communication
ECUs electronic control units
EDRs Event Data Recorders
E/E electrical and electronic
FCC Federal Communications Commission
GN GeoNetworking
HCRL Human Centered Robotics Laboratory
IoT Internet of Things
IoV Internet of Vehicle
IETF Internet Engineering Task Force
IDS Intrusion Detection Systems
ITS Intelligent Transportation Systems
LTE Long-Term Evolution
LIN Local Interconnect Network
ML Machine Learning
OBU onboard unit
OEMs original equipment manufacturers
PeMS Performance Measurement System
PSSCH Physical Sidelink Shared Channels
QoS Quality of Service
RCP resource command processor
RSU roadside units
SB-SPS Sensing-Based Semi-Persistent Scheduling
TBs Transport Blocks
TTC Time to Collision
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Table 1. Cont.

Abbreviation Meaning

THW Time Headway
V2B Vehicle-to-Barrier
V2D Vehicle-to-Driver
V2G Vehicle-to-Grid
V2H Vehicle-to-Home
V2I Vehicle-to-Infrastructure
V2P Vehicle-to-Pedestrian
V2R Vehicle-to-Roadside
V2S Vehicle-to-Sensors
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VANETs Vehicular ad-hoc networks
VCN Vehicular Computing Networks

2. Existing Surveys on Vehicular Networks Datasets

The use of datasets in vehicular network research has several benefits. First, datasets
provide a way to evaluate the performance of vehicular network protocols and algorithms
in a realistic and repeatable manner. Second, datasets can be used to develop and validate
models of vehicular traffic, which can be used to predict traffic patterns [14] and plan
infrastructure improvements. Finally, datasets can be used to develop new applications and
services that can improve safety, reduce congestion, and enhance the driving experience.
In this paper, we will review the current state of the art used in the context of vehicular
network datasets.

Despite the growing demand for datasets in vehicular network research, only a few
surveys comprehensively review and compare the existing datasets. In their review of
datasets in the context of V2X security, the authors in [15] analyzed and classified the
datasets based on their targeted architecture, the types of attacks included in each dataset,
and their severity. While their approach is commendable, their review of the existing
datasets could be more exhaustive. Additionally, some metrics, such as the severity of
attacks in the datasets, need to be clearly defined or explained. The authors of [16] proposed
a review to analyze intrusion-detection datasets for automotive systems and highlighted
the requirements for such datasets. However, they did not define the existing datasets.
Additionally, despite the review’s focus on vehicular security, the authors did not consider
the attacks integrated into datasets and their effects. Another study in [17] comprehensively
assessed the datasets in the context of automotive IDS. The authors considered various
aspects, including the nature of the datasets, their environment, and the complexity of
the covered attacks, when comparing them. The paper employed a quantitative metric
to assess the dataset balance and the coverage of attacks, complemented by a qualitative
evaluation of existing datasets in the field of automotive IDS. In the same context, the
authors of [18] focused on IDS datasets within organizational security frameworks. The
paper addresses the rising frequency and severity of network attacks by emphasizing
the importance of continual monitoring and analysis. Intrusions, defined as attempts to
compromise computer networks’ confidentiality, integrity, or availability, are the primary
concern. This paper provides an overview of recent IDS advancements, discusses future
research directions for detecting malicious operations, and includes detailed descriptions
of publicly available datasets and intrusion-handling strategies.

These few studies are classified based on the studies datasets in Table 2.
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Table 2. Comparative table of related works.

Study Inter-Vehicular Datasets Intra-Vehicular Datasets Taxonomy Recommnedation
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3. Vehicular Networks: Background

This section presents brief background knowledge to readers about vehicular net-
work’s generic key concepts and security threats.

3.1. Vehicular Networks Environments

As a major contributor to smart cities, vehicular networks succeed in making it simple
to improve passenger safety and satisfaction using short-range wireless communication.
These networks primarily encompass vehicular ad hoc networks (VANETs), the Internet of
Vehicles (IoV), and Vehicular Computing Networks (VCNs).

A VANET is a self-organized network that links vehicles to improve driving safety
and traffic management with internet access [39]. It supports V2V and V2I communications
with the RSU installed along the roadside at intersections or parking spaces. Vehicles
will have an onboard unit (OBU) to exchange data. In addition, they will have a resource
command processor (RCP), read/write memory for storing and receiving data, a user
interface, a specialized surface for connecting to other OBUs, and a network device for
wireless communication. All VANET activities aim to spread road safety information across
nodes. Thus, frequent data exchange on the network necessitates security.

The IoV, as a special case of the Internet of Things (IoT) [40], represents a new paradigm
driven by recent advancements in vehicular networking and communications. Foremost,
IoVs are quickly moving towards a context-awareness system, as are their environments.
Thus, they become increasingly capable of detecting, processing, and communicating
thanks to the quick adoption of cellular vehicle-to-everything (C-V2X) [41]. In addition,
vehicles may communicate with the environment and IoT devices to collect a vast amount
of road data for each vehicle. Indeed, IoV systems are equipped with sensors that yield
information uploaded as filtered sensed data to centralized processing equipment or
computation units for computation and analysis. This analysis aims to provide perfor-
mance metric functions and optimize the Quality of Service (QoS) through exchanging
sensor inputs among vehicles. Therefore, vehicular systems rely on direct line of sight
for context awareness owing to the exchange of driving environmental information via
Basic Safety Messages (BSMs). The BSMs can carry details about the vehicle’s current
position, speed, and direction, among other things, and provide valuable support for
vehicular communication.

Finally, VCNs [42] refers to the integration of computing, communication, and vehicu-
lar technologies to provide advanced services and applications for drivers and passengers
in vehicles. Vehicles in VCNs can communicate with each other directly or through interme-
diate vehicles or new paradigms or technologies. Indeed, fog, cloud, and edge computing
are three major paradigms that play a crucial role in VCNs. They allow the sharing of
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information about traffic conditions, road hazards, and other relevant data to provide
real-time traffic updates. Fog computing offers low-latency and real-time services; cloud
computing delivers scalable and cost-effective storage and processing; edge computing
provides low-latency and real-time processing capabilities. Combining these paradigms
can enable VCNs to provide advanced services and applications for vehicle drivers and
passengers, such as autonomous driving, intelligent traffic management, and personalized
in-vehicle services.

3.2. Vehicular Network Architecture

The vehicular network’s architecture is organized into three distinct layers, establishing
a comprehensive framework for its secure operation and security. The sensing layer, the
base of this architecture, is composed of vehicle sensors, such as radar, camera, and lidar.
Its main responsibility is gathering vital real-time data essential to vehicle functioning.
Nonetheless, there are many security issues with this layer. It is especially vulnerable
to sophisticated eavesdropping and spoofing attacks, which seriously compromise the
confidentiality and authenticity of the sensor data and could impact decision-making.
Above the sensing layer is the communication layer, which serves as the base for all vehicle
communication. It is an efficient link between internal (intra-vehicular) and exterior (inter-
vehicular) communication channels, essential for the effective and harmonic data flow
between vehicles and other roadside infrastructure components. Even with its importance,
this layer is not risk-free. It is vulnerable to various cyber threats, such as malicious data
tampering and eavesdropping. It also inherits threats from the sensing layer and may even
amplify them, emphasizing the necessity of powerful, multi-layered security measures. At
the top of the hierarchical structure lies the control layer, which manages highly developed
automated vehicle control systems, including critical functions such as steering and speed
control. The robustness and reliability of the underlying sensing and communication layers
are directly linked to the efficiency and safety of this layer. Any degradation of these
fundamental layers might seriously affect overall safety and vehicle control.

3.3. Communication Layer
3.3.1. Intra-Vehicular Communication Protocols

This section will enumerate different protocols utilized within in-vehicle networks
(see Table 3), highlighting their adaptability to vehicular networks. These protocols ad-
dress various aspects of automotive functionality, ranging from control systems to info-
tainment, and illustrate the diverse technological landscape required to support modern
vehicle architectures.

Table 3. Classification of intra-vehicular network communication protocols.

Network Speed Bandwidth Topology Max Supported
Nodes Advantages Limitations

CAN 25 Kbps–1 Mbps Star, Ring, Linear bus 30 High reliability, low
cost

Limited bandwidth,
vulnerable to attacks

LIN 25 Kbps–1 Mbps Liner bus 16 Bus Low cost, low
power

Limited data rate and
distance

FlexRay Up to 10 Mbps Star, Linear bus,
hybrid 22 High reliability, high

bandwidth
Higher cost, limited

interoperability

Ethernet Up to 100 Mbps Star, Linear bus Depends on Switch
ports

High bandwidth,
scalable

Higher cost, high
power consumption

MOST Up to 150 Mbps Ring 64 High bandwidth, low
latency

Limited distance,
higher cost

LVDS Up to 3 Gbps Point-to-point,
multipoint 2–3

High data rate, low
power, noise

immunity

Shorter cable length,
limited to simpler

topologies
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A Controller Area Network (CAN) is an asynchronous serial bus network that links
devices, sensors, and actuators within a system or sub-system for control purposes [43]. A
CAN is a multi-master communication protocol primarily designed for data integrity and
automotive applications, supporting data rates of up to 1 Mb/s. Beyond its automotive
use, a CAN is also a versatile embedded communication system for microcontrollers and
industrial control systems. In recent years, there have been two primary physical-layer
designs for CAN: high-speed and low-speed CAN. Both utilize differential voltage on wire
pairs for communication, offering data transfer rates of up to 1 Mb/s for high-speed CAN
and up to 125 kb/s for low-speed/fault-tolerant CAN. CAN is recognized for its afford-
ability and high reliability, making it a popular choice in powertrain, chassis, and body
electronics. However, its limited bandwidth and shared medium for data transmissions
restrict its application in domains like infotainment.

A Local Interconnect Network (LIN) complements CANs by using universal asyn-
chronous receiver–transmitter technology in a single-master, multiple–slave configuration.
LINs offer a cost-effective solution for connecting a vehicle’s motors, switches, and sensors.
The controller node in LINs connects individual sensors and actuators to higher-level
networks like CANs. Compared to CANs, LINs have several distinctive features: they
provide efficient communication for sensors and actuators that do not require the band-
width and flexibility of CAN, act as a cost-effective sub-network alongside CAN, can be
implemented with standard asynchronous communication interfaces, and do not involve
any protocol license fees as they are an open-source protocol. Consequently, LINs are
commonly used in body electronics due to their cost-effectiveness and straightforward
bandwidth requirements.

In contrast, FlexRay is designed for high-demand systems, offering a dual-channel
data rate of up to 10 Mb/s and catering to critical safety systems like brake-by-wire. FlexRay
can also support in-vehicle networks, working alongside protocols like CAN and LIN.
Regarding cost reduction, FlexRay can replace multiple CAN networks to meet vehicle
bandwidth requirements. It is widely regarded as the next-generation in-vehicle network-
ing technology, facilitating the management of new safety and comfort features. Unlike
CAN, FlexRay delegates error correction to its application layer without an error recovery
mechanism. Despite its higher cost than CAN, FlexRay is used in high-performance appli-
cations within powertrain and safety systems, including active suspension and adaptive
cruise control.

Further expanding on the need for a high data rate, Media-Oriented System Transport
(MOST) technology utilizes a ring topology to synchronize audio and video signals, sup-
porting up to 64 devices. MOST stands out with its impressive data rate, reaching up to
50 Mb/s and supporting up to 64 MOST devices in a ring configuration [44]. Alternative
topologies like double rings are also possible, especially for safety-related applications.
While MOST offers a higher bandwidth than CANs, LINs, and FlexRay, it comes at a
significantly higher cost. As a result, MOST is typically recommended for in-vehicle camera
and video connections.

In addition, Low-Voltage Differential Signaling (LVDS) is another technology that can
be integrated into modern automotive electronics [45], characterized by its high data trans-
mission speeds and robust resistance to noise. This signaling method, which operates at low
voltages, is ideal for automotive applications that prioritize efficiency. It effectively reduces
electromagnetic interference, allowing vital vehicle systems like navigation, infotainment,
and ADAS to run without interruption. LVDS also reliably delivers high-resolution video
data reliably across extended cable lengths, making it essential for applications like rear-
view cameras and vehicle display panels. By incorporating LVDS, vehicle manufacturers
can significantly enhance the performance and safety of their models, addressing the rising
consumer demand for advanced connectivity and autonomous driving features.

Lastly, Automotive Ethernet has long been the dominant technology for local area
networks, playing a pivotal role in shaping various forms of communication [46]. When
applied to the automotive domain, it is known as Automotive Ethernet and is the foun-
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dation for connecting components within a vehicle. Originally designed to meet a range
of requirements, including electricity, bandwidth, latency, synchronization, and network
management considerations, Automotive Ethernet presents several significant advantages.
One of the most prominent benefits is the substantial increase in communication bandwidth,
which greatly enhances the capabilities of advanced driving functions and infotainment
systems. Furthermore, it redefines the structure of in-vehicle networks, shifting from
previously decentralized, domain-specific topologies to more efficient hierarchical ones.

3.3.2. Inter-Vehicular Communication

Inter-vehicular communication protocols enable vehicles to communicate with one
another and the surrounding infrastructure.

In this section, we explore the dynamic landscape of these protocols, starting with Dedi-
cated Short-Range Communication (DSRC), which uses specific frequency bands for vehicle
communications as outlined by the Federal Communications Commission (FCC) [47,48]. DSRC
is organized into seven 10 MHz channels, currently spanning the frequency spectrum from
5.850 to 5.925 GHz, within bands numbered between 172 and 184. Notably, channel 178 is
exclusively designated for secure communications and is referred to as the control channel,
while the remaining four service channels, numbered 174, 176, 180, and 182, are intended for
reporting insecure situations. However, the first and seventh channels (172 and 184) are reserved
for specific purposes.

Additionally, IEEE 802.11p was introduced as an extension of the IEEE 802.11 family of
protocols to cater to the specific needs of vehicular networks, where seamless communica-
tion among vehicles and infrastructure is paramount. Within the scope of IoV, IEEE 802.11p
plays a crucial role by defining the parameters and characteristics of both the physical and
medium-access layers. These definitions are instrumental in ensuring reliable and efficient
communication in IoV scenarios. By providing a dedicated framework for IoV, IEEE 802.11p
aligns with the evolving demands of connected and Intelligent Transportation Systems.

The European Telecommunications Standards Institute Technical Committee for Intel-
ligent Transport Systems (ETSI TC ITS) has also played an important role. The ETSI TC ITS
has established a standardized architecture for the IoV with invaluable input from automo-
tive manufacturers and organizations like the Car-to-Car Communication Consortium [49].
In this context, they have adopted the GeoNetworking (GN) protocol as a fundamental
component for packet routing within the IoV framework, primarily focusing on safety appli-
cations. The primary objective of creating ETSI ITS is to propose performance enhancements
for the GN protocol, which is critical for optimizing Vehicle-to-Internet communication,
particularly in the context of IoV standards. The analysis hinges on simulation-based
methodologies to pinpoint and rectify performance challenges, especially in IoV scenarios.
The overarching aim is to ensure seamless and efficient communication between vehicles
and the internet within the broader IoV standards framework.

Meanwhile, Cellular Vehicle-to-Everything (C-V2X) is a cellular-based communica-
tion technology for vehicles operating on 10 or 20 MHz channels. It utilizes LTE-like
numerology, with 1 ms subframes and 180 kHz resource blocks. Data are transmitted in
Transport Blocks (TBs) over Physical Sidelink Shared Channels (PSSCH). At the same time,
control information is sent in Sidelink Control Information (SCI) over Physical Sidelink
Control Channels (PSCCH) in the same subframe. C-V2X provides flexibility in configura-
tion, adapting to conditions and congestion levels. It employs turbo coding for data and
convolutional encoding for SCI. Sensing-Based Semi-Persistent Scheduling (SB-SPS) helps
reserve sub-channels, preventing packet collisions. HARQ retransmission enhances relia-
bility. C-V2X enables vehicles to communicate with each other and improves infrastructure,
safety, and traffic management.

SO/SAE 21434, a cybersecurity standard [50], provides essential guidance for original
equipment manufacturers (OEMs) and suppliers in the automotive industry to manage
cybersecurity risks within electrical and electronic (E/E) systems of road vehicles. While
ISO/SAE 21434 does not explicitly focus on the IoV, its principles and framework are highly
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relevant in the context of IoV networks. ISO/SAE 21434’s emphasis on risk assessment,
threat analysis, security controls, and incident response aligns with the need for robust
cybersecurity in IoV networks. It provides a foundation for managing and mitigating
cybersecurity risks within vehicles, which are integral components of the IoV. The stan-
dard encourages a proactive approach to safeguarding the integrity, confidentiality, and
availability of data and services within IoV networks.

Finally, ISO 21210, ref. [51] part of the Continuous Air interface, Long- and Medium-
range (CALM) series, within ISO Technical Committee 204 Working Group 16 (ISO TC204
WG16), defines how IPv6 network protocols and services enhance the global connectivity
of Intelligent Transport Systems stations. This standard details how IPv6 facilitates the un-
interrupted network connectivity required for ITS stations to function effectively as access
routers, allowing both fixed and mobile units, such as vehicles and roadside infrastructure,
to connect to the internet. It does not introduce new protocols or data structures. Still, it
focuses on how existing IPv6 protocols from the Internet Engineering Task Force (IETF)
can be utilized to maintain robust connectivity among ITS stations. Additionally, ISO 21210
outlines how legacy systems can integrate within this framework, ensuring backward
compatibility and facilitating integration into advanced networked environments.

3.4. Vehicular Network Sensors Used for Data Collection

Vehicular network sensors [52] play a crucial role in generating datasets for vehicular
security. This section presents the different vehicular sensors used for vehicular security
datasets. We divide these sensors into two categories: in-vehicle sensors and road sensors.

• In-vehicle sensors: In-vehicle sensors are located within the car and measure various
aspects of a vehicle’s performance, such as acceleration, braking, and impacts, using
accelerometers [53]. Gyroscopes measure a vehicle’s orientation and movement, while
ABS sensors detect wheel lockup during braking. Additionally, engine speed sensors
measure the engine’s rotational speed, while lane departure warning sensors monitor
the vehicle’s position within a lane. Blind spot monitor sensors, another type of
in-vehicle sensor, detect the blind spots of other vehicles in the car.

• Road Sensors: Road sensors are located on the road and measure traffic and environ-
mental conditions to improve vehicular security [54]. Road sensors include traffic
cameras that capture images of traffic flow, traffic light sensors that detect the presence
of vehicles at intersections, and weather sensors that measure environmental condi-
tions such as temperature and precipitation. In addition, road surface sensors detect
road surface conditions such as temperature and friction, while pedestrian sensors
detect the presence of pedestrians at crosswalks. These sensors work together to
generate datasets that can improve the safety of drivers, passengers, and pedestrians
by detecting hazardous conditions and warning drivers to take caution. In summary,
in-vehicle and road sensors are crucial components of vehicular security. Their data
are essential in creating datasets that can improve the safety of vehicles on the road.

These sensors work together to generate datasets that can be used to improve vehicular
security. As described in [55], in-vehicle sensors can detect when a driver behaves erratically
and takes corrective action. In contrast, road sensors can detect hazardous conditions and
warn drivers to take caution. In short, in-vehicle and road sensors are essential components
of vehicular security. Their data are critical in creating datasets that can improve the safety
of drivers, passengers, and pedestrians.

3.5. Vehicular Network Security Challenges

Since the global scheme is designed for a V2X network, there is usually no reliable
infrastructure. Vehicles communicate wirelessly using an open channel on the internet. The
participating entity’s openness and communication technologies bring challenges such as
security vulnerabilities, data privacy, transparency, scalability, and data integrity. Moreover,
the absence of centralized supervision, coupled with the crucial features of network security
required to ensure secure transmission during information sharing, has led to various
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challenges. As a result, attackers may influence the vehicle and the user. However, it
is necessary to address the existing attacks to enhance IoV security. Different classes of
vehicular network security threats incorporate various attacks that can occur. These attacks
can be classified based on their target layer (Figure 2 depicts this classification).

Physical / Sensing Layer

Taxonomy of IoV attacks at Different Layers

MAC/Network/Transport Layer Application Layer

DoS

Physical Damage

Jamming

Tampering

Injection

Eavesdropping

DoS/DDoS

Flooding

Spoofing

Sybil

MiTM

Black Hole

Sink Hole

Worm Hole

Grey Hole

DoS/DDoS

MiTM

Malware (Virus/Worm)

SQL Injection

Replay

Figure 2. Performed attacks on IoV at different layers.

In vehicular communication systems, security threats pose significant risks across
different layers of the communication stack. Vehicles are vulnerable to various attacks at
the physical or sensing layer to disrupt their basic functionalities. These attacks directly
affect the vehicle software or hardware via access control [56] to cause physical vehicle
damage attack [57]. DoS attacks can overwhelm vehicle sensors while jamming interferes
with the wireless communication channels, rendering them unusable. Injection attacks may
introduce false data, and tampering physically alters device operations or data integrity.
Moreover, eavesdropping threats enable the unauthorized interception of sensitive infor-
mation exchanged by the vehicles. Moving up to the network or transport layer, the threats
evolve into more sophisticated forms. DoS and DDoS attacks [58] can flood the network
with traffic, disrupting communication across vehicles and infrastructure. The following
attacks can track a vehicle’s broadcast messages. The Sybil attack [59] undermines the
system by creating many fictitious nodes, while spoofing [60] manipulates communication
by impersonating another device. MiTM attacks [56] secretly relay and possibly alter
the communication between two parties who believe they are directly communicating
with each other. Additionally, various hole attacks [57,61] such as blackhole, sinkhole,
wormhole, and greyhole, exploit network protocols to disrupt the routing of packets, lead-
ing to information loss or delay. GPS deception attacks [62], masquerading attacks [56],
wormhole attacks [61], cookie theft attacks [63], channel interference attacks [62], and route
modification attacks [56] gave become even more cunning and deceitful at the application
layer, which interfaces directly with the user. Injection attacks [61] compromise the system
by inserting malicious data into a stream of legitimate data. Malware [61], i.e., malicious
software, can disrupt or damage the vehicle’s system operation. Replay attacks [64] involve
the interception and retransmission of valid data streams, potentially to gain unauthorized
access or services. Each of these threats can have dire consequences on the reliability and
safety of vehicular communications, necessitating robust security measures at every layer
to safeguard against these potential attacks. These attacks are assessed and evaluated in
Table 4.
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Table 4. Vehicular environment attacks.

Attack Type Target Layer Primary Goal Method of Attack Potential Impact Detection Difficulty Attacker Sophistication
Level

Attack Range Persistence Scalability Required
Access

DoS Multiple Disrupt service Overloading requests System failure Medium Low to Medium Variable Temporary High Network
Access

Jamming Physical Block communication Frequency interference Data transmission
blocked

Hard Low to Medium Local Temporary Low Proximity

Injection Multiple Insert false data Unauthorized data input Misinformation Medium Medium Variable Varies Medium Network
Access

Tampering Physical Alter system/data Physical interference Malfunctions Easy Low Proximity Persistent Low Physical
Access

Eavesdropping Physical Intercept data Passive data capture Information theft Hard Low Local Varies Low Proximity

DDoS Multiple Disrupt service Distributed sources Service unavailability Medium Medium to High Wide Temporary High Remote
Access

Following Network Track movements Message monitoring Stalking Easy Low Local Temporary Low Network
Access

Sybil Network Subvert trust Fake identities creation Network unreliability Medium Medium Wide Varies High Network
Access

Spoofing Network Masquerade identity Impersonation Unauthorized access Medium Medium Variable Temporary Medium Network
Access

MiTM Network Intercept/alter data Communication intercep-
tion

Data manipulation Hard High Local Temporary Low Network
Access

Black Hole Network Data disruption Data packet dropping Communication break-
down

Medium Medium Local Temporary Low Network
Access

Sink Hole Network Selective disruption Selective packet dropping Unreliable communica-
tion

Medium Medium Local Temporary Low Network
Access

Worm Hole Network Data tunneling Tunnel creation Security bypass Hard High Wide Persistent Medium Network
Access

Grey Hole Network Partial disruption Intermittent dropping Unreliable reliability Medium Medium Local Varies Medium Network
Access

Phishing Application Steal credentials Deceptive communication Financial loss Medium Low Wide Temporary High User Inter-
action

Malware Application Disrupt/Control
system

Software installation System damage Medium Medium to High Variable Persistent High User Inter-
action

Replay Application Unauthorized access Data retransmission Security bypass Easy Low Local Temporary Low Network
Access
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4. Intra-/Intra-Vehicular Communication Datasets for Vehicular Network
Security: Taxonomy

This section proposes a detailed taxonomy for intra- and inter-vehicular communica-
tion datasets for vehicular network security. It is broadly classified into six categories, as
shown in Figure 3. The complete taxonomy is described as follows:

• Objective of the dataset: We list the dataset’s goal and usability aspects. There are four
significant usage objectives in vehicular network communication datasets: datasets for
intrusion detection, datasets for misbehavior detection, datasets for vehicle trajectory
prediction, and datasets for traffic scenario analysis.

• Data Nature: We highlight the general nature of the data used, which mainly be-
long to two types: real data from real-life scenarios and a simulated dataset, named
“synthetic”, from the simulation frameworks.

• Data Format: We describe all of the existing data structures within the database.
There are different types, including comma-separated values (CSV)s, JavaScript Object
Notation (JSON), and image format. In addition, various datasets may encompass
different types of data or multi-formats in one global file.

• Cyber Threats: We discuss various types of attacks in three major sectors, including
all possible attacks in inter-vehicular, intra-vehicular, and hybrid communications.

• Communication Types: We describe three types of communications: V2X, V2V, and
V2I. These three communication types are the most prone to connectivity in vehicular
network communication links. They represent an easy medium between the vehicle
and the attacker, so there are different datasets for vehicular network communication
security for all three communications types.

• Communication Protocols: We list the different serial port communication protocols
in the existing datasets, including DSRC, IEEE 802.11 g, 5G(C-V2X), AODV, WI-FI,
and ARP.

Figure 3. Intra- and inter-vehicular communication datasets for vehicular networks security: pro-
posed taxonomy scheme

5. Inter-Vehicular Communication Datasets

To better understand and mitigate the IoV security threats, researchers have developed
numerous datasets specifically focused on inter-vehicular communication in the context of
security. These datasets can help to build more secure vehicular communication protocols
and applications. This section details the different inter-vehicular datasets used in the
context of IoV security (See Table 5).
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Table 5. Inter-vehicular communication datasets comparative table.

Dataset Ref./Year Objective Attacks Nature of Data Number of Vehicles Format Label Protocol

VeReMi [19] 2018 Misbehavior Detection constant attacker,
constant offset attacker,
random attacker,
random offset attacker,
eventual stop attacker.

Synthetic 225 JSON Yes DSRC

VeReMi
Extension [20] 2020 Misbehavior Detection DoS,

DoS Random,
Data Replay,
Disruptive,
Eventual Stop,
Traffic congestion Sybil

Synthetic 2846 scenario 1,
1179 scenario 2,
7399 scenario 3

JSON Yes DSRC

NGSIM [21] 2016 vehicle trajectory prediction NA Real 9206 Vehicles,
8860 cars,
278 Trucks

Different
Formats Yes NA

PeMS [22] 2002 Traffic Detection, Incident detection NA Real 400,000 NA No NA

highD [23] 2018 Vehicle trajectories NA Real 110,000 Vehicles,
90,000 cars,
20,000 Trucks

CSV Yes NA

Warrigal [24] 2014 road mapping, driver intent prediction,
collision avoidance

NA Real NA CSV No NA

DeepSense
6G [25] 2022 Blockage identification and prediction,

object detection/classification
NA Real NA Different

Formats No NA

VDoS-LRS [26] 2020 Intrusion Detection DoS Real 2 NA Yes IEEE 802.11 g

Iqbal’s
Dataset [27] Misbehavior Detection Replay attack,

Bogus information attack
Synthetic 5 CSV Yes DSRC,

5G (C-V2X)

VDDD [28] 2021 Intrusion Detection DDoS Synthetic 20 Vehicles in low traffic
rate, 60 vehicles in high
traffic rate

different
formats Yes Ethernet,

IEEE 802.11,

Synthetic [29] 2018 Intrusion Detection DoS,
DDoS Grayhole,
Blackhole,
Wormhole, Sybil

Synthetic 30 (Vehicles and Hots) NA Yes WiFi,
IPv4 AODV,
ARP
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5.1. VeReMi Dataset

VeReMi [19] is a widely used dataset for assessing IoV misbehavior, designed to em-
ulate dynamic smart vehicle scenarios and integrate key safety features such as position,
distance, speed, and arrival angles. It is generated using LuST, VEINS, and Maat, and
comprises message logs from onboard vehicles in a simulated Luxembourg City Vehicle
Network (LCvehicular network). This network is part of a smart city ecosystem featuring
IoT, AI, autonomous vehicles, and more, offering various vehicle densities and attack
scenarios. The VeReMi workflow begins by setting up and running traffic simulations to
see how vehicles communicate during both normal and attack scenarios. This produces
message logs, which are then checked for any unusual activities using special algorithms.
After identifying any issues, the data are analyzed and turned into graphs. The final step
involves sharing the results and data through publications. VeReMi includes 225 simula-
tions evaluating IoV security under different conditions, featuring diverse attacker, traffic,
and vehicle densities. The dataset explores several attack types, including random, random
offset, eventual stop, constant, and constant offset, each posing unique security challenges.
This structured workflow helps ensure the safety and reliability of vehicle communication
systems within complex urban environments.

5.2. VeReMi Extension Dataset

The author of [20] extended the VeReMi dataset to create the VeReMi Extension,
enhancing it with a sensor error model, more attack scenarios, and a larger dataset. VeReMi
Extension’s generation follows a similar process to VeReMi, utilizing the Framework for
Misbehavior Detection (F2MD) for effective misbehavior identification. To reflect real-
world scenarios, the dataset incorporates sensor error models in key data fields: Position,
Velocity, Acceleration, and Heading. It introduces new attacks, distinguishes between
malfunctions and attacks, and comprehensively evaluates IoV security. Attacks include
DoS, data replay, disruptive, eventual stop, and traffic congestion Sybil attacks, covering
many scenarios.

5.3. NGSIM Datasets

The data in the NGSIM datasets [21] were first gathered by cameras and then taken out
of the videos that were recorded. Each sample in the track is taken every 0.1 s and comprises
different pieces of data, like the type of vehicle, the current speed and acceleration, the
longitudinal and lateral positions, and the length of the vehicle. There are a total of four
datasets, and one of these collections is the US-101 trajectory dataset. This dataset contains
six lanes, and it was collected on a 640 m long segment in Los Angeles, California, around
Lankershim Avenue on the southbound US-101 highway. These data were specifically
collected on 15 June 2005, between 7:50 a.m. and 8:35 a.m. In addition, the NGSIM dataset
includes an I-80 trajectory dataset that traces the trajectory data of six lanes, including a
high-occupancy vehicle (HOV) lane. It was obtained from a 500 m long segment of the I-80
freeway in Emeryville (San Francisco), CA, USA. The data were collected on 13 April 2005,
during two time periods, including 15 min from 4:00 p.m. to 4:15 p.m. and 30 min from
5:00 p.m. to 5:30 p.m. The third dataset is a Peachtree trajectory dataset composed of five
intersections (four are signalized and one is not) and two or three through lanes in each
direction. It was collected on a 640 m long segment of Peachtree Street in Atlanta, Georgia,
on 8 November 2006. This dataset consists of two 15 min periods: 12:45 p.m. to 1:00 p.m.
and 4:00 p.m. to 4:15 p.m. The last dataset is the Lankershim trajectory dataset, which
contains three or four lanes and four signalized intersections. This dataset was collected on
a 488 m long segment of Lankershim Boulevard in the Universal City neighborhood of Los
Angeles, CA, USA. The data were collected for 30 min from 8:30 a.m. to 9:00 a.m. on 16
June 2005
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5.4. PeMS Dataset

The Caltrans Performance Measurement System (PeMS) is the primary data source,
collecting real-time data from approximately 40,000 detectors installed throughout Califor-
nia’s major metropolitan regions. In addition to providing real-time data, PeMS serves as an
Archived Data User Service (ADUS), offering over ten years of historical data for in-depth
analysis. PeMS is a comprehensive platform that integrates diverse information from Cal-
trans and local agency systems. This includes data from traffic detectors, incident reports,
lane closures, toll tag information, census traffic counts, vehicle classification, weight in mo-
tion, and roadway inventory. This wealth of information aids researchers and policymakers
in making informed decisions related to transportation planning, infrastructure develop-
ment, and traffic management, ultimately enhancing the overall transportation experience.

5.5. HighD Dataset

The highD dataset is a recently compiled collection of real vehicle movements docu-
mented on highways in Germany. A drone addressed common obstacles encountered in
traditional traffic data collection methods, such as obstructions, by providing an aerial per-
spective. The dataset comprises recordings of more than 110,500 cars in six locations, with
an average recording duration of 17 min (totaling 16.5 h) covering a road segment of ap-
proximately 420 m. Each vehicle’s trajectory, size, type, and maneuvers were automatically
extracted, and the median visibility duration for each car was 13.6 s. The primary addition
in the HighD dataset is the extraction of predefined maneuvers detected based on a set of
rules and thresholds for each vehicle. The list of identified driving maneuvers in the HighD
dataset consists of four distinct types. The first is “Free Driving”, which refers to driving
without being influenced by a vehicle ahead. The second is “Vehicle Following”, which
involves actively tracking another vehicle on the road. The third is “Critical Maneuver”,
which occurs when the Time to Collision (TTC) or Time Headway (THW) with a preceding
vehicle is low. The final category is “Lane Change”, which involves crossing lane markings
and moving to a different lane on the road.

5.6. Warrigal Dataset

This extensive database was gathered in an industrial and manufacturing setting from
trucks and smaller 4WD vehicles. It is collected from 13 vehicles operating in a large quarry-
like setting over a time frame of three years. The dataset comprises information about
the vehicles’ state, including their position, speed, and direction, as well as information
about their peer-to-peer radio communications. The data were recorded using a Fastrax
IT321 GPS chip for position tracking over three years, with a 1-hertz resolution. The dataset
primarily consists of two major components: vehicle positions and radio communications.
Regarding communication, the authors of the dataset categorize vehicles into two types
based on the frequency used: Light vehicles are equipped with a single 2.4 GHz antenna
and a single 433 MHz antenna, while heavy vehicles are equipped with a single 2.4 GHz
antenna and a pair of 433 MHz antennas. The dataset is organized into daily periods and
labeled with the year, month, and day. Additionally, the files are categorized by the type
of information they contain, such as state, communication, signal strength, vehicle types,
and map.

5.7. The DeepSense 6G Dataset

This dataset comprises multiple scenarios, each of which is an independent dataset
containing multi-modal sensing and communication data specific to that scenario. The
data collected in each scenario reflect a real deployment situation and can serve one or
more applications. The DeepSense 6G dataset encompasses a diverse range of deployment
scenarios, including V2I, drone communication, V2V, Reflective Intelligent Surfaces (RIS),
indoor use cases, pedestrian scenarios, and more. The diverse range of scenarios highlights
the considerable capacity of the DeepSense 6G dataset to support a variety of applications
and use cases. Therefore, DeepSense 6G is a valuable resource for carrying out research and
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promoting 6G technology innovation. To compile this dataset, various sensing devices, such
as mmWave receivers, RGB cameras, GPS RTK kits, LiDAR, and radar, were employed.

5.8. VDoS-LRS Dataset

VDoS-LRS dataset introduced in [26] represents Vehicular Denial of Service Networks
and the Systems Laboratory. It comprises two sets of data, capturing both normal and
malicious traffic. VDoS-LRS includes data related to three types of Denial of Service (DoS)
attacks. The first type is SYN Flood, exploiting TCP protocol vulnerabilities by inundating
the vehicle with numerous SYN requests, aiming to deplete its resources and render it
unusable for legitimate vehicles. The second category is UDP Flood, a type of attack over-
whelming the targeted host with IP packets containing UDP datagrams, flooding random
ports, and causing system overload, resulting in “Destination Unreachable” responses. The
third type is the Slowloris attack, operating at the application layer. The dataset underwent
evaluation in three distinct settings: urban, highway, and rural, each exhibiting unique
characteristics. The researchers also considered varying vehicle speeds for each environ-
ment, with average speeds of 40 km/h in urban areas, 90 km/h on highways, and 30 km/h
in rural settings.

5.9. Iqbal’s Dataset

Iqbal et al. [27] proposed a new dataset to identify and prevent replay attacks and
false-information attacks. Various characteristics are outlined for detecting anomalies in
different scenarios. For instance, for replay attacks, the message sequence number can
be examined, and the expected delivery time of a message can be taken into account. It
suggests a possible replay attack if the time exceeds the expected duration. Similarly, for
false-information attacks, changes in position are essential. To identify fake accident reports,
other nearby users can be checked for inconsistencies, and if any are found, the relevant
authorities and roadside units can be alerted for further investigation. The authors used the
Eclipse MOSAIC simulation framework and a set of vehicular simulation tools to model
these attacks. The framework comprises different components, including OMNET++ for
handling V2V and V2I communications and SUMO for simulating urban mobility.

5.10. VDDD Dataset

The authors of [28] proposed the VDDD dataset to simulate a VANET environment
with normal and DDoS traffic. The dataset was generated using a combination of four
frameworks, including SUMO, Veins, INET, and OMNeT++. To make the simulation more
realistic, the King Fahad Highway, located in the Eastern Province of the Kingdom of
Saudi Arabia, was used as a testbed. First, realistic network mobility traffic was generated
using SUMO. Second, the SUMO mobility traffic was imported into OMNeT++ to generate
the network traffic, both normal and DDoS traffic, using Veins and INET. Finally, the
dataset was collected and prepared to evaluate and study the performance of several ML
algorithms. For example, the VDDD scenario involves three RSUs and N vehicles along
an 18 km highway with a low traffic rate of 20 nodes (N = 20) and a high traffic rate of
60 nodes (N = 60). Two levels of attack rate, 10 and 50 on the palliative performance scale
(PPS), are considered. This scale is used to measure each rating scenario, resulting in four
different scenarios. Additionally, one of the RSUs was configured to be the victim unit that
the attack traffic would exploit.

5.11. Synthetic Datasets Generation for VANET Intrusion Detection

The authors of [29] have introduced a synthetic dataset tailored for intrusion detection
in VANETs. This dataset allows users to configure parameters such as location, threat
scenarios, the number of hosts, and the count of malicious hosts, enabling the generation of
specific simulation scenarios using the NS-3 network simulator. The simulation process
yields three distinct output files, including per-second routing tables, packets, and network
statistics. The initial dataset provides various details about the destination, gateway,
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interface, and other relevant information. The second file contains information concerning
TCP, UDP, IPv4, WiFi, AODV, and ARP packets. Finally, the last file includes network
statistics, encompassing details such as flow IDs, TX bitrate, RX bitrate, TX packets, RX
packets, lost packets, mean delay, and packet loss ratio.

6. Intra-Vehicular Communication Datasets

Recently, there has been a growing recognition of the necessity for security within
intra-vehicular networks. This increased recognition is driven by the rising connectivity
of vehicles and their growing dependence on electronic control units (ECUs). Datasets
related to intra-vehicular network security hold significant value for the development of
new security protocols. In this section, we will review the existing intra-vehicular networks
(refer to Table 6).

Table 6. Intra-vehicular communication datasets: comparison.

Dataset Ref./Year Objective Attacks Nature of Data Format Labeled Data Protocol

Car-Hacking [30] 2018 Intrusion
Detection

DoS,
Fuzzy,
Spoofing

Real CSV Yes CAN protocol

OTIDS [31] 2017 Intrusion
Detection

DoS, Fuzzy,
Impersonation Real CSV No CAN protocol

Survival [32] 2018 Intrusion
Detection

Flooding,
Fuzzy,
Malfunction

Real CSV Yes CAN protocol

SynCAN [33] 2019 Intrusion
Detection

Suspension,
Fabrication,
Masquerade

synthetic CSV No CAN protocol

TU/e v2 [34] 2019 Intrusion
Detection

DoS,
Fuzzy,
Diagnostic,
Replay,
Suspension

synthetic CSV No CAN protocol

ORNL [35] 2020 Intrusion
Detection

Masquerade,
Fabrication
targeted ID,
Accelerator

Real CSV Yes CAN protocol

CrySyS [36] 2021 Intrusion
Detection

Plateau attack,
Continuous
change attack,
Playback
attack,
Suppression
attack,
Flooding
attack

Real data and
synthetic
attacks

CSV No CAN protocol,
GPS

SIMPLE [37] 2019 Intrusion
Detection

Dominant Im-
personation,
Complete
Impersonation

Real NA Yes CAN protocol

Bi [38] 2022 Intrusion
Detection

Dos,
Fuzzy,
Ulterior Fuzzy,
Replay

Real NA No CAN protocol

6.1. Car-Hacking Dataset

The car-hacking dataset [30] encompasses CAN packets collected from the OBD-II
port. Each CAN packet is characterized by three main features: CAN ID, representing
the identifier of the CAN packet (DATA[0] to DATA[7]), indicating the 8 data bytes of
the packet, and the flag, accepting two values, T for the injected packet and R for the
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normal packet. The dataset comprises normal traffic and three types of attacks: (1) DoS
attack: A DoS packet with CAN ID“0X000” is injected every 0.3 milliseconds. (2) Fuzzy
attack: Random ID and DATA values are injected every 0.5 milliseconds. (3) Spoofing
Attack (RPM/gear): It injects certain CAN ID packets relevant to RPM and gear every
one millisecond.

6.2. OTIDS Dataset

The OTIDS dataset [31] is generated by collecting CAN packets through the OBD-II. It
comprises normal packets and DoS attacks with a CAN ID of “0X000”. The CSV files of
fuzzy attacks do not specify whether a packet is normal or attacked. Impersonation attack
CSV files are similar to fuzzy attack files. However, The Fuzzy attack injects fake CAN ID
and DATA packets with random values.

6.3. Survival Dataset

The Human-Centered Robotics Laboratory (HCRL) has released two datasets [32]
generated from three different vehicles, including the Kia Soul, Hyundai Sonata, and
Chevrolet Spark. One dataset contains accurate driving records, while the other comprises
anomalous driving records resulting from three attack scenarios: flooding, fuzzy, and
malfunction. These attacks involved implanting attack messages every 20 s for 5 s, and each
threat was captured for 25–100 s. The authors utilized the dataset to develop a detection
model based on a survival analysis capable of identifying anomalies in in-vehicle networks.
Survival analysis is a statistical method that focuses on the time it takes for an event to
occur. This dataset was analyzed by [65], where the authors evaluated various studies
utilizing this dataset. They conducted a comparative analysis, listing these studies and
assessing intrusion detection using various methodologies and models.

6.4. SynCAN

The SynCAN Dataset [33] serves as a standard for evaluating and contrasting different
CAN Intrusion Detection Systems (IDS) based on multiple attack scenarios. It comprises
a training dataset and six testing datasets that comprise columns for labels, IDs, time,
and signal values. The six testing datasets include test_normal.zip, which contains only
normal data with a label of zero for IDS performance evaluation on unperturbed data.
Other files encompass test_plateau.zip, where a signal maintains a constant value over
time, and test_continuous.csv, where a signal gradually deviates from its actual value.
Additionally, the dataset includes test_playback.zip, where a signal is overwritten with a
recorded time series of the same signal, and test_suppress.zip, where messages of a specific
ID are absent from the CAN traffic due to an attacker preventing an ECU from sending
messages. For test_ f looding.zip, An attacker sends messages of a specific existing ID at
a high frequency to the CAN bus. The label column distinguishes between normal and
intrusive data, with the training dataset’s label is always set to zero. The time column
represents message timestamps, while the ID column includes IDs ranging from id1 to id10.
Finally, the signal columns contain actual signal values. However, signals from different IDs
may represent distinct signals, and some IDs may have a different number of signals. This
dataset facilitates the unsupervised training of IDS and the assessment of their performance
on both normal and abnormal data.

6.5. TUe v2 Dataset

The authors [34] proposed a framework for assessing IDS designed for the CAN
network. They collected data from two vehicles, Opel Astra and Renault Clio, and a
CAN bus prototype, which they developed to create their dataset. Additionally, they
incorporated Kia Soul data from the car-hacking dataset, which is publicly available through
the Eindhoven University of Technology Lab (TUe Security Group [66]). The authors
initiated various attacks on the prototype to generate attack datasets, simulating these
attacks on both vehicles. For a diagnostic attack, they randomly injected ten packets with
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CAN IDs greater than 0x700. Subsequently, they executed two fuzzing attacks involving
injecting ten packets with unknown CAN IDs and altering the payload of 10 frames
associated with a legitimate CAN ID. An attack replay was conducted by injecting a specific
packet observed in the dataset 30 times, adjusting the timestamp to send the packets ten
times faster than usual. To simulate a DoS attack, all messages within a 10 s interval
were replaced by messages with a CAN ID of 0x000, sent at a rate of four packets per
millisecond. Lastly, the authors simulated a suspension attack by removing all messages
with a particular CAN ID over 10 s.

6.6. ORNL Dynamometer CAN Intrusion Dataset

The ORNL dataset [35] encompasses 12 ambient captures, providing approximately
3 h of ambient data and 33 attack captures with a total runtime of around 30 min. The data
collection utilized the Kvaser Leaf Light V2, a reliable, low-cost device connected to the
OBD-II port of a Linux computer. It employed SocketCAN software to gather CAN data. All
data originated from a single vehicle, with the make and model intentionally undisclosed
to safeguard the vehicle’s identity. The released data underwent anonymization to preserve
the essential characteristics of an IDS. The vehicle was positioned on a dynamometer and
actively driven during each attack. Ambient data were collected both on the dynamometer
and roads, encompassing a range of normal and occasionally unconventional but benign
driving actions (e.g., unbuckled seatbelt or door open while driving). The dataset catego-
rizes recorded attacks into three types. The first category is a fuzzing attack, where frames
with random IDs were injected every 0.005 s. The second category includes targeted ID
fabrication and masquerade attacks. In the fabrication attack, message injection with the
target ID was performed using a flam delivery technique. For the masquerading attack
version, legitimate target ID frames preceding each injected frame were deleted to simulate
a masquerade attack. Lastly, accelerator attacks form an additional category, exploiting a
specific vulnerability related to the vehicle’s make/model, compromising the ECUs.

6.7. CrySyS Dataset

The CrySyS Lab created a dataset called CrySyS [36] for the SECREDAS project, which
is publicly available. It contains seven short captures and one long driving scenario trace,
with 20 message IDs and varying signal numbers. They also developed a signal extractor
and attack generator script to complement the dataset, which can modify CAN messages
in different ways, such as changing constant or random values, modifying with delta
or increment/decrement values, or switching to incremented/decremented values. In
addition, the attack generator can be used to simulate attacks by replacing a chosen signal
with a constant value in the CrySyS traces.

6.8. SIMPLE Dataset

The SIMPLE dataset [37] is composed of publicly available data obtained by capturing
Controller Area Network (CAN) messages from two vehicles: a 2016 Nissan Sentra and
a 2011 Subaru Outback. The data acquisition utilized a Tektronix DPO 3012 oscilloscope
connected through the Onboard Diagnostics II (OBD-II) port. Each driving session lasted
approximately 40 min and included a mix of local and highway driving scenarios. In total,
the dataset comprises over 16,000 frames and focuses on hill-climbing-style attacks.

6.9. Bi’s Dataset

The dataset presented in [38] is derived from various driving situations and utilizes
CAN traffic obtained during the test vehicle’s daily commute route. The route covered
three distinct scenarios, including country roads, highways, and congested city roads. The
dataset, comprising 29, 213, 281 messages, encapsulates seven days of CAN traffic collected
during commuter driving. It encompasses challenging road conditions such as slippery,
congested, rainy, and foggy roads. To generate the attack dataset, the authors injected
anomalous data into the CAN bus of the test vehicles using data injection equipment. They
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employed four attack models, both in the stationary and driving states, resulting in attack
messages, including DoS attacks, fuzzy attacks, ulterior fuzzy attacks, and replay attacks.

7. Potential Features Used in Vehicular Datasets for Attack Detection
7.1. Inter-Vehicular Features

Features of inter-vehicle environments come from various data sources, and they help
to understand and improve how traffic flows, how safe our roads are, and how efficiently we
can travel. With the advancement of technologies like connected and autonomous vehicles,
these features have become even more important. They help make real-time decisions,
predict traffic conditions, and ensure safety. Inter-vehicular features are categorized based
on their nature and application in vehicular network datasets.

• Vehicle Dynamics and Positioning: This category explores the core aspects of vehicular
motion, encompassing GPS coordinates, speed, acceleration, and directional infor-
mation. Such data are indispensable for deciphering vehicle behavior and analyzing
movement patterns on the road. For instance, the HighD dataset is exemplary in this
context. It offers a wide range of information with its detailed vehicle trajectories,
speeds, and acceleration data, providing deep insights into how vehicles move and
interact on highways.

• Temporal Data: Temporal data capture the chronological aspects of vehicular move-
ments and events. They include critical timestamps of various events and the durations
of specific activities or states. Data of this type are instrumental in understanding and
analyzing temporal patterns and sequences over time. A notable example is the VDDD
dataset, which includes event time and previous event time, allowing researchers to
analyze the sequences and durations of events in a detailed manner.

• Vehicle Identification and Characteristics: This type of feature is essential for dis-
tinguishing and characterizing vehicles. It includes data on vehicle types, physical
attributes, and unique identifiers. Such information is fundamental for classifying
vehicles and conducting a detailed analysis of vehicle-specific behavior. The NGSIM
dataset, for example, provides vehicle identification numbers and vehicle types, en-
abling a comprehensive study of various vehicle behaviors.

• Traffic and Congestion Analysis: In this class, the focus is on assessing traffic flow,
volume, and congestion. Features include vehicle counts, traffic density measurements,
and analyses of peak traffic periods. These features are vital for understanding and
managing traffic congestion. The PeMS dataset, for instance, offers rich data on traffic
volume, flow rate, and traffic density, which are crucial for comprehensive traffic
congestion analysis.

• Network and Communication Data: This category encompasses data related to the
communication networks within vehicular systems. It includes information about
data packet transmissions and metrics evaluating network performance. For example,
the VDoS-LRS dataset is rich in network data, including detailed metrics like packet
sizes, throughput, and packet transmission times, which are key to understanding
vehicular communication networks.

• Sensor and Device Data: Sensor data involve readings from various devices installed in
or around vehicles, such as cameras, GPS, and radar. This data category is increasingly
important for environment sensing and enabling advanced vehicle functionalities.
The DeepSense 6G dataset, with its inclusion of GPS data and radar measurements,
is a prime example, offering crucial data for the development and enhancement of
advanced driver-assistance systems.

• Driver and Behavioral Data: This category provides insights into driver behavior
and actions. It includes data on driver identification, as well as actions like turns
or signal usage. For instance, the Warrigal dataset includes data such as instanta-
neous speed and turn information, reflecting various aspects of driver behavior in a
detailed manner.
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• Safety and Incident Reporting: Safety metrics and incident data are key to understand-
ing the safety aspects of vehicular travel. This includes information on vehicle safety
systems and reports of road incidents. The PeMS dataset, for example, contributes
significantly in this area with its incident reports that provide information on road
accidents or construction work affecting traffic flow.

• Advanced Data Processing and Analysis: Features under this category include noise-
added data for robustness testing and advanced signal processing for sophisticated
data analysis. The VeReMi and the VeReMi extension exemplify this category with
features like “pos_noise′′ and “spdnoise′′, which introduce artificial noise to positional
and speed data, thereby enabling the testing of algorithms under varied and challeng-
ing conditions.

Table 7 provides a summary of the most commonly used features in inter-vehicular
datasets.

Table 7. Inter-vehicular features: a comparison.

Category Feature Metric Type Description Use Case

Vehicle Dynamics and Positioning

Lateral (X) and
Longitudinal (Y)
Coordinates

Coordinate Data Position of the vehicle
on the road Traffic pattern analysis

Instantaneous Velocity Speed Measurement Speed of the vehicle at a
given moment

Speed regulation
enforcement

Instantaneous
Acceleration Acceleration Rate Rate at which vehicle

speed changes
Driving behavior
analysis

Temporal Data
Timestamps Time Duration Exact date and time for

data capture Event sequencing

Duration Time Interval Time elapsed for
specific events or states Congestion analysis

Vehicle Identification
and Characteristics

Vehicle Identification
Numbers Identifier Unique ID for each

vehicle Vehicle-specific analysis

Vehicle Types Classification Type of vehicle (car,
truck, etc.) Traffic management

Traffic and Congestion Analysis
Traffic Volume Count Number of vehicles

passing a point Traffic flow analysis

Traffic Density Density Measurement Vehicles per
mile/kilometer Congestion assessment

Network and Communication Data Packet Transmission
Data Data Transmission Information on data

packets in network
Network performance
analysis

Sensor and Device Data
Camera Feeds Images or Video Visual data from

cameras Collision avoidance

Radar Data Proximity Data Detection of objects and
distances Object detection

Driver and Behavioral Data
Speed Patterns Speed Measurement Consistent speeding,

frequent stops
Driver behavior
monitoring

Lane Change Frequency Behavioral Data Frequency of changing
lanes Traffic pattern analysis

Safety and Incident Reporting Incident Reports Descriptive Data Reports of road
incidents

Safety assessment and
response

Infrastructure and Environmental
Factors

Road Type and
Condition Infrastructure Data Physical condition of

the road Infrastructure planning

Traffic Signal Status Operational Data Status of traffic lights Traffic control

Advanced processing and Analysis Noise-Added Data Analytical Data Data with added noise
for robustness testing Algorithm testing



Sensors 2024, 24, 3431 23 of 31

7.2. Intra-Vehicular Features

The dataset for an intra-vehicular network is composed of several key features, each
playing a critical role in capturing and conveying the intricate details of the vehicle’s internal
communications and functions. Most intra-vehicular datasets comprise key features that
are components of the CAN bus frame (see Figure 4). In Ref. [67], the authors investigated
CAN data for development purposes, defining a new CAN dataset to introduce an open-
access resource for automotive intrusion detection. Each feature plays a crucial role in
capturing and conveying the intricate details of the vehicle’s internal communications and
functions. These features include the following.

• Timestamp: This feature records the exact moment when a data point is logged,
providing a temporal reference that is crucial for tracking the sequence and timing of
events within the vehicle’s network.

• CAN ID: This identifier is required for distinguishing the myriad types of messages
and commands transmitted across the vehicle’s network. It is essential to categorize
and understand the different communications occurring within the vehicle’s systems.

• Data Length Code (DLC): Representing the length of the data field in a message, this
feature is key to understanding the size and format of the transmitted data, giving
insight into the complexity and nature of the messages.

• DATA[0] to DATA[7]: These data bytes form the core content of the CAN message.
Each byte, up to eight in total, can carry crucial information ranging from sensor
outputs, like speed or temperature readings, to control commands directed at various
vehicle electronic components.

SoF
Arbitration

Filed

Control 

Fild
Data Fild CRC ACK

End of 

Frame

1 bit 12 bits 6 bits
0 to 8 

bytes
16 bits 2 bits 7 bits

Data

[0]

Data

[7]
...ID RTR

1 bit11 bits 1 byte 1 byte
...

Figure 4. Structure of the CAN frame.

8. A Guide to Selecting Suitable Vehicular Datasets Depending on the
Research Requirements

Selecting a suitable dataset for vehicular security research may take time due to
many factors. In this section, we intend to help researchers by giving them a set of
recommendations and scenarios that help in choosing the suitable dataset based on the
context parameters. Therefore, we concentrate on many key metrics to guide researchers of
intelligent vehicles in making informed decisions.

Firstly, confirming that the dataset is relevant to the current study issue or problem is
critical. This means that the dataset should include specific information about the real-life
situation the researchers are seeking to simulate or examine. We categorize these selection
modules and classify them into five classes (See Figure 5). These datasets are detailed in
Table 8. They are described as follows.

• Attack-Type Selection: Researchers should carefully consider the metrics and objec-
tives of their study when choosing a dataset for research on IoV attacks. This includes
the types of attacks involved in the dataset and whether to use a single-attack or
multi-attack dataset. A single attack dataset would focus on a particular attack type,
such as DoS (e.g., VDoS-LRS Dataset, VDDD Dataset). This dataset helps analyze a
specific countermeasure’s efficacy or assess a certain attack’s impact on a network.
On the other hand, a multi-attack dataset includes representations of different types
of attacks and is effective for assessing the network’s resilience to a range of attack
scenarios. These datasets include VeReMi/VeReMi Extention Datasets, Iqbal’s Dataset,
Synthetic Dataset, Car-Hacking Dataset, OTIDS dataset, Survival Dataset, CrySyS
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Dataset, SynCAN Dataset, TU/e v2 Dataset, ORNL Dataset, SIMPLE Dataset, and
BI Dataset. The research objectives and the threat environment of vehicle networks
should guide the selection of attack types. For instance, researchers can choose to
concentrate on attacks that exploit vulnerabilities in certain communication protocols
or on attacks that target the network’s physical components. In addition, they can take
into account the severity and frequency of attacks in the real world and the possible
effects on the safety and privacy of connected vehicles. There are other datasets with-
out attacks like GSIM Dataset, PeMS Dataset, HighD Dataset, Warrigal Dataset, and
DeeepSense 6G Dataset.

• Area-Type Selection: IoV researchers looking for security datasets should consider the
type of area that the dataset is focused on. The area type can be divided into three main
categories: rural, highway, and urban. First, rural areas are less densely populated
than urban areas, making them more challenging to secure. In this type, the researchers
consider the usage of the VDoS-LRS Dataset. However, researchers can develop and
test security mechanisms that are robust enough to ensure IoV security in various
situations by simulating attacks in these areas. Accidents, collisions, and congestion
are the primary concerns for highway areas. Therefore, the dataset (e.g., VeReMi
Dataset, NGSIM Dataset, highD Dataset, VDDD Dataset, CrySyS Dataset, Bi Dataset,
and SIMPLE Dataset), including information on traffic flow, accidents, and congestion
levels, maybe the best fit for researchers interested in highway areas. Finally, the focus
is on security threats like unauthorized vehicle access in urban areas. It is easier for
an attacker to gain vehicle access in densely populated urban areas. For this type,
there are multiple datasets used, like NGSIM Dataset, PeMS Dataset, Warrigal Dataset,
DeepSense 6G Dataset, Iqbal’s Dataset, and Synthetic Dataset. In addition, the density
of people and vehicles can make it easier for hackers to intercept and steal sensitive
data, such as location and personal information.

• Simulator-based Selection: The simulators used to create a dataset can be an es-
sential consideration when choosing a dataset for IoV security research. Different
simulators may generate datasets with diverse properties, such as the size of the
network, the number, and the types of attacks that can be simulated. There are various
datasets whose usage adapts to these simulators. For example, sumo is adapted with
VeReMi/VeReMi extension Dataset, Iqbal’s Dataset, and VD Dataset. In the same con-
text, using a Raspberry Pi3, multiple datasets might be used, such as the Car-Hacking
Dataset, the OTIDS Dataset, the TU/e v2 Dataset, and the BI Dataset. Therefore, while
choosing a dataset, examining which simulator was used to produce the dataset and
whether it suits the research objectives is essential. For example, to design and test a
test security method using the Veins simulator, it can be beneficial to select a dataset
that was generated using Veins as this can guarantee that the dataset is compatible
with the simulator and that the results are more relevant to the research.

• Supervised/Unsupervised Datasets: Another essential factor when selecting an IoV
security dataset is whether the dataset is supervised or unsupervised. A supervised
dataset (including VeReMi /VeRemi Extension Dataset, NGSIM Dataset, and High
Dataset) labels known attacks and patterns, allowing ML models to be trained to
identify and react to these attacks. This dataset helps develop security mechanisms
that require previous knowledge of attack patterns. On the other hand, unsupervised
datasets (such as PeMS Dataset, Warrigal Dataset, and DeepSense 6G Dataset, among
others) are without pre-labeled attack patterns and rely on ML models to recognize
anomalies or deviations from normal behavior. These datasets are used to develop
and test security models that detect previously unknown attacks.

• Accessibility and Documentation: Accessible and well-documented IoV security
datasets are essential for researchers who want to perform experiments and assess
various security techniques and approaches. A dataset that is accessible should be
simple to obtain and use, with clear instructions on how to access and download
it. A well-documented dataset should also give researchers specific information on
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the data, such as the types of attacks included, the vehicle types, and the commu-
nication protocols. A well-documented dataset should also contain information on
the limitations of the dataset, including any assumptions or simplifications made
during the development of the dataset. This information can assist researchers in
understanding the dataset and its possible applications and limits. In addition, a well-
documented dataset should provide instructions on adequately utilizing the dataset,
such as preprocessing the data, choosing good evaluation metrics, and comparing
results across studies.

Datasets 

Guideline

No Attack

Single Attack

Multi Attack

Rural 

Highway
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Figure 5. Associative scheme of the selection guideline with the suitable datasets for each case.

Table 8. Representative guideline table of all existing VN datasets.

Dataset Attack type Area type Simulator Supervised Documentation

VeReMi Multi-attacks Congested highways,
free-flowing traffic

Sumo, Veins,
Omnet++ Supervised Clear

VeReMi Extension Multi-attacks Urban Sumo, Veins,
Omnet++ Supervised Clear

NGSIM No attacks Highway, Uban - Supervised Clear

PeMS No attacks Urban Area Freeways PeMS Tool Unsupervised Unclear

highD No attacks highways - Supervised Clear

Warrigal No attacks Urban - Unsupervised Unclear

DeepSense 6G No attacks Urban - Unsupervised Clear

VDoS-LRS One attack Rural - supervised Not available

Iqbal’s Dataset Multi-attacks Urban Sumo, Veins,
Omnet++ Supervised Not available

VDDD One attack Highway Sumo, Veins,
Omnet++ Supervised Not available

Synthetic Multi-attacks Urban NS-3 Supervised Not available

Car-Hacking Multi-attacks - Raspberry Pi3 Supervised Clear

OTIDS Multi-attacks Raspberry Pi and
Arduino Unsupervised Clear
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Table 8. Cont.

Dataset Attack type Area type Simulator Supervised Documentation

Survival Multi-attacks - - Supervised Clear

SynCAN Multi-attacks - Unsupervised Clear

TU/e v2 Multi-attacks - two Arduino boards Unsupervised Clear

ORNL Multi-attacks - Supervised Clear

CrySyS Multi-attacks Highway CAN Log Infector
tool Unsupervised Clear

SIMPLE Multi-attacks Highway

TivaC
microcontroller,
SN65HVD230 CAN
transceiver

Supervised Clear

Bi Multi-attacks

country roads,
highways,
and congested city
roads

Raspberry Pi Unsupervised Not available

Finally, to give a global representation of the existing dataset studied in our paper,
we enumerate the advantages and limitations of the existing datasets in Tables 9 and 10.
Additionally, we also present a complete graphical summary of these datasets in Figure 6,
giving a visual representation that enhances understanding and analysis.

Figure 6. A global analysis illustration of the existing studied datasets of IoV security.

Table 9. Advantages and limitations of inter-vehicular environment security datasets.

Dataset Advantages Limitations

VeReMi A high number of vehicles used for data collection.
It takes into consideration the attacker probability.

Few simulated attacks.
Synthetic data used to train IDS are unreliable and
representative of IoV properties.

VeReMiExtension The dataset includes a high number of simulated attacks.
It includes physical error models.

Synthetic data used to train IDS are unreliable and
representative of IoV properties.

NGSIM High recorded Distance (500–640 m).
High number of lanes (5–6 per direction).

The dataset does not include vehicular attacks.
The dataset includes erroneous trajectory behavior.
NGSIM data also have a few varieties.

PeMS It integrates a wide variety of information

highD highD data have a wide variety.
highD includes data of more than 16.5 h of recordings.

Few maneuvers detected for use in safety validation.
highD dataset does not include vehicular attacks.
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Table 9. Cont.

Dataset Advantages Limitations

Warrigal

High number of data collected.
The dataset contains a variety of information, including vehicle
state information, communication logs, and received strength
measurements for radio communications

The dataset does not include vehicular attacks.

DeepSense6G
It is a large-scale real-world dataset comprising co-existing and
synchronized multi-modal sensing and communication data.
High number of scenarios (more than 40).

The dataset does not include vehicular attacks.

VDoS-LRS

This dataset was generated and labeled based on a realistic
testbed.
It takes into consideration different types of environments
(urban, rural, and highway)

It includes a few attack scenarios.
Only two vehicles are used for data collection.

Iqbal’sDataset The proposed scenarios mimic the real-world scenarios. Synthetic data used to train IDS are unreliable and
representative of IoV properties.

VDDD

VDDD dataset is generated based on complete traffic captured
from all the nodes.
The simulation scenario contains all the VANET components
(RSU, vehicles and routers)

Synthetic data used to train IDS are unreliable and
representative of IoV properties.
The dataset does not satisfy heterogeneity and attack diversity.

Synthetic
It takes into consideration different attacks that are not
considered in the other dataset ( Black Hole, Gray Hole,
Wormhole).

Unavailable dataset.
Synthetic data used to train IDS are unreliable and
representative of IoV properties.

Table 10. Advantages and limitations of intra-vehicular environment security datasets.

Dataset Advantages Limitations

Car-Hacking

The attack captures are very long and contain a large number of
instances per attack.
This dataset seems to be the most widely used in the CAN IDS
research community.

All the attack captures contain a significant artifact of data
collection that may pose a problem for researchers using this
data.
Ambient and attack data are in different formats.

OTIDS

It is the only open dataset that includes remote frames and
responses.
The fuzzing attack is unique in being the sole example of this
kind of fuzzing attack in an open dataset.

The documentation on the injection message intervals needs to
be clarified.
The “impersonation attack” is not a real masquerade attack
because the legitimate node’s message transmission is
suspended.

Survival
It contains real attacks on multiple vehicles.
This dataset provides evidence for the importance of the
duration during which the bus is occupied by a message.

All of the attacks are basic and can be detected with a very
simple frequency-based detector.
only 60–90 s of data are provided per vehicle, which is likely
not sufficient for robust training.
the ambient data and attack data are in differently formatted
CSVs, which is undesirable.

SynCAN

This is the only dataset (other than ours) that contains attacks
targeting a single signal.
This dataset contains the most nuanced masquerade attacks
currently available.

Synthetic data are clearly an imperfect proxy for real data.
Simulated attacks are inherently problematic since their effect
on a vehicle cannot be verified.

TU/e v2

This dataset includes the only diagnostic protocol attack
publicly available and the only suspension attack (simulated) in
real CAN data.
The same set of attacks is available for testing on multiple
vehicles/CANs.

Attack labels are in an unstructured text file, so there is no way
of programmatically reading what/when packets were injected.
Most of the attacks are unrealistic.

ORNL
The published data have been obfuscated in a way that
maintains the anonymity of the vehicle while preserving all
important aspects of the data for an IDS.

Unlabeled data.

CrySyS

This dataset can be easily extended to add new attacks.
This is the only dataset furnished with descriptions of the
driver’s actions during ambient captures, which is highly
valuable for training and testing an IDS.

Attacks are added in post-processing, there is no guarantee that
these attacks would actually affect vehicle function.
Can-Log-Infector’s implementation can cause many problems.

SIMPLE The dataset handles both periodic and aperiodic messages. Documentation needs to be clarified.

Bi
Provides a robust foundation for IDS under challenging
conditions and comprehensive evaluation of detection
capabilities.

Unavailable dataset (Private and not accessible)
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9. Conclusions

Vehicular network security datasets provide information used for attack detection
and security enhancement. Therefore, researchers use these datasets to develop more
effective security measures and protocols and ensure the safety and reliability of vehicular
networks. This paper presents a comprehensive survey of vehicular network security
datasets. In our survey, we have described first a brief background about the vehicular
network environments, sensors, and security issues. Then, we proposed a new taxonomy
on existing vehicular network security datasets. Our taxonomy is classified into six main
categories: objective, data nature, data format, cyber threats, communication types, and
communication protocols. The taxonomy introduced in this manuscript is a key contri-
bution that offers a structured and systematic approach to categorizing and evaluating
vehicular network security datasets. Each category in our taxonomy has been carefully
selected to address specific dimensions of vehicular network security. In addition, we ex-
plore key features of both intra-vehicular and inter-vehicular datasets, which are important
for enhancing vehicular network security and functionality. Inter-vehicular datasets offer
insights into vehicle dynamics, traffic patterns, and communication data essential for traffic
management and safety analysis. Intra-vehicular datasets focus on the vehicle’s internal
operations through the CAN bus system, documenting timestamps, CAN IDs, Data Length
Codes, and data bytes from internal sensors and controllers. Finally, we provided a global
analysis of the different datasets to guide vehicular network researchers in selecting the
best dataset according to their needs. This guide assists vehicular network researchers in
selecting the dataset that best aligns with their research objectives, ensuring that they can
effectively address the specific challenges of vehicular network security.
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