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Abstract

The evolution of drug resistance leads to treatment failure and tumor progression. Intermittent androgen deprivation therapy
(IADT) helps responsive cancer cells compete with resistant cancer cells in intratumoral competition. However, conventional IADT
is population-based, ignoring the heterogeneity of patients and cancer. Additionally, existing IADT relies on pre-determined thresholds
of prostate-specific antigen to pause and resume treatment, which is not optimized for individual patients. To address these challenges,
we framed a data-driven method in two steps. First, we developed a time-varied, mixed-effect and generative Lotka–Volterra (tM-GLV)
model to account for the heterogeneity of the evolution mechanism and the pharmacokinetics of two ADT drugs Cyproterone acetate
and Leuprolide acetate for individual patients. Then, we proposed a reinforcement-learning-enabled individualized IADT framework,
namely, I2ADT, to learn the patient-specific tumor dynamics and derive the optimal drug administration policy. Experiments with
clinical trial data demonstrated that the proposed I2ADT can significantly prolong the time to progression of prostate cancer patients
with reduced cumulative drug dosage. We further validated the efficacy of the proposed methods with a recent pilot clinical trial
data. Moreover, the adaptability of I2ADT makes it a promising tool for other cancers with the availability of clinical data, where
treatment regimens might need to be individualized based on patient characteristics and disease dynamics. Our research elucidates
the application of deep reinforcement learning to identify personalized adaptive cancer therapy.
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INTRODUCTION
Prostate tumor is the second most prevalent cancer and the sixth
leading cause of cancer death worldwide [1, 2]. The common
treatments of locally advanced prostate cancer are radiotherapy
and hormone therapy [3, 4]. Hormone therapy, such as androgen
deprivation therapy (ADT), is an effective treatment and is usually
applied after the failure of radiotherapy [5, 6]. Similar to other
hormone therapies, ADT has side effects, including decreased
libido, impotence, hot flashes and sexual effects [7, 8].

The difficulty in treating prostate cancer lies in the devel-
opment of resistance, which usually leads to treatment failure
and tumor progression [8, 9]. There are multi-type cancer
cells competing for resources in the resource-limited tumor

microenvironment. Such Darwinian dynamics can lead to a
rapid proliferation of resistant population. In the conventional
drug administration policy, the use of maximum tolerated dose
until progression can give the resistant phenotype an advantage
over the other competitors, leading to the faster development of
tumor resistance [8]. Thus, the intermittent androgen deprivation
therapy (IADT) was proposed and validated in several clinical
trials especially for patients in phase 1b / phase 2 [6, 10].

Figure 1 illustrates the idea of ADT (a) and IADT (b) separately.
If a maximum tolerated dose is adopted, the resistant phenotype
has an evolutionary advantage over the responsive phenotypes,
leading to quick tumor resistance to ADT (shown in Figure 1a).
IADT involves the intermittent administration of drugs, which
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Figure 1. Illustration of ADT and IADT separately (Created with BioRender.com). The three panels, labeled (A), (B) and (C), depict green cells as responsive
cancer cells and red cells as resistant cancer cells. In the lowest panel C), we illustrate the tumor lesion of prostate cancer. In A), continuous dosing kills
responsive cancer cells, but the resistant cancer cells quickly dominate the population due to the lack of competition from responsive cells. In contrast,
B) shows that intermittent dosing allows responsive cancer cells to regrow during therapy-free periods. This enables them to compete more effectively,
resulting in the resistant cells being unable to dominate the entire population even in the late stages of treatment.

gives the responsive phenotype the chance to compete with the
resistant phenotype (shown in Figure 1b), thus prolonging the
time to progression (TTP). In addition, IADT provides quality-of-
life benefits by reducing the cumulative drug dosage.

There are two potential design flaws in conventional IADTs.
First, many begin with ‘induction treatment” in which ADT is
applied at maximum dose continuously for 8 to 9 months and
intermittent therapy is then applied only if the prostate-specific
antigen (PSA) has been reduced to the normal range. Evolutionar-
ily, this has the effect of strongly selecting for resistance while
removing most of the sensitive population. Thus, the critical
evolutionary competition that is necessary for suppression of
the resistant cells by the expanding sensitive population during
treatment cessation is lost. Second, IADTs often impose a rigid
treatment schedule which neglects the heterogeneity within the
tumor–host interactions which can result in very different pro-
liferation and death rates of prostate cancer cells in different
patients. Recent clinical trials and computer simulation studies
have suggested an alternative approach with no induction treat-
ment and using pre-define PSA thresholds for suspending and
resuming ADT administration [11] may be more successful than
the prior trial designs. However, even if such population-based
IADTs are effective, they do not fully utilize the patients’ charac-
teristics and clinical information. Thus, they are sub-optimal and
the full benefit of IADT in personalized medicine has not been
obtained.

Here we hypothesize that optimal evolution-based therapies
require detailed integration of patient-specific, treatment-specific
and tumor-specific dynamics into the treatment protocol. How-
ever, this task is computationally challenging because of the high
complexity of models considering the intratumoral dynamics and
actual data.

We build upon prior applications and validations of various
evolutionary mechanisms for simulating the intratumoral
dynamics and IADT responses [10, 12–14]. For example, the classic
Lotka–Volterra model was incorporated into an evolutionary
game model to simulate the competition mechanism between
responsive and resistant tumors [10]. Another recent study

explained the resistance occurrence of prostates cancer [14] in
IADT by considering stem cells differentiation and evolution.

In addition, artificial intelligence (AI) techniques, particu-
larly reinforcement learning, are promising tools for making
optimal treatment decisions that consider different patients’
heterogeneity and tumor’s evolutionary mechanism [15–20].
Recently, model-free reinforcement learning methods have been
applied to the dynamic control of cancer. For example, an
agent-based model with an associated reinforcement learning
framework was proposed to continuously control the drug
administration and dynamically regulate the emergence of
resistant tumors [21]; this was a theoretical study that was
conducted without patient customization or actual clinical
data. Another study used reinforcement learning to inform
the automated dose adaptation, which achieved human-similar
results in non-small cell lung cancer patients [22]. This work
did not incorporate the intratumoral evolutionary mechanisms.
In both studies, the pharmacokinetics of specific drugs was not
considered.

To address the above-mentioned challenges, we propose the
reinforcement-learning-enabled individualized IADT (I2ADT)
framework, which learns the patient-specific tumor dynamics
from actual patient data and derives the optimal drug administra-
tion policy for individual patients using reinforcement learning.
Experiments with a multi-center Phase II clinical trial data
demonstrate that I2ADT leads to longer TTP and lower cumulative
drug dosage compared with the conventional standard IADT
adopted by the trial. Additional validation with external data
also demonstrated the efficacy of I2ADT.

It is important to highlight that our proposed I2ADT model is
fundamentally a data-driven approach, developed based on the
clinical data available to us. Consequently, the model’s scope is
inherently bound by the extent of these data. As such, certain crit-
ical factors, such as age, genetics and lifestyle, were not included
in our model due to data accessibility constraints.

In more detail, our model employs a nonlinear, time-varied
approach to capture the dynamic interactions between two
phenotypes, influenced by key evolutionary processes. This
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methodology is elaborated in our Methods (2.1) and further in
Supplementary S2. We theorize that the model implicitly learns
from the clinical data about factors not directly accessible, rep-
resented as parameters in Methods (2.1). Significantly, the I2ADT
model is designed to be versatile and adaptable. This flexibility
suggests that, with the availability of more comprehensive data,
I2ADT can seamlessly incorporate these additional elements.
Such integration would undoubtedly broaden the model’s scope,
enriching its comprehensiveness and enhancing its practical
application.

The contributions of this paper are 4-fold. First, we formu-
lated the patient-specific tumor dynamics by a proposed time-
varied, mixed-effect, generalized Lotka–Volterra (tM-GLV) model
to describe the dynamic competition between two phenotypes
that are sensitive or resistant to treatment. Second, we proposed a
deep reinforcement-learning-based framework to define patient-
specific tumor evolutionary dynamics and integrate them into the
treatment strategy over time. Third, we combined the PSA level
and pharmacokinetics to inform the personalized IADT. Fourth,
this is a data-driven deep reinforcement learning method for
individualized IADT and could be adaptively extended to other
cancer types.

MATERIALS AND METHODS
In the Phase II clinical trial, clinicians adopted a population-based
policy to treat patients for up to 32–36 weeks in each treatment
cycle until progression [6]. 29 out of the 91 patients were excluded
from our analysis due to missing data on drug dosages, and some
patients took multiple drugs (please refer to the Supplementary
S6 for further information). We divided each patient’s longitudinal
data into training and validation sets through stratified random
sampling: 20% of each patient’s data in each cycle was randomly
selected and removed as the validation set. In the following
sections, we introduce the tM-GLV model and essentials of the
reinforcement learning for thr proposed I2ADT.

Ethical approval: This is a retrospective secondary data analysis
of open-source database. No ethical approval is required.

Modeling the Prostate Cancer Competition
environment
The dynamics of prostate cancer evolution are difficult to charac-
terize with full details, because of the presence of many interact-
ing factors [23]. Following a system control approach, we formu-
late the ecosystem into a mathematical model capturing the key
processes in the population level, namely, selection, competition,
mutations, epigenetic modifications and adaptation [24, 25].

Based on the literature [24–29], we developed a time-varied
mixed-effect generalized Lotka–Volterra (tM-GLV) model with
the aforementioned four processes. Tumors have inherent
heterogeneity, and we can usually assume that two phenotypes
of prostate cancer cells are present [30] before treatment, namely
responsive (hormones-dependent) and resistant (hormones-
independent) cells. The resistant cancer cells were minority at
first, but they could gain advantage under the androgen suppres-
sion conditions. The two phenotypes have fierce competition in
the tumor microenvironment because of the high demand for
resources [31]. Besides the four processes, we also account for
metastasis in the tM-GLV model by adopting a probability model
(please refer to Supplementary S8 for details).

Given the context of two competing phenotypes, which are
viewed as permanent bounded variations of the system described

Table 1: Definitions of notations in system (1)

Notation Description Units

x (x1, x2), vector of the cell counts for two
phenotypes

11

P serum PSA level μg/L
R diag{r1, r2}2, inherent growth rate for two

phenotypes
1/day

X diag{x1, x2}, cell counts for two phenotypes 1
1 (1, 1), vector of 1 1
A(t) time-varied competitive community matrix 1
K diag{K1, K2}, carrying capacity for two

phenotypes
1

D drug pressure: drug-induced decay rate for
cells

1

α constant, hyper-parameter of
competition-induced decay

1

ρ the secretion rate of PSA μg/L/day
φ the decay rate of PSA 1/day

1denotes no unit for this variable. 2 denotes diagonal matrix with the
diagonal entries are r1 and r2

by system (1), an equilibrium, even if it exists, is never established.
Hence, a non-equilibrium model with time-varied disturbances is
appropriate to simulate the dynamics with competition-induced
mutations. The role of the equilibrium is replaced by the ultimate
boundedness, which ensures the populations remain restricted
to a certain limiting value in finite time [32, 33]. Hence, the
system defined by (1) has no equilibrium but an ultimate bound-
edness that produces a compact set of values in the states space.
When the environment reaches these states, the environment is
bounded in this compact set (the proof is given in the Supplemen-
tary S4).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx
dt

=RX(1 − (K−1A(t)x)α − D)

dP
dt

=ρ
∑

i

x − φP
(1)

Within the confines of our tM-GLV model, several crucial fac-
tors were omitted owing to the limitations in data availability. It
is widely acknowledged that variables such as age, weight and
genetic factors play significant roles in cancer treatment, as cited
in relevant literature. Furthermore, diet and lifestyle are known
to substantially influence PSA levels. Unfortunately, due to the
unavailability of comprehensive data on these factors, they were
not included in our model.

However, we postulate that the clinical outcomes and treat-
ment sequences for each individual are influenced by these fac-
tors. And we have learnt the parameters of the model from clinical
data. This approach allows us to infer that these parameters,
albeit indirectly, encapsulate the effects of the aforementioned
factors. Thus, while not explicitly included, the influence of age,
weight, genetics, diet and lifestyle is subtly integrated into the
model via the parameters learned from clinical outcomes.

To search for optimal patient-specific parameters, we utilized
a PyTorch-based solver named ξ-torch [34] to solve the ordinary
differentiated equations (refer to Supplementary S5 for initial
settings) and Adam optimizer [35] to minimize the least square
error between the model-predicted PSA and the ground truth
PSA. Considering that the number of cells is tens of millions, a
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clipping gradient is applied to the optimization process to avoid
the gradient explosion.

Model-informed treatment planning with
reinforcement learning
While a predictive understanding of the exact evolutionary tra-
jectories toward resistance is essential for effective treatments,
it remains a significant challenge. However, controlling the evo-
lution of drug-resistant cancer does not require full predictabil-
ity or determinism. In a closed-loop system, feedback can help
mitigate the reliance on precise trajectory knowledge, as long
as the feedback can be obtained at reasonable time intervals;
the uncertainty and stochasticity can be approximated in an
informed manner, and the controller is robust to changes in the
system’s behavior and parameter fluctuations [21]. In this work,
we apply reinforcement learning as the controller.

Modern RL algorithms can be basically classified into two
branches: value-based and policy-based learning algorithms [36].
Deep Deterministic Policy Gradient (DDPG) [37], Trust Region Pol-
icy Optimization (TRPO) [38], Proximal Policy Optimization (PPO)
[39] and Soft-Actor-Critic (SAC) [40] are powerful algorithms that
have been proposed in recent years. However, each algorithm has
its strengths and limitations. DDPG is an off-policy actor-critic
deterministic algorithm that can only be applied in continuous
states and action spaces. TRPO is an on-policy algorithm that uses
KL-divergences to control the updating from old policy to new
policy. However, its second-order optimization makes it difficult to
implement or fine-tune the hyperparameters. Both SAC and PPO
are easily implemented and suitable for discrete or continuous
action-state spaces, and obtains high data-efficiency and reliable
performance. We empirically tested both algorithms and found
that applying SAC in our scenario required cautious hyperparam-
eter fine-tuning for each patient; otherwise, it would easily lead
to divergence.

In terms of the Prostate Cancer Competition (PCaC) environ-
ment constructed in Methods (2.1), though the system provides
an environment model (1), obtaining a full-knowledge transition
from states to states is challenging. Therefore, an optimal policy
for this decision-making process needs to provide dosing guide-
lines for the next time step based on potential stochastic evolu-
tionary scenarios described by the system (1). The system involves
a continuous state space (cell population composition), time-
varying and potentially high stochasticity and one or multiple
controls (drugs) that can take continuous values when adminis-
tered intravenously or discrete values when administered orally.
Although we use discrete action spaces in our setting, it should be
easily generalized into high-dimensional continuous action space
in practice. Therefore, a versatile model-free RL algorithm, namely
Proximal Policy Optimization (PPO) [39], is preferred due to the
complexity of the evolutionary dynamics.

In this work, we use the simulation of the tM-GLV model to
train the agent to get the optimal policy. At each time step,
the microenvironment information (such as cell counts and PSA
levels) is sampled from the non-BlackBox system (1), by which
the agent takes actions, and then the PPO trains the agent. To
determine the explicit formulation of the reward function, the key
is to describe the drug efficacy and the competition intensity in
the PCaC environment. In addition, penalty of dosage history is
assigned to the reward. Please refer to the Supplementary S3 for
detailed description of the states-actions spaces and the rewards
assignments.

Note that insufficient dosage can suppress resistant pop-
ulation and reduce cumulative dosage, thus may lead to a

sub-optimal policy in which the agent lets responsive population
proliferate without control, leading to metastasis and disease
progression (denotes as response cancer cells reach high rate of
its capacity). Therefore, we will assign a progression-free time
reward to the step reward function and apply the aforementioned
metastasis probability model as a stopping criteria to avoid the
high concentration of the responsive population.

Validation of I2ADT
In this section, we showcase the external validation of our pro-
posed I2ADT approach and address the critical question of how
I2ADT can be applied to a new patient.

We used pilot clinical trial data (NCT02415621) from the H.
Lee Moffitt Cancer Center, where 17 patients were enrolled in a
study group following an IADT dosing policy. This policy required
suspending the drug (abiraterone) when PSA levels dropped below
50% of the pretreatment value and resuming treatment when
PSA levels returned to baseline. It is essential to note that this
suspension criteria is population-based, not patient-specific or
optimal. We applied the patients’ clinical data to train the patient-
specific tM-GLV model, then used PPO to obtain individualized
policies, following the same methodology described in the earlier
Methods sections.

In addition to external data validation, we introduce a new
treatment protocol called delayed-I2ADT. When treating a new
patient, the clinician develops their treatment policy based on all
available clinical and pathological information up to a fixed time
stamp, such as a full cycle of standard IADT treatment. To collect
more data for model calibration, we implement a weekly PSA test
during the first IADT treatment cycle, though the dosing policy is
updated monthly. The details are as follows.

We begin by collecting the first τ -month of weekly data from
the standard IADT treatment, which includes the initial tumor
lesion size, serum PSA level and corresponding dosing history,
denoted as X (0 : τ). Using the clinical trial data X (0 : τ), we
propose Algorithm 1 in Supplementary S1 to obtain the tM-GLV
model M(a; θ0

new).
Next, we train the reinforcement learning agent for the tM-

GLV model. Once the agent converges, it is said the agent has
converged to A(θk

A). From A(θk
A), we can predict and obtain the

dosing policy for the next T months ahead, which clinicians
will review and administer to patients. Clinical surveillance is
performed throughout the entire period to gather additional data
for tM-GLV model training. The details of the algorithm are shown
in Algorithm 2 in Supplementary S1.

RESULTS
Mathematical modeling and simulation of
prostate cancer cell evolution
The evolutionary dynamics of prostate cancer cells in vivo are
complicated. Our model considered two phenotypes, namely
responsive (Hormone-Dependent) and resistant (Hormone-
Independent). In the beginning, responsive cancer cells dominate
the population, and resistant cancer cells account for only a
tiny portion due to the inherent heterogeneity and the healthier
fitness of responsive phenotype.

According to biological theories [24, 25], two key processes
contribute to the evolution of cancer, namely, selection and adap-
tation, along the way with competition, mutations and epigenetic
modifications. Resistant cancer cells are minor, but they exist
before the treatment and will take their place under the andro-
gen suppression conditions. A fierce competition likely exists

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
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Figure 2. Presenting of the mathematical modeling of prostate cancer dynamics, showing patient-specific treatment responses and resistance
development to IADT, alongside parameter distributions and model validation. A). The evolutionary dynamics of patient012 who evolved resistance
to ADT based on the clinical trial with the application of standard IADT [6]. The upper panel is the fitted curve for the serum PSA level, which is plotted
with the ground truth. The lower panel is the corresponding simulation of the dynamics of responsive and resistant phenotypes. We use simulations
to predict the PCaC environment with the standard IADT; when the resistant population exceeds 80% of its capacity, we ended the simulation (EOS, a
gray background marked as ‘done’). The resistant phenotype escapes from the competition pressure in the 3-rd treatment cycle, thereby leading to drug
resistance. B). The evolutionary dynamics of patient037 who did not evolve resistance to ADT based on the clinical trial involving the application of
standard IADT). The upper panel is the fitted curve for the serum PSA level, which is plotted with the ground truth. The lower panel is the corresponding
simulation of the dynamics of responsive and resistant phenotypes. The resistant phenotype increases in the later stage of the treatment for both
patients. C). The distributions of all the patient-specific parameters learned by gradient descent, the mean and the 95% CI are shown in Supplementary
File 1. Validation of the mathematical models with the test data.

between the two phenotypes in the tumor microenvironment
because of the high demand for resources in this niche [31]. The
resistant phenotype can genetically or epigenetically gain advan-
tages through mutations. We calibrated the model with a multi-
center Phase II clinical trial by applying the standard IADT to the
biochemical recurrence patients after irradiation with localized
prostate cancer [6]. The longitudinal data of each patient were
utilized for training the patient-specific mathematical model, as
described in Methods (2.1).

The PSA dynamics and the model-simulated evolutionary
progress of cancer cells are shown in Figures 2a and b. Two rep-
resentative patients (patient012 and patient037) were presented.
Patient037 did not develop resistance to ADT, whereas patient012
developed resistance to ADT with the standard IADT. These obser-
vations are based on the criterion that the PSA level exceeded 4
μg/L in weeks 24 and 32 in the latest treatment-on period, which
was used as the ending criterion of the clinical trial (EOC).

We predicted the evolutionary dynamics for each patient by
simulation. The PSA dynamics of patient012 (Figure 2a) showed
that the nadir (lowest) PSA level increased gradually with treat-
ment progress, thereby indicating that the patient was gradually
developing resistance to ADT. The simulated amount of can-
cer cells (lower panel, Figure 2a) also showed that the resistant
cancer cells were gradually winning the competition against the

responsive cancer cells, thereby leading to resistance to ADT in
the last clinical cycle, where the concentration of the resistance
phenotype exceeded 0.8 (one of the ending criteria of simulation
(EOS)). By contrast, Figure 2b shows that patient037 responded
to IADT continuously and ended the simulation at the 7th cycle
(terminal time, set as 120 months).

The interplay between drug dosage and the intratumoral com-
petition showed that for patient012, resistant cancer cells have
been suppressed by responsive cancer cells in the competition
during the absence of treatment in the first treatment cycle.
However, the population size of resistant cancer cells has been
increasing. On around day 800, under treatment, the resistant
cancer cells finally took the advantage over the responsive cancer
cells, leading to drug resistance and treatment failure. In the last
treatment cycle, the resistant cancer cells dominated the tumor
microenvironment. For patient037, resistant cancer cells were
suppressed continuously in the first four clinical cycles and the
predicted cycles, where only a slight increase of resistant cancer
cells was found in the extrapolated cycles.

To validate the prediction accuracy of our model, we compared
the predicted serum PSA level with the ground truth in an out-
of-sample experiment (validation set, refer to Methods (2.1)). The
results in Figure 2d showed that the model predicted the dynam-
ics of PSA well (R2 = 0.84).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data


6 | Lu et al.

Figure 3. The figure displays a statistical analysis of patient responses to treatment, with panel (A) showing the distribution of γ , for response and
resistance group, panel (B) showing the average change of A21 = 1

1+eγ t with the 95% CI over time for resistant (green) and responsive (blue) patients
and panel (C) showing the receiver operating characteristic curve for using the value of γ to classify the patients into resistance and response groups.
Clinicians’ labels in the clinical trial data are used as the ground truth.

These results verified the capability of the proposed tM-GLV
model to characterize the resistance development and the indi-
vidual responses to IADT among the patients. Additionally, the
model captured the interplay between drug dosage and intratu-
moral competition in cancer evolution.

Predict patients’ responses using the resistance
index
With the model at our disposal, we use the parameters to catego-
rize patients as either resistant or responsive. Our results provide
empirical evidence that the best predictive power for differenti-
ating resistance from response comes from the parameter γ (C-
statistic=0.97, receiver operating characteristic curve depicted in
Figure 2c). Also, given to the imbalanced natural of the positive
and the negative samples, we reported Matthews Correlation
Coefficient to better illustrate the power of parameter γ , which
is around 0.798. For more results in terms of the paramaters
analysis, please refer to Supplementary file 3 and Supplementary
Figure 4 in Supplementary S11). Consequently, we designate γ as
the resistance index.

The distribution of the resistance index for all patients is
visualized in the left panel of Figure 3a, where the blue dots signify
responsive patients and the green dots denote resistant patients.
The average resistance index of resistant patients (0.384, 95%
CI: (0.249, 0.519)) is significantly greater than that of responsive
patients (0.029, 95% CI: (0.014, 0.044)), with a P-value of 1.28×10−6

in the Wilcoxon rank-sum test. Examining the two patients in
Figure 2, Patient037, a consistent responder, has a resistance index
of 0.0021, while Patient012, a resistant patient, has a resistance
index of 0.576.

Using a false positive rate of 10% to establish the threshold, we
classify patients into two groups. The resistance index demon-
strates a TPR of 0.909 and an FPR of 0.061, with a threshold of
0.115. These findings support our selection of γ as the resistance
index in our model. This indicates that the resistance index γ ,
derived from actual data, captures the key intratumoral evolu-
tionary characteristics of patients and can differentiate respon-
sive patients from resistant ones. We also conducted extensive
leave-pair-out cross-validations to further assess the robustness
of our results (details can be found in Supplementary S9).

Moreover, we define a(t) = 1/(1 + eγ t) from the community
matrix (see Methods (2) and Supplementary S2 for more
information) as the competition coefficient, which represents
the degree of resource overlap between the two cancer cell types
in the tumor microenvironment. The competition advantage of

responsive cancer cells over resistant cancer cells is then
calculated as #(responsive cell) × a(t)/#(resistance capacity) and
vice versa. A higher a(t) value implies greater resource sharing
and increased competition between the two sub-populations. In
Figure 3b, we plot the coefficient a(t) over time to demonstrate
the dynamics of competition intensity. The coefficient decreases
rapidly in the resistance group, leading to swift drug resistance,
while the decline is more gradual in the response group, resulting
in sustained drug responsiveness.

Reinforcement learning informs adaptive drug
administration policy for better treatment
outcome
The predefined thresholds for suspending and resuming treat-
ment in the standard IADT are not personalized, leading to sub-
optimal treatment outcomes. The proposed tM-GLV model cap-
tures individual patient’s intratumoral evolutionary dynamics
with personalized parameterizations through the model fitting
and validation. In this section, the optimal dosing policies are
obtained through Proximal Policy Optimization [39] for 11 resis-
tant patients and 51 responsive patients. For the training con-
vergence and evaluation information, please refer to Figure 3 in
Supplementary S11.

I2ADTon resistance group
The reinforcement learning-derived I2ADT can significantly post-
pone resistant patients’ TTP. Figure 4a shows the dosing policies,
treatment outcome of I2ADT in left panel, and the corresponding
standard IADT on all resistant patients in right panel. Three major
differences existed between I2ADT and standard IADT.

First, the average time of each treatment cycle reduces com-
pared with the standard IADT, with treatment on: 5.0 months
versus 13.6 months; treatment off: 8.7 months versus 8.9 months.
With such an adaptive dosing policy learned by reinforcement
learning, the population of responsive cancer cells oscillated at
a relatively high level before the occurrence of resistance, as
presented in Figure 4b. The competitive advantage of responsive
cancer cells also exhibits such an oscillating pattern, indicating
that the proposed I2ADT could suppress resistant cancer cells
by giving competition pressure to responsive cancer cells. The
biphasic pattern commonly observed in IADT [25], which also
existed in our simulation, as shown in Figure 4c, was prevented in
I2ADT by the shortening of the treatment-on period. The biphasic
pattern indicates that after the treatment was turned on for a
period of time, the effectiveness of continuous drug treatment

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
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Figure 4. The treating strategies for resistance group, alongside two selected patients’ evolutionary dynamics. (A) The dosing policies for patients in the
resistance group. Each row denotes a resistant patient. The left and right bars present the I2ADT and IADT outcomes, respectively. The black crossing
denotes the end of the clinical trial (EOC), and the caret-left icon denotes the end of the simulation (EOS). The color density of Cpa-On and C&L-On is
proportional to the CPA dosage. (B) and (C) present the evolutionary dynamics of PSA and cancer cells under I2ADT and standard IADT in patient099,
respectively. In Figure (B), there are 24 treatment cycles for 120 months (5 months per cycle in average), while in Figure (C), there are two cycles for 43
months (21.5 months per cycle in average).

declines, as reflected by the flattened slope of the patient’s PSA
curve.

Second, I2ADT resulted in pattern of declining treatment-on-
time over time for the resistant population (refer to Supplemen-
tary S10). In general, the responsive cancer cells were gradu-
ally losing the competition with resistant cancer cells. So, I2ADT
helped responsive cancer cells re-grow by reducing the treatment-
on time in each cycle. However, due to small number of resistance
population, the decline pattern of dosage is not significant. Please
refer to the Supplementary S10 for additional analysis of the
decline pattern of the dosing policies.

Thirdly, the I2ADT learned through reinforcement learning was
dynamic and tailored to each patient’s needs. In the initial stages
of treatment, I2ADT provided a greater competitive advantage for
responsive cancer cells over resistant ones, when compared with
both IADT and conventional continuous ADT. This is illustrated in
Figure 5a. As treatment progressed and intratumoral competition
continued, the competitive advantage of responsive cancer cells
gradually decreased to zero in both IADT and ADT. However, in
I2ADT, a significant competitive advantage still persisted, allowing
responsive cells to compete with the resistant cancer cells and
ultimately prolonging the survival time of resistant patients.

To compare the effectiveness of I2ADT with IADT or ADT,
we use two surrogates: TTP and progression-free survival (PFS).
TTP is defined as the time at which the simulation reaches the
end of simulation (EOS) for an individual patient. FPS refers to
the time from the initiation of treatment to the occurrence of
disease progression (EOS). The EOS is reached when either the
resistant cancer cells account for 80% of their capacity or when
the simulation reaches its maximum number of steps (120).

Simulation results demonstrate that by maintaining a higher
competitive advantage during the early stage, I2ADT significantly
prolonged TTP and PFS rates compared with standard IADT or

ADT (P-value = 0.0019), as shown in Figures 5b and c. These results
indicate that the adaptive dosing can be an effective strategy
for delaying the onset of drug resistance and improving patient
outcomes.

I2ADT on response group
The 51 responsive patients had a small resistance index γ , which
was much smaller than that of resistant patients. Therefore,
the resistant cancer cells had been consistently suppressed by
the responsive cancer cells, leading to less intense competition.
As shown in Figure 3b, the competition advantage of responsive
cancer cells declined slowly over time. Similar to the case of the
resistance group, the proposed I2ADT learned a dosing policy with
shorter treatment cycle (treatment on: 1.3 month versus 13.4
months; treatment off: 3.5 months versus 16.5 months ) to fully
utilize the competition advantage of responsive cancer cells and
to further reduce the risk of developing drug resistance and the
cumulative drug dosage.

A distinct difference existed between the I2ADT for responsive
patients and that for resistant patients. In general, an ascending
pattern of dosage was observed in the I2ADT for most responsive
patients by increasing the dosage and/or the treatment-on time in
each cycle (as shown in Figure 6b and c for patient106). The resis-
tant cancer cells can be suppressed to a low level. Thus, I2ADT
tended to further reduce the overall tumor burden by killing
more responsive cancer cells, so that the risk of other disease
progression events, such as metastasis and comorbid conditions,
could be further reduced. The Supplementary S10 presents details
of additional analysis of the ascending dosing policies.

Although the responsive patients did not develop drug resis-
tance in the original clinical trial, I2ADT further reduced the risk
of drug resistance in the long run by maximizing the evolutionary
competition between the responsive and resistant cancer cells.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data


8 | Lu et al.

Figure 5. The figure presents the comparison among I2ADT, IADT and ADT for the resistance group. (A) The dynamics of the competition advantage of
responsive cancer cells toward the resistant cancer cells in patient036 (upper panel) and all resistant patients with 95% CI (lower panel). (B) The PFS
rate over time with I2ADT, IADT and ADT. (C) The distribution of TTP with I2ADT, IADT and ADT.

Figure 6. The treating strategies for response group, alongside two selected patients’ evolutionary dynamics. (A) The dosing policies for patients in the
response group. Each row denotes a responsive patient. The left and right bars present the I2ADT and IADT outcomes, respectively. (B) and (C) present
the evolutionary dynamics of PSA and cancer cells under I2ADT and standard IADT in patient106, respectively. In Figure (B), there are 13 treatment
cycles for 120 months (9 months per cycle in average), while in Figure (C), there are 2.5 cycles for 62 months (25 months per cycle in average).

Taking Patient106 as an example, even if the resistant cancer
cells were under control during the entire period of the clinical
trial, and the PSA levels were successfully suppressed under

4μg/L during the treatment-on period, the population of resis-
tant cancer cells was found to already be increasing. When we
used the model to predict the future evolutionary dynamics for
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Figure 7. The figure presents the comparison among I2ADT, IADT and ADT for the response group. (A) The dynamics of the competition advantage of
responsive cancer cells toward the resistant cancer cells in patient106 (upper panel), and all responsive patients with 95% CI (lower panel). (B) The PFS
rate over time with I2ADT, IADT and ADT. (C) The distribution of TTP with I2ADT, IADT and ADT.

Table 2: The percentage of reduction of dosage and
treatment-on course of I2ADT compared with that of the
standard IADT. The pP-values of t-test are shown in the brackets.

Items/ deduction rate/ Group Resistance Response

Ave. LEU (mg/Month) 87.7% (10−5) 71.7% (10−16)
Ave. CPA (mg/Day) 60.3% (10−6) 43.4%(10−13)
Ave. Treat-on Per cycle 27.1% (0.027) 40.3%(10−15)

this patient, we found that drug resistance would emerge on
day 1750 (EOS). Similar results were observed in most of the
responsive patients (Figure 6a). Drug resistance would emerge
eventually after a sufficiently long period of time. By reinforce-
ment learning, the proposed I2ADT prolongs the TTP to 10 years
(the maximum period of simulation) and increased the PFS rate
significantly.

Similar simulation results demonstrate that by maintaining a
higher competitive advantage during the early stage, as shown in
Figure 7a., I2ADT significantly prolonged TTP and PFS rates com-
pared with standard IADT or ADT (P-value = 0.001), as shown in
Figures 7. bandc but also reduce much more drug dosage, improv-
ing life quality. These results indicate that the adaptive dosing can
be an effective strategy for delaying the onset of drug resistance
and improving patient outcomes.

Dosage reduction
Considering the inevitable adverse events of the treatment-on
period of ADT [41], it is preferable to reduce the dosage as long as
the disease is under control. We compared the deduction rate of
averaged dosage of Cyproterone acetate (CPA), Leuprolide acetate
(LEU) by cycle and the overall treatment-on percentage with the
standard IADT in (Table 2).

A significant reduction of the dosage of both CPA and LEU and a
reduced percentage of the treatment-on period in the treatments
of I2ADT were found, indicating that the proposed I2ADT can
reduce the risk of incidence of adverse events of treatment and
enhance the quality of life of prostate cancer patients.

Validation of I2ADT
To further validate the efficacy of the proposed I2ADT beyond the
simulations, we performed two additional validations.

As shown in the previous sections, the proposed method I2ADT
led a better outcome with less dosage as compared with the
standard IADT in the simulations. However, validation with exter-
nal data is needed to further demonstrate the clinical feasibility
of the proposed I2ADT. Here, we present two additional vali-
dations: external data validation (Section (3.4.1)) and individual

new patient validation (Section (3.4.2)). The detailed methods and
algorithms 1 and 2 are given in the Supplementary S1.

Validation with external clinical trial data
In a recent pilot clinical trial [42], clinicians implemented the
IADT approach, which involved suspending treatment when PSA
levels decreased to 50% of the pretreatment value and resuming
treatment when PSA levels returned to baseline. This strategy
is varied from the traditional one. Although this IADT strategy
successfully increased TTP and reduced dosage, it remains a
population-based approach and is not optimized for individual
patients.

We applied the proposed I2ADT method to patients in this pilot
clinical trial by first training the tM-GLV model to obtain the PCaC
environment and then using PPO to determine individualized
treatment strategies. To facilitate a fair comparison, we extended
the IADT dosing policy using the same 50% threshold criteria until
the EOS was reached. The resulting dosing policies are illustrated
in Figure 8a, and the corresponding PFS/TTP values are presented
in the panel b and c of Figure 8. The simulation results revealed
that 88.2% (15 out of 17) of patients would experience a longer
TTP (P-value= 6.3 × 10−4) with the I2ADT approach. With I2ADT,
the average treatment-on and treatment-off durations for each
cycle are 1.63 and 8.73 months, respectively. In comparison, the
IADT group has average durations of 7.1 and 6.83 months for
treatment-on and treatment-off periods, respectively. The average
dosage and treatment-on percentage for each cycle were reduced
by 55.6% (P-value= 5.7 × 10−6) when using the I2ADT method.

To sum up, the external data validation further validated that
proposed I2ADT can achieve better treatment outcome as com-
pared with the conventional IADT.

Validation with individual new patients
In clinical settings, it is common for practitioners to be unaware
of a new patient’s response to treatment. As such, we designed an
experiment in a hypothetical prospective scenario where a new
patient undergoes treatment without any prior knowledge of their
response to ADT. In this setup, each patient initially receives IADT
for a fixed time period (corresponding to the first IADT treatment
cycle in our experiments) and then transitions to the personalized
I2ADT approach after gathering data from the IADT treatment.
In the clinical trial [6], PSA testing occurs on a monthly basis.
To acquire more data and better understand a patient’s cancer
dynamics, we propose a weekly PSA test during the first IADT
treatment cycle. We refer to this strategy as delayed-I2ADT.

In Table 3, we present the results for two representative cases:
patient 001 (responsive) and patient 011 (resistant). For both

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae071#supplementary-data
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Figure 8. The results of the validation set, including the dosing strategies and the comparison between IADT and I2ADT. A) shows the dosing policies
for patients in the validate group from a pilot clinical trial [42]. Each row denotes a patient, and x-axis denotes the time (day). The left and right bars
present the outcomes for I2ADT and IADT described in [42] (with a fixed 50% threshold), respectively. B) and C) compare the FPS rates over TTP and TTP
distributions between IADT and I2ADT strategies.

Table 3: TTP and average dosage for delayed-I2ADT, I2ADT and
standard IADT.

Patient001 (responsive) Patient011 (resistant)

delayed-
I2ADT

I2ADT IADT delayed-
I2ADT

I2ADT IADT

TTP (month) 120 120 115 120 120 97
Ave. CPA
(mg/day)

56.6 50.4 73 45.8 52.9 81.2

Ave. LEU
(mg/month)

0.94 2.52 3.3 0.51 0.06 7.1

patients, delayed-I2ADT achieved similar performance as I2ADT,
exhibiting the same TTP and comparable dosages. Both delayed-
I2ADT and I2ADT resulted in longer TTP and lower dosages com-
pared with IADT. For patient 001, delayed-I2ADT led to a higher
dosage than I2ADT, while for patient 011, delayed-I2ADT led to a
lower dosage. The minor difference between delayed-I2ADT and
I2ADT can be attributed to less intense intratumoral competition
during the first IADT treatment cycle. This experiment demon-
strates that new patients can benefit from I2ADT by initially
undergoing IADT in the first treatment cycle and subsequently
transitioning to a patient-specific, optimized I2ADT approach for
subsequent treatment cycles.

DISCUSSION AND LIMITATIONS
In this work, we propose the I2ADT dosing strategy in prostate
cancer, enhancing the suppression of resistant cells by leveraging
the competitive advantage of responsive cells. This approach,
I2ADT, is adaptable for optimizing treatments across various
cancer types due to the inherent flexibility of the reinforcement
learning. The adaptation needs to do is the mathematical

modeling for specific cancer types, the revised reinforcement
learning structures and the availability of the clinical data. This
adaptability makes it a promising tool for other cancer types,
where treatment regimens might need to be individualized based
on patient characteristics and disease dynamics. In cancers with
well-characterized protocols and rich datasets (e.g. breast cancer,
colorectal cancer), the transition is more natural. While the
framework of our DRL model could be applied to other cancers,
it would require significant customization to incorporate the
specific treatment options, progression markers, and patient
response criteria relevant to each cancer type. Moreover, rigorous
validation through clinical trials or retrospective studies would be
essential to establish the model’s efficacy and safety in different
oncological contexts.

In recognizing the limitations of our study, we aim to provide a
comprehensive understanding of the factors that should be con-
sidered when interpreting our results and contemplating future
research directions. Our AI model demonstrates robust perfor-
mance within its current application; however, its generalizability
is limited by the specificity of the data used for its training and
has not been tested across diverse clinical settings. The clinical
trial data used in this study focus mainly on drug administra-
tion and PSA level measurements, omitting broader physiological
factors, genetic factors and lifestyle factors due to data con-
straints. Although we assume the clinical outcome and treatment
reflects these personalized information and then learnt by our
model, such exclusions represent the data limitations that future
studies should aim to address.

Additionally, while our model integrates the effects of both LEU
and CPA, the nuances of their combined effect on the disease’s
pathway interactions remain to be elucidated. The model’s effec-
tiveness could be significantly improved with access to more
detailed patient-specific clinical and pathological data, including
information on drug combination effects.
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The complexity and ‘black-box’ nature of deep learning models
like ours present interpretability challenges that are critical to
address for gaining trust in healthcare practices and facilitating
the adoption of AI systems. Integration of these systems into exist-
ing clinical workflows remains a hurdle, compounded by the need
for continuous updates to the model as new data are collected.

In our study, PSA serves as the sole biomarker, despite the
knowledge that a more comprehensive biomarker panel, includ-
ing circulating tumor cells and cell-free DNA, could provide a
more nuanced picture of disease progression and improve the
calibration of the reinforcement learning algorithm. Moreover,
our reinforcement learning model’s reward function, based on
simulated outcomes, may not fully capture the complexity of
clinical scenarios where measuring the direct effects of drugs and
the competitive interactions between phenotypes is challenging.

We also acknowledge that the serum hormone levels, main-
tained at castrate levels during treatment periods in our model, do
not reflect the variability observed in patients’ recovery of serum
testosterone post-treatment [43], a factor not accounted for in our
study due to missing information.

This study is retrospective and simulation-based and thus
should be interpreted with the caution warranted for such studies.
In anticipation of future research, we plan to conduct a pilot
clinical trial to validate the I2ADT in prostate cancer patients and
explore its applicability to other cancer types. We aim to further
refine the model by integrating additional domain knowledge and
clinical insights.

CONCLUSION
Here we demonstrate application of the latest reinforcement
learning techniques to individualize the intermittent drug admin-
istration by characterizing the unique cancer competition envi-
ronment.

Drug resistance is inevitable in ADT and often leads to treat-
ment failure. By integrating the Darwinian evolution patterns of
cancer cells into the drug administration, IADT achieved better
outcomes in clinical trials [6, 10, 42]. Existing IADT approaches
are population-based and do not consider the heterogeneity of
patients. In this paper, we proposed the data-driven and patient-
specific I2ADT, which integrates the mathematical models of
intratumoral evolutionary dynamics and reinforcement learning
to inform personalized intermittent drug administration policies.
I2ADT significantly increased the TTP and reduced the cumulative
drug dosage, as indicated by the results of the experiments.

Moreover, we propose the delayed-I2ADT approach as a prac-
tical solution for applying the personalized I2ADT approach to
new patients with limited clinical data. Our results show that
delayed-I2ADT can achieve similar performance to I2ADT, with
the similar TTP and dosage. The delayed-I2ADT approach provides
a new perspective on how to improve the clinical outcome of
prostate cancer patients by adopting a personalized treatment
plan. Further studies are needed to validate the effectiveness of
the delayed-I2ADT approach in a clinical setting.

Cancer treatment typically involves multiple lines of therapies
and the use of multiple drugs. Every patient has a unique cancer
phenotype and tumor microenvironment. In the context of ADT in
prostate cancer, our methods yielded a highly personalized dosing
policy that maximizes the competition advantage of responsive
cancer cells to suppress resistant cancer cells. The I2ADT can be
easily extended to optimize the treatment of other cancers.

Though limitations and challenges are presented in this work,
as we look to the future, we believe the collaboration of data

scientists, pharmacologists and oncologists could further opti-
mize I2ADT and other adaptive therapy strategies. Such interdis-
ciplinary efforts are critical to harnessing the full potential of
personalized medicine to enhance cancer treatment outcomes.

Key Points

• We proposed a novel mathematical model to char-
acterize the heterogeneous intertumoral evolutionary
dynamics of individual prostate cancer patients.

• We developed a deep reinforcement learning algorithm
to derive the personalized optimal drug administration
policy.

• Experiments demonstrated that the proposed methods
can significantly prolong the time to progression of
prostate cancer patients with reduced drug dosage.

• This is the first study harnessing the power of deep rein-
forcement learning techniques to identify personalized
adaptive therapy for metastatic prostate cancer.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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