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Abstract: Autonomous systems are becoming increasingly relevant in our everyday life. The trans-
portation field is no exception and the smart cities concept raises new tasks and challenges for the
development of autonomous systems development which has been progressively researched in
literature. One of the main challenges is communication between different traffic objects. For instance,
a mobile robot system can work as a standalone autonomous system reacting to a static environment
and avoiding obstacles to reach a target. Nevertheless, more intensive communication and decision
making is needed when additional dynamic objects and other autonomous systems are present in the
same working environment. Traffic is a complicated environment consisting of vehicles, pedestrians,
and various infrastructure elements. To apply autonomous systems in this kind of environment it is
important to integrate object localization and to guarantee functional and trustworthy communication
between each element. To achieve this, various sensors, communication standards, and equipment
are integrated via the application of sensor fusion and AI machine learning methods. In this work
review of vehicular communication systems is presented. The main focus is the researched sensors,
communication standards, devices, machine learning methods, and vehicular-related data to find
existing gaps for future vehicular communication system development. In the end, discussion and
conclusions are presented.

Keywords: sensors; vehicle technologies; machine learning; communications

1. Introduction

Intelligent transport systems (ITSs) define progressive topics of connected cars, con-
nected automated driving, and vehicular communication systems which are expected to be
game changers for future traffic mobility with further technological developments [1,2].
The main concern of ITSs is the increase in road safety and security by minimizing or
fully avoiding human errors through the development of autonomous vehicles (AVs) [3].
It is unlikely that Avs can achieve their full potential without automating the vehicle’s
communication with surrounding objects. This can be achieved through technological
improvements in sensors that can sense the surrounding environment based on physical
stimuli and a range of communication equipment that transmits collected and/or pre-
processed data to nearby road users to ensure an efficient traffic cycle. Communication
quality is one of the critical factors that determine the development of ITSs. According
to [4], recent studies have analyzed and developed road safety and security in terms of
latency and reliability. Research has also concluded that ITSs, because of wireless data
transmission, encounter various attacks, e.g., signal hacking, that could lead to reduced
autonomous driving performance. Therefore, the main communication attributes such as
data authentication, availability, confidentiality, and real-time constraints must be taken
into account. The concept of vehicular communication systems in the common literature is
known more as vehicle-to-everything (V2X) communication, which has a wide range and
covers different traffic elements, as shown in Figure 1.
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Each element of V2X has specific advantages, problems, and limitations. One of the 
main communications elements of V2X that has aĴracted aĴention is connectivity between 
vehicles (V2V). The main task and challenge of this connectivity is to enable unlimited 
data exchange in real-time without additional means [7]. It is believed that the achieve-
ment of this aim will enhance and replace traditional forms of data exchange in traffic 
with different wireless communications. For example, many turn to AI methods for 

Figure 1. Vehicular communication elements: V2V—vehicle-to-vehicle; V2I—vehicle-to-infrastructure,
V2P—vehicle-to-pedestrian, V2D—vehicle-to-device, V2N—vehicle-to-network, and V2G—vehicle-to-
grid communications.

These different elements of V2X communication are essential for autonomous driving
to make it safe and robust. The complexity of autonomous driving is defined in terms of
automation levels, which can be specified for a particular V2X element and are represented
in Table 1, as described in previous research [5,6].

Table 1. The differences between automation levels.

Automation Level Description Data V2X Elements

Level 0
No automation,

driver only
The driver performs all driving tasks. Manual control, no

data transfer. -

Level 1
Specific automation,

driver is assisted

The driver performs most driving tasks but
some vehicle functions can be assisted by

the equipment.

Speed monitoring
and control. V2D

Level 2
Partial automation,
driver is assisted

The driver performs fewer driving tasks
but must be engaged since some functions
like acceleration or steering are automated.

Steering and
acceleration control.

V2V, V2I,
V2P, V2D

Level 3
Self-Driving automation,
partial driver interaction

The driver is only necessary to take control
of the vehicle with notice, but not required

to observe the environment.

Environmental perception
of RFID tags, obstacles.

V2V, V2I,
V2P, V2D, V2N

Level 4
High automation,

specific driver interaction

The driver is not needed for autonomous
driving to perform driving functions. The
driver can take control of crucial driving
tasks or in other specific circumstances.

Autonomous path
following according to

scanned road pattern data,
tags, transmitting devices.

All

Level 5
Full automation,

no driver interaction

The driver performs no driving tasks but
can take control.

Interconnected data
controlled with AI

methods, connected to the
Internet of things.

All

Each element of V2X has specific advantages, problems, and limitations. One of the
main communications elements of V2X that has attracted attention is connectivity between
vehicles (V2V). The main task and challenge of this connectivity is to enable unlimited data
exchange in real-time without additional means [7]. It is believed that the achievement
of this aim will enhance and replace traditional forms of data exchange in traffic with
different wireless communications. For example, many turn to AI methods for developing
improved wireless communications systems with enhanced optimization and security
changing human-based linear rules to AI-based non-linear rules.
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Research presented in [8] has pointed out four main V2V-related applications: traffic
management, road safety, direction and route optimization, and driver assistance. Traffic
management can be implemented using shared communication systems between vehicles
to avoid high traffic and congestion and to optimize the schedule of traffic lights to reduce
average delays. For road safety applications, the main concern is to prevent and reduce
the number of road accidents, which are represented in terms of communication delays.
Direction and route can be optimized by analyzing road and weather conditions. Driver
assistance, also known as Advanced Driver Assistance Systems (ADASs), can be used to
improve, automate, or adapt some or all of the tasks depending on vehicle operation, e.g.,
braking or avoiding collisions. One of the examples of V2V communication is platooning,
where connected and autonomous vehicles can coordinate their driving speed to reduce
vehicles’ air resistances by optimizing the distance between them [9].

Vehicles enroute face not only other vehicles but also surrounding infrastructure such
as traffic lights, road signs, communication antennas, buildings, bridges, etc. Communi-
cation with such objects is referred to as vehicle-to-infrastructure (V2I) connectivity. V2I
connectivity can be divided into two big research fields according to the raised challenges
and required equipment. These sub-fields are: surrounding or road infrastructure [10] and
smart parking systems [11]. The main concern of surrounding infrastructure (outside) is
that can be influenced by the environment and weather [12], whereas smart parking sys-
tems (mostly inside) are the signals throughput across dense constructions [13]. They can
be improved using additional equipment. In the road infrastructure, sensors like cameras,
radars, and other infrastructure like road signs or weather stations are used to broadcast
information, e.g., about speed limits and weather conditions [14]. In smart parking systems,
for example, proximity sensors [15] and Radio-Frequency Identification (RFID) [16] tags
are used to identify and broadcast the data about a vehicle or parking lot status.

Even more vehicles, like battery electric vehicles (BEV) and plug-in hybrid vehicles
(PHEV), are becoming prevalent in traffic, and additional infrastructure of charging stations
is necessary in parking places and at homes. Therefore, the information regarding available
charging stations or needed load is important. This particular case is called vehicle-to-
grid (V2G) communication, in which the main concern is to balance charging loads, e.g.,
by transferring the energy from the most charged cell to the least charged, in parking
systems [17] or even at homes (vehicle-to-home (V2H)) [18] based on data exchange with
electric vehicles (EV), thus reducing bill costs.

Another aspect of V2X communication is vehicle-to-pedestrian (V2P) connectivity,
which is also an important part of the traffic, and the main concern is to ensure the safety
of both parties [19]. This communication uses on-board sensors in the vehicle, like LiDAR
(light detection and ranging), radars, or cameras to warn the drivers of some detected
obstacles, e.g., in their way and blind spots, or automatically bypassing them, thus reducing
the number of traffic crashes [20]. Another example is when the pedestrian is informed by
a smartphone of an upcoming threat [19].

To ensure effective vehicle communication between pedestrians and other road infras-
tructure, additional devices like smartphones or tablets are employed to collect real-time
data from multiple sources [21]. This type of communication is referred to as vehicle-to-
device (V2D) connectivity and is commonly implemented via Bluetooth. There is a large
number of connected devices, e.g., with long battery life, on the Internet of Things (IoT) (or
Internet of Vehicles (IoV)) and V2D applications, where transmission of low-volume data
with low latency is implemented [22].

Guaranteeing continuous data transfer in IoT applications and all V2X communication
management systems and network technologies is the priority. Such a case is referred to as
vehicle-to-network (V2N) connectivity. For instance, all alerts regarding road and weather
conditions from different points on a long route are transferred to the vehicle in advance,
or communication with nearby vehicles via a cellular network is implemented using
networking [4]. Together with networking, cloud computing (vehicle-to-cloud (V2C)) and
data centers for vehicular applications are implemented as data management facilities [23].
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Various software updates, remote vehicle diagnostics, and complex computations like
machine learning tasks are commonly executed on the cloud [24]. It has been found that
machine learning algorithms are effective enhancements of V2X systems and are capable of
computing various complex statistical and prediction problems [25].

One of the main concerns to make autonomous driving available for everyone around
the globe is the regulation differences between different countries or continents in terms of
used frequency bands or the preference for specific communication technologies over
others [26]. For instance, Long range (LoRa) and ZigBee operate on the frequencies
of 433 MHz in Australia, 915 MHz in America, and 868 MHz in Europe [27]. Analo-
gously, Dedicated Short-range Communication (DSRC) operates on the frequency bands of
902–928 MHz in America, 5.795–5.815 GHz in Europe, and 5.770–5.850 GHz in Japan [26].

A set of various local restrictions, achievements, legal regulations, and habits require
detailed analysis and systematization for the further development of ITSs. This is true
especially in terms of technological advancements in environment sensing, fast and efficient
data processing, and the use of artificial intelligence (AI) and signal transfer.

The motivation of this review is to systematically evaluate and, in a concentrated
manner, present the latest V2X-related research and information which directly relates to
the data types and methods used for ensuring reliable efficient and secure communication.
Communication complexity strongly depends on the automation level, as a variety of
data and tasks increase significantly. This information is relevant for further experimental
research on data transferring in autonomous vehicular networking. This review focuses on
the information, data types, communication equipment, tools, and machine learning meth-
ods used to process and optimize the collected data and the communication technologies
used to transfer the data.

2. Method of the Selection Process

The search method for this research was based on [28]. Different databases such as
MDPI, IEEE Xplore, Science Direct, and Google Scholar have been utilized, and some
others were also explored because of several limitations (e.g., the article is only accessed in
specific databases) after analyzing the reference lists. Several criteria (specifically for V2X
communication) for articles have been defined for inclusion in this survey, as follows:

• Is focused on sensor applications;
• Is focused on equipment utilization;
• Is focused on machine learning adaptations;
• Is focused on data exchange;
• Is focused mostly on V2V and V2I connectivity.

Correspondingly, defined exclusion criteria are as follows:

• Articles older than 5 years are excluded with some exceptions after reviewing
reference lists;

• Articles not specifically focusing on vehicular communication or data gathering were
not selected;

• Articles focusing on railways, sea, air, or military transport were discarded.

The selection approach for this manuscript was implemented by using V2X-related key-
words, such as “car2car”, “vehicle2vehicle”, “vehicle communication”, “car2infrastructure”,
“vehicle2infrastructure”, “v2x communication”, “smart cars”, “vehicle network”, “smart
parking”, “road signs”, “traffic signs”, “vehicle detection”, and “vehicle sensors”. The
complete simplified selection procedure is shown in Figure 2.
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The search procedure gave an extensive result list, but the authors used only verified
and rectified papers.

3. Technologies in Vehicles-to-Everything Communication
3.1. Sensors

According to [29], sensors used in V2X communication can be classified into two groups:
internal and environmental. Internal sensors measure such parameters as the vehicle’s
motion, dynamic state, wheel speeds, and braking acceleration. Typical examples of internal
sensors are accelerometers and gyroscopes. Environmental sensors monitor external objects
like road signs and pedestrians. Typically for such applications, various cameras and
radar-based sensors are used. In terms of sensing technologies, the evaluation of internal
parameters is more developed and relies on older, reliable methods and technologies tested
in various practical applications; contrary to environment sensing (Figure 3), there still
exist many uncertainties requiring comprehensive research and validation.
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In V2X communication, sensors installed in the infrastructure also play an essential
role. For example, proximity sensors [30] could be implemented in the infrastructure to
monitor the absence of vehicles for effective localization in parking lots or enroute. Radio-
Frequency Identification (RFID) tags [31] could provide relevant information about various
objects (road signs, etc.).

For of a large variety of measured quantities, sensor classification based on their
operating principles allows for representing the current situation in the research area and
reveals gaps for future development. Therefore, further tables (Tables 2 and 3) present
different types of sensors and their uses in V2X.
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Table 2. Camera-based sensors used in V2X.

Sensor Measurements Advantages Disadvantages Refs.

Depth (ToF)
RGB, RGB-D cameras

Different images are
processed for color and

depth recognition

Possible to interpret
images for obstacle

avoidance or movement
tracking, land detection

and tracking, license plate
number recognition, etc.

High computational
resources for feature

recognition, less accurate
distance measurement

compared to LiDAR, and less
range compared to radar

[32–37]

Camera with
Complementary Metal-
Oxide-Semiconductor
(CMOS) image sensor

The modulated light source
to decode the

transmitted data

High resolution, low noise,
high dynamic range, lower

power consumption
Rolling shutter distortion [38,39]

Closed-circuit
television (CCTV)

camera

Videos are used for a
computer vision algorithm

and detect vacant spots

Lower costs, can resist any
weather constraints

Additional infrastructure
required, might suffer from

poor video quality
[40]

IP camera
Line-of-sight (LOS) and

non-line-of-sight (NLOS)
monitoring purposes

Can resist any weather
constraints, better image

quality than CCTV

Additional infrastructure
required, higher cost [41]

Neuromorphic camera
(event-based camera)

Event base cameras are able
to capture the change of pixel
intensity as discrete events

Allows measurements with
ultra-low latency,

overcoming under
sampling. Fast,

real-time processing.

System can be overwhelmed
if high-speed events are not

intelligently processed
and clustered

[42,43]

IR camera

Detects infrared light with a
wavelength of 700–1000 and

converts acquired heat
values into

corresponding color

Allows the detection of
heat values for detecting

obstacles in foggy
environments or

environments with limited
visible light

Infrared radiation is reflected
off glass, creating false

detection scenarios
[44]

Fish-eye

Dome-like lens shape is used
to gather light from different

directions and a special
mapping is used allowing to
generate images with convex
non-rectilinear appearance

Enables the observation of
a wide field of view from
shorter distances. Circular

view coverage of
surrounding area

Field curvature of fish-eye
camera leads to astigmatism
and higher-order chromatic

aberration. Also suffers from
optical artifacts

[45,46]

Cyclops camera

Cyclops is system which uses
low-cost monocular cameras
to perform physical identity

binding between objects’
digital and physical identity

Enables the prediction of
spatiotemporal traffic

randomness, allowing for
the identification of

security attacks and the
prediction of trajectories

System performance strongly
depends on used cameras

and target
matching algorithms

[47]

Polarized camera

Camera has integrated
polarization system, which

allows it to acquire the
orientation of the light

oscillation that appears from
reflected surfaces.

Allows the enhancement of
contrast and more

accurately detect objects in
crowded and

packed environments

Polarization filter can be
costly. Requires more light

than normal and its angle to
the sunlight needs to be

adjusted for maximum effect.

[48]

Depth (ToF), RGB, and RGB-D cameras are mostly mounted at the position of the
front window and/or the rear window in vehicles [41]. Calibration is needed to avoid
the distortion of images and for applications requiring data fusion (e.g., with LiDAR
measurements) [42]. In ML, data from cameras are used to train ML models, e.g., object
classification [43]. Another type of camera with a CMOS image sensor exploits the rolling-
shutter effect—a picture is captured line by line from top to bottom [39]. On-road area
cameras like CCTVs [47] and IPs [48] are built for vehicle observation.
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Table 3. Proprioceptive sensors used in V2X.

Sensor Measurements Advantages Disadvantages Refs.

Magnetic sensors,
magnetometer

Magnetic field or magnetic
dipole moment

It has high sensitivity, small
size, flexible installation, and

strong anti-interference ability

Not susceptible to adjacent
vehicles and can be

affected by the magnetic
signal dead zones

[15,49–52]

Accelerometer
X, Y, and Z-axis acceleration
data along with latitude and

longitude data

Portable, high-frequency,
simple interface

Sensitive to external
vibration and noise [53–55]

Proprioceptive sensors detect the state of a system. The information from magnetic
sensors and magnetometers covers the orientation estimation in combination with other
on-board inertial measurement units, e.g., accelerometers and gyroscopes [50]. Sensing
data from smartphones and ML algorithms are used to detect vehicle user status, i.e., inside
or outside the vehicle, while parking occupancy is detected via a combination of infrared
detectors, and distance sensors [52]. The accelerometer is one of the widely used sensors
that can be a separate devices or embedded into a smartphone. It is used as an internal
positioning system (IPS) as a motion and orientation sensor along with gyroscopes, GPS,
and digital compasses for mapping movements (outside the vehicle or by driving it) of the
user for short distances. It is also detects vehicle abnormalities, such as those caused by
vibrations, e.g., loosening of wheel fixing bolts before riding or speed bump detection [53].

Table 4. Exteroceptive sensors used in V2X.

Sensor Measurements Advantages Disadvantages Refs.

LiDAR sensor
Position/distance, angle,

and velocity measurements
of a specific object

The distance to an object and
the accuracy are significantly

higher than from a radar,
high angular resolution,

good mid-range detection

High computational
resources, uncertainty of

data interpretation
and analysis

[32,56,57]

Radar sensor
Position/distance, angle,

and velocity measurements
of a specific object

Can work in bad weather
conditions

Have difficulty providing
high-accuracy readings [58]

Infrared (IR) sensor
Distance estimated by

reflected IR light from the
object’s surface

Can measure large distances
and in a wide area

Difficult to distinguish the
color or object from the
complex environment,

quality can be improved by
using Gamma

Correction method

[9,59]

Light Dependable
Resistor (LDR) sensor

Measures light intensity
mostly identifying if a light

is present or not
Simple to use and integrate

The height of the vehicle
has a severe impact on

the accuracy
[30]

Ultrasound/ultrasonic
sensors

A vehicle in smart parking
lots or a vacant lot

Low cost and required
simple installation

More suitable for outdoor
environments, sensitive to
temperature changes and

extreme air turbulence,
limited range

[51,60–63]

Acoustic sensors The presence detection of
an object

No needed a
direct line-of-sight

Struggle to determine
object sizes [64]

Radio-Frequency
Identification

(RFID)
Coded readings

Fast and accurate
identification, programable

configurations of keys

Additional infrastructure
is needed [63,65–68]

Exteroceptive sensors measure the state of an environment. Examples are shown in
Table 4. Radar sensors are found to be used in combination with other on-board sensors,
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e.g., cameras, LiDAR, and odometer measurements to obtain information about the
surrounding environment. The radar sensor commonly is located on the front of the
vehicle [58]. Additionally, LiDARs are used mostly in combination with other on-board sen-
sors, e.g., cameras, radar measurements, and GNSSs (Global Navigation System Satellites)
for C-V2X wireless technology. A LiDAR-based image processing approach is used with
ML methods. These can generate a precise 3D (point cloud) map of the surroundings [32].
RFID technology and FMCW radars (or mm-wave radar) can also be used to locate the
tags [29].

From the IR sensor, the gray map is in front of the vehicle, and according to it, the
tracking is judged. As an example, according to sensor measurements between other
vehicles, vehicle velocity can be adjusted [59]. LDR sensors are quite often used with
vehicles in smart parking systems and are based on the shadow detection method [33].
Ultrasound/ultrasonic sensors help to identify if the vehicle is in a smart parking lot
or a vacant lot [63]. Large, high-density networks of parked vehicles can be recognized
more easilyusing RFID technology compared to cameras. Only an RFID tag with a unique
identification code needs to be installed within the vehicles or road signs to be read [68].
Mostly, RFID tags are used for vehicular use, e.g., parking places (Figure 4a) or tunnels
(Figure 4b), where network technologies are weak, or for the road sign (Figure 4c), e.g.,
behind obstacles, during bad weather conditions, or at night for enhanced localization and
recognition. They are also used for security authentication.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 28 
 

 

surrounding environment. The radar sensor commonly is located on the front of the vehi-
cle [58]. Additionally, LiDARs are used mostly in combination with other on-board sen-
sors, e.g., cameras, radar measurements, and GNSSs (Global Navigation System Satellites) 
for C-V2X wireless technology. A LiDAR-based image processing approach is used with 
ML methods. These can generate a precise 3D (point cloud) map of the surroundings [32]. 
RFID technology and FMCW radars (or mm-wave radar) can also be used to locate the 
tags [29]. 

From the IR sensor, the gray map is in front of the vehicle, and according to it, the 
tracking is judged. As an example, according to sensor measurements between other ve-
hicles, vehicle velocity can be adjusted [59]. LDR sensors are quite often used with vehicles 
in smart parking systems and are based on the shadow detection method [33]. Ultra-
sound/ultrasonic sensors help to identify if the vehicle is in a smart parking lot or a vacant 
lot [63]. Large, high-density networks of parked vehicles can be recognized more easilyus-
ing RFID technology compared to cameras. Only an RFID tag with a unique identification 
code needs to be installed within the vehicles or road signs to be read [68]. Mostly, RFID 
tags are used for vehicular use, e.g., parking places (Figure 4a) or tunnels (Figure 4b), 
where network technologies are weak, or for the road sign (Figure 4c), e.g., behind obsta-
cles, during bad weather conditions, or at night for enhanced localization and recognition. 
They are also used for security authentication. 

 
Figure 4. RFID usage possibilities (a) road signs; (b) tunnels; and (c) parking places [31]. 

Also, it should be mentioned that in terms of V2X communication, due to the imple-
mentation of multiple sensors based on various physical principles, sometimes sensors 
are classified according to the operating range, communication technology, or implemen-
tation method. The most typical cases are summarized in Table 5. 

Table 5. Common sensor equipment definitions used in V2X. 

Definitions Application Commonly Used Sensors Advantages Disadvantages Ref. 
Long-Range Wide 
Area Network (Lo-
RaWAN) sensors 

Used for determining the use of 
smart parking as a network infra-

structure of sensors 
Radar sensors 

Low power consumption, 
long-range protocol, and 

covers larger areas. 

Limited to a line of 
sight, audio and 

video not supported 
[49,69–71] 

Cellular sensor 
Used for determining different 
sensors that are embedded into 

mobile phones 

Accelerometers, gyroscopes, 
GPSs, cameras, magnetome-

ters 

Portable device with a va-
riety of sensors providing 
a convenient set of tools 

The challenge of de-
veloping and inte-

grating portable sen-
sors 

[11,72] 

Wireless sensor net-
works (WSNs) 

Used for determining the sensor 
nodes scaĴered throughout some 
kind of area, i.e., parking area or 
roadway; measurements are col-
lected into a station base and sent 

by wireless technology 

RFID or  
proximity  

sensors 

Accurate and fast identifi-
cation of global points in 
the working environment 

The main challenge 
is optimal node 

placement, and this 
can be achieved by 

using a 3D ray-
launching algorithm 

[61,65,73,74] 

Vehicular Sensor Net-
work (VSN) 

Used for connected and autono-
mous/smart vehicles are seen as 

Proximity, radars, and cam-
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Figure 4. RFID usage possibilities (a) road signs; (b) tunnels; and (c) parking places [31].

Also, it should be mentioned that in terms of V2X communication, due to the imple-
mentation of multiple sensors based on various physical principles, sometimes sensors are
classified according to the operating range, communication technology, or implementation
method. The most typical cases are summarized in Table 5.

As mentioned before vehicular communication systems consist of various V2X el-
ements, and it is necessary to evaluate sensors properties and functionalities to choose
accordingly for the required task. Depending on the specific task, properties like accuracy,
measurement range, robustness, and cost must be evaluated. Also, functionality is a very
important factor. For example, V2V and V2P elements require a more local detection
approach, and sensors like LiDAR, ultrasonic, and infrared should be taken into account.
On the other hand, V2I elements are used to communicate with the infrastructure, and
RFID or camera devices should be taken into consideration for integrating elements not
only into the vehicle but into the infrastructure itself. This can also allow for the exten-
sion of vehicular communication systems outside traffic, for example for parking place
monitoring.
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Table 5. Common sensor equipment definitions used in V2X.

Definitions Application Commonly Used
Sensors Advantages Disadvantages Refs.

Long-Range
Wide Area
Network

(LoRaWAN)
sensors

Used for determining
the use of smart parking

as a network
infrastructure of sensors

Radar sensors

Low power
consumption,

long-range protocol,
and covers larger

areas.

Limited to a line of
sight, audio and

video not supported
[49,69–71]

Cellular sensor

Used for determining
different sensors that are
embedded into mobile

phones

Accelerometers,
gyroscopes, GPSs,

cameras,
magnetometers

Portable device with
a variety of sensors

providing a
convenient set of

tools

The challenge of
developing and

integrating portable
sensors

[11,72]

Wireless sensor
networks
(WSNs)

Used for determining
the sensor nodes

scattered throughout
some kind of area, i.e.,

parking area or
roadway; measurements

are collected into a
station base and sent by

wireless technology

RFID or
proximity

sensors

Accurate and fast
identification of

global points in the
working environment

The main challenge
is optimal node

placement, and this
can be achieved by

using a 3D
ray-launching

algorithm

[61,65,73,74]

Vehicular
Sensor

Network
(VSN)

Used for connected and
autonomous/smart
vehicles are seen as

nodes of a
heterogeneous sensor

network and these
vehicles are the central

elements of interest

Proximity, radars,
and cameras

Significantly
improves the local

view of the working
environment,

enabling detection,
tracking, and

identification objects

Data interconnection
from sensors of

different physical
natures, thus sensor

fusion and ML
methods are

commonly used

[75]

3.2. Communication Equipment and Tools

Additional equipment and tools are necessary in V2X communication that interacts
with surroundings by indicating the action, e.g., break status indication via LEDs, storing
measured or other important information on cloud servers, or preprocessing and fusing
measured data using additional fillers. This technology also requires communication
with satellites to monitor essential navigation data. These are several examples; more are
presented in further tables (Tables 6–8).

Table 6. Common sensors equipment definitions used in V2X.

Definitions Description Application Advantages Disadvantages Refs.

Radio-frequency
(RF) transmitter/

receiver

Technology that
emits and receives

the radio/
electromagnetic

signal by antenna

DSRC, LTE, and LoRa
implementation to read
passive or active RFID

tags, e.g., parking places
and road signs

Can be used for
long-range

applications and can
pass through

obstructions to
some degree

Sensitive to other
present electronic
devices. Limited

RF spectrum

[50,62,67,76]

Global positioning
system (GPS)

Conventional
positioning system to

help the user easily
identify and monitor
the vehicle location,
heading direction,

and route

The receiver with the
antenna uses the

satellite-based system to
acquire data about
velocity, position,

and timing

It helps track paths,
predict and avoid road
congestions, and, with
additional sensors, the

road irregularities

Signals are weak or
highly distorted in

urban environments
(tunnels, multi-layer
bridges, and streets

beside high buildings),
unsuitable for precise
vehicle localization in

such areas

[55,77]
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Table 6. Cont.

Definitions Description Application Advantages Disadvantages Refs.

Differential global
positioning system

(DGPS)

Ground reference
system is used to

measure errors and
provide more

accurate satellite data
for local users.

Receiver on vehicle
acquires differentially
corrected data about

velocity, position,
and timing

Enhances GPS
precision, allowing us
to achieve an accuracy

of up to 1–3 cm

Atmospheric errors still
exist. Reference

stations have to be
built. Correction data

transmitting/receiving
provides some latency

[78]

Point positioning
real-time

kinematics global
positioning system

(PPP RTK GPS)

Positioning system
with a single receiver,

which acquires
satellite data
from ground

reference networks

PPP RTK receiver with an
antenna uses the satellite-

and ground reference
network-based system
allowing us to obtain

more accurate data about
velocity, position,

and timing

Enhances GPS
precision, allowing us
to achieve an accuracy

of up to 1 cm

Limited by satellite
conditions and

coverage. Also, affected
by environmental
obstacles. Ground
reference networks

are needed

[79,80]

Controller Area
Network (CAN)

bus

Message-based
communication with
each device without
the host computer
using two wires

It is considered to be the
main solution for

transferring information
between different units

on-board

It is fast and
cost-effective

compared to other
communication

protocols

Bandwidth limitations,
cable length limitations,

number of nodes
limitation

[2,14]

Light transmitter
(LED, incandescent

light bulbs)

Also known as LiFi
(Light Fidelity)

technology

Transmission is encoded
by varying the pulse
width modulation at

which a light turns OFF
and ON to generate

binary sequences

High-speed data
transmission

Obstacles and other
light sources interfere
with communication

[34,81]

Cloud service

High-capacity data
storage with

additional computing
resources

To receive and contain
space-consuming data,

provide specific data, and
execute resources

required for
computations, e.g., ML

training; wide and
long-range communication

Flexible, reliable, and
efficient way to store
and manipulate data

Possible outages
depending on services,
vulnerability to cyber

attacks

[23,24,40,82–84]

Table 7. Additional filters used in V2X.

Filter Application in Vehicles Advantages Disadvantages Refs.

Kalman filter

Used for stabilizing received signal
strength indicator values which are
obtained by sensors from dynamic

environments (values
always changing)

Simple and
computationally

efficient

Strongly depends on an
accurate model and initial
conditions, convergence to

suboptimal solutions
because of possible errors
in model and assumptions

[33,37,58]

Unscented Kalman
Filter

Estimation of velocity and slip
angle of vehicle are implemented
together with Machine learning
methods such as Convolutional

Neural Networks or Radial Basis
Neural Networks

Better estimation
results with non-linear

system
Computational complexity [85]

Interacting Multiple
Models filter

The objective is to enhance the
resilience of navigation and to

mitigate the impact of fluctuations
in system models and measurement
noise models due to external factors

Better estimation
results with noisy data

A selection of the number
and type of filter models is

a prerequisite.
[86]

First- and
second-order divided

difference filters

This approach allows the filter to be
implemented without the need for

any knowledge of the partial
derivatives of the system dynamics

and measurement equations.

Capable of solving
numerical instability

problems in noisy
nonlinear time-series

prediction

Has limited accuracy
because these methods are
based on an approximation

[87]
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Table 7. Cont.

Filter Application in Vehicles Advantages Disadvantages Refs.

Particle filter
Achieves better precision in

localizing the vehicle position
based on noisy information

The ability to handle
non-linear and

non-Gaussian dynamic
models allows for

application of this filter
to a wide range of

applications

Computationally can be
very expensive. Sensitive

to previous distributions of
the particles

[88,89]

Symmetric
measurement

equation (SME) filter

An effective solution for multiple
target tracking and is suitable for a

densely-spaced large number of
targets (like vehicles)

Low computational
demands

Suffers from strong
non-linearities [90]

Table 8. Common equipment definitions used in V2X.

Definition Description Equipment Application Refs.

Electronic Control Unit
(ECU)

Embedded systems within
modern vehicles

communicate over
networks to control

different vehicle systems

Commonly it is
connected through a

CAN bus

To communicate to other
ECUs, sensors, and actuators

(e.g., on-board units)
[2]

Computing/
processing unit

A separate unit to perform
the additional

computational power
required and complex tasks

Commonly it is
connected to the ECU

or cloud

The computational burden
and bandwidth-demanding

performance of AI and
machine learning tasks

[91]

On-board unit (OBU)

The embedded vehicles
system has necessary

sensors and processing
units to collect

surrounding information
and process to transfer it

Uses a wireless
transceiver and receivers

to communicate with
surrounding vehicles and

infrastructure

Transmission of location
information (e.g., vehicle
direction and speed) to

the ECU

[19,27,92,93]

Road-side unit (RSU)

Surrounding
infrastructures that are

equipped with a processing
unit and transceiver

Uses a wireless
transceiver and receivers

to communicate with
surrounding vehicles and

infrastructure

Used to warn and suggest a
direction to the nearby

vehicles depending on the
received data by

other vehicles

[10,27,73,74]

Cooperative intelligent
transportation systems

(C-ITS)

Transportation system with
the enabled cooperation

Surrounding vehicles or
RSUs as sub-systems

Data exchange between two
or more ITS sub-systems
enables and provides an

enhanced service level with
better quality

[1,94]

Reliable data flow and storage are essential for vehicular communication systems. Be-
cause of the listed advantages and disadvantages presented in Table 6, each communication
equipment has its place in the overall functionality of the urban system. This equipment
enables communication between all elements of vehicular communication systems.

Filters are essential tools to deal with the raw data of the sensors, which, after postpro-
cessing, can be manipulated much more efficiently. Some key factors to take into account
when choosing a filter for a specific task are computational load, ability to deal with non-
linear data, and noise. As data can vary depending on their physical nature, the task and
functionality of the device’s AI machine learning methods are commonly integrated which
will be introduced in the next chapter.

Because of the wide variety of devices used in vehicular systems, specific units are
commonly used to interconnect different sensors or communication devices. Modules
make it easier to set up and integrate required devices. Also, as shown in the table above,
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these units serve the purpose of classifying devices according to their applications, making
it more convenient for vehicular system development.

3.3. Machine Learning Tools

Various artificial intelligence (AI) and specifically machine learning (ML) algorithms
are used to enhance the quality of different vehicle communication systems. All ML
algorithms can be separated into four distinctive categories: supervised, unsupervised,
semi-supervised, and reinforcement learning [49]. In V2X communication, all four types of
ML are applied. Supervised learning could be used to detect the occupancy of a parking
lot by using labeled data to solve classification and regression tasks [95]. Unsupervised
learning is more suitable for data grouping (clustering) tasks and could be used to group
various types of vehicles according to their shape [82] or similar tasks. Semi-supervised
learning is used when there is a lot of unlabeled data, but in combination with a small
amount of similar labeled data, the pattern can be trained and used for classification
tasks [96]. Reinforcement learning provides the most positive outcome in a sequence of
decisions by ignoring irrelevant information during the training [97]. For example, it can
be used to define the best vehicle acceleration at any point of the route to minimize fuel
consumption.

With the development of microcomputers and the increase in computational power in
edge computing devices, ML implementation in V2X communication has become possible.
Research performed by W. Tong et al. [25] pointed out that V2X and ITS systems, together
with AI can expand the driving perception and predict potential accidents to avoid them,
enhancing the comfort, safety, and efficiency of driving. They can also enable real-time
traffic flow prediction and management, location-based applications, congestion control,
and enhanced capabilities of self-driving vehicles [98]. The authors of [99] proposed an
idea to use AI to identify and monitor the authorized drivers and their state, count the
number of passengers in the vehicle, and detect an unattended child in a vehicle, thus
increasing the safety inside the vehicle. In contrast, research presented in [100] was focused
on vehicle safety. It has been revealed that AI algorithms can overcome some important
challenges for V2X communication security systems. AI algorithms could minimize delays
caused by security key distribution for authentication and optimize data fusion procedures
in terms of time and computational resources.

One of the most researched and technologically fulfilled ML implementations in V2X
communication is vehicle localization. A summary of the research reported in this field in
the last 5 years is presented in Table 9.

Table 9. Machine learning methods used for vehicle localization.

The Aim of Use Approach ML Method(-s) Achievement Refs.

Obstacle avoidance,
localization, mapping,

navigation

LiDAR-based image
processing CNN

Results show that the obstacle
recognition rate can reach up

to 97% at a far distance
[6]

Find areas where
vehicles are

located and their
approx. number

In combination with CNN,
using input images and
obtained feature vectors

after training

Support vector
machine (SVM)

and faster regions with
CNN

The faster R-CNN method
achieved better classification

results compared to SVM
[24]

Brake light recognition
from a single image in

real-time

Brake Lights Patterns (BLP)
database

AlexNet
(CNN-based)

The ML model can classify
vehicles when brakes are
pressed or not pressed in
real-time; the prediction

accuracy is improved by using
LiDAR sensor data fusion

[35]
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Table 9. Cont.

The Aim of Use Approach ML Method(-s) Achievement Refs.

To localize the car
using an unmanned
aerial vehicle (UAV)

Use of images taken from
UAVs with a combination

of linear SVM

Convolutional Neural
Network (CNN also
known as ConvNets)

The proposed method
outperforms the vehicle’s
catalog-based and feature
extraction of histograms of

gradient methods in accuracy
and computational time

[38]

Multi-detection and
tracking; recognition

and deviation of
different vehicles and

other objects in various
circumstances,

including parking lot
and number plates

Roboflow dataset of
real-time video sequences
of road traffic with Python

OpenCV; videos taken
with a CCTV camera to

train ML models

YOLO-based
models and

combinations with
other ML models

These systems are capable of
identifying different traffic

objects in various
circumstances with accuracy in

range from 80% to 96%,
depending on the architecture

[82,101–104]

Vehicle detection in
complicated

environments and
weather conditions

The KITTI (Karlsruhe
Institute of Technology and

Toyota Technological
Institute) dataset

Single-shot multi-box
detector (SSD)
(CNN-based)

With an average mean
accuracy value of 92.18% and

an average processing time per
frame of 15 ms; the proposed

algorithm can achieve
simultaneous accuracy and

performance in real-time

[105]

Another main aspect of the training is the material used to train ML models or ar-
chitectures. Most datasets are open source and can be composed of different information
specifically for any ITS field of interest, which mostly consists of numerical, statistical, or
visual information. As an example, images of different road signs [106], statistical historical
data of parking lot occupancy [107], and relevant sensor data [54] can be found in datasets.
More summarized datasets of vehicle-related detection can be found in [108] with more
comprehensive information including environmental information, sensors used for the
data collection, format, and capacity.

From Table 9 it can be noted that CNN-based ML architectures are used the most
for object recognition and localization since images are used. In Figure 5, the example
of CNN architecture when a bunch of images of different vehicles are used to recognize
the absence of a vehicle is presented from [38]. As can be seen from these data, different
CNN architectures can be built. For instance, in Figure 5, the network is composed of
13 convolutional layers, 5 pooling layers, and 3 fully connected layers, where ReLU is
an activation function, and at the end, there is another activation function–Softmax. The
key point before using this network is that the images have to be resized to the same
dimension first.

An interesting point of view has been provided in the research [109], where sev-
eral aspects of CNN architecture that also can apply to other ML architectures have
been exposed:

• With more available data, more reliable classification results could be explored;
• If a network is calibrated well enough–it is not necessary to update the calibration on

new data;
• Increasing the number of different drivers with different driving performances will

decrease the performance of classification, and thus more data are required to receive
similar classification results;

• Aadditional information, e.g., road or weather conditions and vehicle type, could
affect the overall performance of classification;

• One of the limitations of CNN is that the input must be in the same dimension, whereas
recurrent neural networks and long short-term memory networks are more flexible
regarding the input dimensions.
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In Table 10, machine learning methods are presented specifically for perception and
best selection outcome, where CNNs are widely used, as well as some forms of YOLO (You
Only Look Once) model variations [110]. These methods focus more on monitoring parking
infrastructure and vehicles to predict the most optimal options for space availability.

Table 10. Machine learning methods are used for perception and best selection outcome.

The Aim of Use Approach ML Method(-s) Achievement Refs.

To sense the vehicle
presence in the parking

lot by using the
beacon-based
mechanism

Use of radar and
magnetometer sensors and
time-relevant data, trained

with Keras library in Python

Neural networks (NN)

The accuracy of the NN approach
reached up to 97%. The proposed

approach reduces the costs of sensor
production by at least half

[49]

To select the best
parking place for an
autonomous car in

terms of the
accessibility rate

Training has been performed
using MATLAB with a

real-life scenario composed
of 300 places divided into

five branches equally
and VSN

Tree-based algorithm

Results are close to the optimum for
the case of introducing one more

autonomous vehicle and outperform
the optimum method when

successive vehicles are the parking

[75]

To classify car parks Time series characteristics of
car parking data

K-medoids clustering
(K-means-based)

The model performs better
clustering results compared to the

dynamic time-warping model
[95]

To release parking lots
that are open to specific
groups for public usage
in shared city parking

Use of real-time collected
parking data, 168 inputs

(hourly data for 7 days), and
output prediction for the
subsequent 168 periods

Recurrent neural
network (RNN)

RNN model obtained the smallest
testing error for artificial and actual

datasets compared to other
ML algorithms

[107]

To analyze
high-frequency GPS

location data of
individual car drivers

Use of information about
speeds, acceleration,

deceleration, and
direction changes

CNN

Developed a model capable of
successfully performing

classification tasks by allocating
individual car-driving trips

[109]

To extract the main
features underlying the

time-series data in
historical driving

memory

The Next Generation
Simulation of high-quality

traffic datasets with
real-world trajectory data

and extracted main features
of the time-series driving

memory data

Auto-Encoder
(NN-based)

Results show that velocity, relative
velocity, instant perception time
(IPT), and time gap are the most

relevant parameters

[111]
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Without these applications, ML is also used to optimize the performance of au-
tonomous driving. Some of the examples are presented in Table 11.

Table 11. Optimization approaches of machine learning methods in V2X.

The Aim of Use Approach ML Method(-s) Achievement Refs.

To minimize the number
of signals which can be
used to recognize the
activities performed

while driving

With 20 drivers and the use
of sensor data from

three-point
electrooculography (EOG)

electrodes, three-axial
accelerometer, and

three-axial gyroscopes

One-dimensional
convolutional neural
network (1D CNN)

The ML model was able to
classify the actions performed
by drivers accurately, with the
maximum accuracy of 95.6%

on the validation set and 99.8%
on a training set

[54]

To improve the detection
and classification

accuracy of various
distant vehicles or other

traffic objects

Use of the UA-DETRAC,
traffic lights, and other

photos of vehicle datasets
for multi-object detection

and tracking

YOLO-based
models and

combinations with
other ML models

The evaluated classification of
different kind of vehicles’
performance metrics i.e.,

accuracy, precision, and recall
are raised.

[112–114]

To enhance the quality
and safety of

autonomous driving
control

Use of the AirSim
open-source simulator as

the training data for
real-time images of the

road

Deep Reinforcement
Learning (DRL)

Appropriate
reward-generation method to

improve the convergence
speed of the adopted models

and the control performance of
moving driverless vehicles

[115]

To simplify the search for
a motion representation

Use of three datasets of
image information

between frames:
Something-Something V1,
Something-Something V2,

and Kinetics-400

Spatiotemporal motion
network (SMNet)

(CNN-based)

ML 2D CNN-based networks
exceed other methods in

motion recognition and do not
require some pre-calculations,
thus reducing computational

costs and work time

[116]

To minimize the power
grid load variance

Implemented and tested in
MATLAB considering
statistical information

about the target load, the
actual power grid load,

and the capability of the
grid-connected EV

Genetic algorithm (GA)

The proposed algorithm shows
a better performance in

percentage improvements of
peak and valley load difference

[117]

To improve the support
for V2X communications
by finding optimal UAV

positions

Considers the current flight
altitude of UAVs,

simulations have been
executed by using

OMNeT++, SUMO, and
Veins tools

Particle Swarm
Optimization (PSO)

algorithm
and GA

With the dynamic movement
of the vehicle on the ground,

and the existing flight
restrictions, the best position of
the UAV can be determined in

real time

[118]

Many other applications of ML were applied in recent research oriented toward some
outcome prediction and other traffic parts recognition systems. Some of the examples are
presented in Table 12.

As shown in Tables 10 and 11 many different ML architectures are applied, enhancing
the performance of regular search algorithms which would otherwise consume a lot of time
dealing with monitoring parking spaces, recognizing road abnormalities, and other traffic
features as mentioned before. Nevertheless, a lot of detailed information must be extracted
from everyday traffic scenarios and simulated or classified using other methods to prepare
suitable test input data and labels for ML algorithms.
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Table 12. Prediction uses of machine learning methods in V2X.

The Aim of Use Approach ML Method(-s) Achievement Refs.

For the detection of road
abnormalities

(e.g., speed bumps)

Use of collected
accelerometer and gyro

sensor data. The ML model
has been trained by using the

R programming language
package GALGO

Tree-based algorithm
The achieved accuracy of the

trained model was 97.14%
during the test

[55]

To learn and predict when
a fleet of vehicles was

parked close to charging
stations

Uses historical data from a
fleet of 48 vehicles, including
time and GPS location data
Training is performed using

Microsoft Azure and the
Google Cloud platforms

Automated machine
learning (AutoML)

AutoML achieved the best
performance, with a prediction

accuracy of 91.4% when
individual vehicles could

potentially connect to
charging stations

[83]

Traffic sign detection and
recognition with the

consideration of the effects
of by the environment

Uses the German Traffic Sign
Recognition Benchmark

(GTSRB) dataset to train the
ML model in the Python

library PyTorch

LeNet
(CNN-based)

The accurate recognition rate of
traffic signs reaches 99.75%, and
the average processing time per

frame is 5.4 ms; compared to
other algorithms, the proposed
algorithm has better accuracy,
real-time performance, strong
generalization, and efficiency

[106]

To detect a malfunctioning
thermostat even if the car

equipment does not
indicate it

Use of collected
accelerometer and gyro

sensors’ real-time data from
Hyundai i30 vehicle, which

consist of 44 h of driving

Decision tree The best accuracy of 88.9%
was reached [119]

To allocate the optimal
minimum contention

window for the
vehicular node

Uses the replayed history
data and obtained age

dataset through real-time
protocol simulation.

Deep-Q-learning

The model has a high degree of
adaptability and can achieve a

relatively high level of age
equity benefit

[120]

To predict parking space
availability

Uses the collected data
composed of parking ID,

timestamps, duration, and
space status

Random forest,
decision tree, and KNN

Algorithms separately
outperform complex algorithms
such as NN, in terms of higher

prediction accuracy by providing
comparable prediction results of

available parking space

[121]

Automatic number plate
recognition

Implementation of Python
OpenCV package and other
libraries, and use of 20×20

px images

K-Nearest Neighbors
(KNN)

The trained model demonstrated
an overall classification accuracy

of 95% in recognizing number
plates of varying sizes,

orientations, and shapes across
different regions worldwide.

[122]

3.4. Communication Technologies

A vehicular ad-hoc network (VANET) is a variation of the ad hoc network and mobile
ad hoc networks (MANETs), where nodes (i.e., vehicles, and internal sensors) are commu-
nicating mostly wirelessly and only between each other [123]. It can be easier to implement
because no infrastructure, like RSUs, is needed to be used as the central server, thus in-
creasing the communication efficiency and road safety in intelligent transportation systems
(ITSs) [20]. As an example, [75] has provided some cases of VANET in autonomous smart
parking, like real-time occupancy monitoring of the parking lot, whilest [124] has presented
the VANET-based architecture, which covers security services, network, and link layers and
thus provides improved computations for collision probability and preventive measures for
cooperative collision avoidance. One of the medium-range communication technologies,
the Dedicated Short-Range Communication (DSRC), has been approved and considered by
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the CAR2CAR Consortium for common use for VANET [125]. Other communication tech-
nologies based on transmission range used in VANET and ITS applications can be divided
into short- (<100 m), medium- (~100 m), and long-range (>10 km) communications [3].
Descriptions of each communication technology are provided in Tables 13–15 for short-,
medium-, and long-range communications respectively. It can also be noted that differ-
ent communication technologies are commonly defined by different standards such as
3GPP (3rd Generation Partnership Project) [126] and IEEE 802 (Institute of Electrical and
Electronics Engineers) [127] with collections of networking technologies such as Ethernet
and wireless.

Bluetooth is periodically used in close proximity as a short-range communication
method [115]. Furthermore, compared to Bluetooth, BLE (Bluetooth Low Energy) ap-
plications are similar; however, it is a more energy-efficient technology. It works with
a low transition range [15]. Using UWB, devices can operate at low power using short
pulses of 3.1–10.6 GHz. Signals can penetrate through construction materials except metal
surfaces [76]. Visible Light Communication or VLC transmits wireless Internet data at
very high speeds using only light beams and can reach up to 100 Gbps. However, the
modulation needs to be reliable under high vehicle density scenarios and variable road
environments [39]. In addition, beaconing communication has low transmission power
and a low-frequency band of approximately 10–50 Hz [123]. ZigBee technology consumes
less energy compared to Wi-Fi and Blue-tooth and it is inexpensive to implement [65].
Compared to other short-range communication technologies, ZigBee can be used in a range
of up to 100 m (sometimes it is considered as a medium-range communication as well). It
is less sensitive to noises and obstructions by vehicles in terms of the bit error rate (BER)
and signal-to-noise ratio (SNR) [128].

For more information about short-range communication technologies see Table 13.

Table 13. Short-range communication technologies used in V2X.

Technology Range Applications Refs.

Bluetooth
(IEEE 802.15.1) Up to 10 m

Commonly used for the user to access devices and notifications, e.g.,
in terms of a parking lot’s availability via smartphones or tablets; is
used for inner communication between OBUs in the vehicle, e.g., for

notification about an engine problem

[77,129]

BLE
(IEEE 802.15.1) Up to 5 m

Commonly used for notifications and with battery-functioned small
devices.; a small amount of data is used for transmission, e.g., only

the device ID; not suitable for inter-vehicular communication or
precise localization applications because of its severe fading effects

[15]

UWB
(IEEE 802.15.3) Up to 10 m

Because of low signal amplitude, it is less sensitive to the noisy
environment and thus has more secure signal transmission, e.g.,

secure locking and unlocking of vehicles using key fobs; uses
radio-based localization with the accuracy of sub-meters

[37,76]

Visible Light
Communication (VLC)

(IEEE 802.15.7)
Up to 6 m

Data transmission between two adjacent vehicles, although a stable
communication link between the two vehicles is needed and since
the distance between the transmitter and the receiver increases, the
transmitted power must also increase; drawbacks can be eliminated
by applying distant measurement sensors, e.g., LiDAR additional

optical systems to boost the received power

[34,39]

Beaconing Up to 5 m

Suitable for small amounts of safe data transmission and can be
easily implementable; this type is used as an auxiliary means for
other technologies, e.g., BLE, to periodically transmit data in the

form of beacons with adjustable rate

[7,123]

ZigBee
(IEEE 802.15.4) Up to 100 m

One of the common communication choices in smart parking
systems; it can broadcast small amounts of data over a short range

with a smaller energy consumption compared to Wi-Fi and,
theoretically, up to 65 000 devices in a network can be managed; this
technology finds it more difficult to penetrate obstacles compared to
Wi-Fi, although this drawback may apply to tunnel communication

[65,71,128]
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Going into the medium range, Dedicated Short Range Communication (DSRC) tech-
nology is commercially available and the (WLAN) IEEE 802.11p protocol emerged as the
first ever standard for V2X communications, which does not require a basic serves set [130].
However, the 11p protocol still lacks safety for critical communication and autonomous
driving. For this reason, the IEEE 802.11bd protocol is being used for new generation V2X
developments to improve these shortcomings. Some of the safety requirements are to be
reached at 99.99%, including a latency of no greater than 3 ms, making it very challenging.
Current DSRC systems based on the 11p protocol have a latency of about 100 ms, as long
as traffic is not too dense [131]. Systems incorporating DSRC are also highly expensive. In
comparison, Wi-Fi can provide a stable performance in terms of reliability and latency [125].
On the other hand, Wi-Fi communication can operate under the circumstances of obstruc-
tions, with the help of multipath propagation [132]. The main drawbacks are its latency
and short range, which can be overcome using other technologies, e.g., DSRC or LTE [133].
Further details are provided in Table 14.

Table 14. Medium-range communication technologies used in V2X.

Technology Range Applications Refs.

DSRC (IEEE 802.11p/
IEEE 802.11bd) Up to 1 km

Used in Vehicle Safety Communication (VSC) in urban
environments because of its robustness against severe fading in

highly vehicular infrastructural environments
[36,94,125]

Wi-Fi
(IEEE 802.11ac/
IEEE 802.11ax)

Up to 100 m
One of the common connections between vehicle and driver or

passenger on-road or in the parking lot, e.g., via smartphone, and
to transfer related information to/from the database

[16,92,132,133]

Compared to Wi-Fi (54 Mbps), Wireless Intero-perability for Microwave Access
(WiMAX) can provide higher Internet access speed (up to 70 Mbps). It is expensive to install
and operate because a line of sight (LOS) is needed, and it also has higher latency [134].
The 4G Long-Term Evolution (LTE) V2X has high throughput, low latency (10–100 ms),
and is one of the main short-range communications [2]. It has two physical channels one
for the data carrying and the other for the control of information for decoding the data
carrying channel [132]. Although, to meet the requirements of 3GPP, the effective use of
network resources is needed and 5G (LTE) provides an even higher speed and a latency
as low as 35 ms. In reference [135], the effective edge nodes resource allocation method is
proposed by processing the demanded user data using the centralized RMU algorithm in
the core network. The 5G New Radio (NR) is one of the latest technologies for which 5G in-
frastructure first needs to be deployed and adopted. There are two communication modes:
one for direct vehicular communications via the UU air interface under the coverage of the
cellular network, and another for the out-of-coverage area of the cellular network via the
PC5 interface [126]. Currently under development, 6G-V2X communication technology is
the latest technology in the THz band and can support even better hyper-fast, ultra-reliable,
and low-latency communication compared to 5G-NR [136]. Cellular V2X (C-V2X) consists
of 4G-LTE or 5G-NR communication technologies and thus can cost-efficiently provide a
longer range than Wi-Fi with the extended detection of the coverage and blind spots [26].
Long-Range (LoRa) communication technology has a data transmission rate of 300 bps
–37.5 kbps and is low-power. Data transmission is reliable with low latency; however, the
transmission throughput is very low as well [27]. The last of the long-range communication
technologies is Narrowband (NB) IoT, which has low power consumption, high perfor-
mance, high security, and wide area coverage communication, and signals are sufficient to
penetrate through obstructions [137]. More details can be found in Table 14.

One of the main concerns in V2X communication research that can be found in the
literature is the system performance in terms of the bit error rate (BER), signal-to-noise
Ratio (SNR), signal throughput, and latency [123,129]. BER is defined as the ratio between
the number of unsuccessfully transmitted bits and the number of all transmitted bits. In
VLC communication, it can be optimized by having a lower pulse width ratio or adjusting
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other settings of the modulation [34,39]. For instance, ref. [123] stated that in order to
keep the BER lower, the received power at the vehicle must be larger or equal to the
receiver sensitivity. The researches of [129] conducted studies on the BER and throughput
analyses for the performance of Bluetooth. Some 3GPP standard communications [126]
have used Long-Term Evolution (LTE) turbo coding to minimize BER and found that
increasing vehicle density does not affect it. In the same research, different SNR values were
considered for several scenarios. The researches of Ref. [1] evaluated C-ITS architecture
based on millimeter-wave (mmW) and Free-Space Optics (FSO) technologies in terms
of SNR.

Table 15. Long-range communication technologies used in V2X.

Technology Range Applications Refs.

WiMAX
(IEEE 802.16) Up to 50 km WiMAX is mainly considered as a supplement to Wi-Fi [134]

5G NR
(3GPP Rel. 16,17) Up to 5 km

High throughput with very low latency (1 ms); can provide higher data
rates and be ultra-reliable for critical applications, e.g., secure and efficient

control functions in autonomous vehicles; additional research is being
performed to evaluate the support and enhancement capabilities of

this communication

[126]

C-V2X
(3GPP Rel. 14) Up to 1 km

Featured with low latency and high reliability. ensuring critical and safe
vehicle sensors connectivity; used for keeping safe distance and speed

between vehicles, connection with roadside infrastructure, sensing of other
roadside participants; can overcome LOS issues with long-range perception

using cellular networks

[26]

LoRa
(Based on IEEE 802.15.4) Up to 20 km

According to research, LoRa can cope with real-world scenarios with actual
vehicles at higher speeds and a dynamic environment in terms of reliability

and performance
[27]

6G-V2X
(under development) -

Massive information exchange technology by combining several
communication networks, e.g., satellite and unmanned-aerial-vehicle (UAV)

networks, with a combination of ML methods
[136]

4G LTE V2X
(3GPP Rel. 14, 15) Up to 20 km Can be used as an alternative to Wi-Fi; 4G LTE does not support C-V2X

applications as well 5G NR, although the infrastructure is more deployed [2,132]

NB IoT
(3GPP Rel. 13) Up to 10 km Suitable in smart parking systems; small data volume amounts are

transmitted, e.g., parking lot availability and parking time [137]

In another example, ref. [22] simulated the systems throughput and the transmission
latency with different vehicle densities in the rural and the urban scenarios in the 5G
network environment, which is based on Software-Defined Networking (SDN). Road
weather and traffic influence on throughput, packet loss, and latency have been evaluated
in [12], comparing LTE and the 5G Test Network (5GTN). Here 5GTN showed better
results compared to LTE. Signal latency and throughput have been used to evaluate the
smart parking network in [61] to optimize the placement of RFID-based WSNs. In [100]
information interchange latency between vehicles and RSUs was significantly decreased
when security keys and a key-sharing network for signal security were used with the help
of ML algorithms.

Software-defined radio (SDR) testbeds can be used to evaluate the broadcast distance
power, packet delivery ratio, throughput, latency, reliability, and packet loss rate of the
signal, e.g., to reduce the stopping distance [125]. It also can be used to analyze the
parameters and identification of RFID tags [138]. SDR can provide functions such as signal
modulation and demodulation, spectrum analysis and monitoring, filtering, and frequency
selection and it is an open source.

V2V and V2I interactions can be implementable by applying different simulation
frameworks. Different open source frameworks and platforms, which have libraries of
different implemented models by the scientific community, can be found as Objective



Sensors 2024, 24, 3411 20 of 29

Modular Network Testbeds in C++ (OMNet++), Vehicles in Network Simulation (VEINS),
Internet networking (INET) [139], and Simulations of Urban Mobility (SUMOs) [67]. These
platforms are used to simulate real-life scenarios by determining a different number of
variables of the V2X system, e.g., vehicle nodes, infrastructure nodes, and other specific
nodes [118].

Furthermore, computational analysis using 3D ray-tracing tools and 3D ray-launching
algorithms for V2I of WSNs can be simulated to evaluate the received power, power
delay profile, delay spread, and coherence bandwidth [74]. These tools are used to model
and simulate real-life scenarios for the deployment of radio planning and propagation
monitoring in V2I environments representing terrain, buildings, pedestrians, vehicles,
streets, and other geographic data, different frequencies, the height of the transmitter and
receiver antennas, and transmission power. As an example, [73] used these simulations
for the optimal distribution of WSNs and deployment of urban RSUs with affordable
computational cost. The authors of Ref. [71] used it to utilize the deployment of WSNs in a
tunnel scenario as a complex and singular environment considering limited dimensions
and metallic elements within it, e.g., user pathways or service trays.

In order to facilitate the efficient navigation of digital maps, ref. [140] proposed a
six-layer map model, designated to describe unstructured real-world operational design
domains, as illustrated in Figure 6. Each layer contains distinct types of data, which are
dedicated to a specific navigation task.
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In order to utilize a six-layer map for V2X modeling in connected and autonomous
vehicles (CAVs), it is essential to comprehend the contribution of each layer to the overall
functionality and the manner in which the information within each layer is updated. This
map encompasses the road network, roadside structures, modifications, dynamic objects,
environmental conditions, and digital information layers. Each of these layers plays a
pivotal role in ensuring the efficient and safe operation of CAVs.

Further tables (Tables 16–18) summarize different vehicle-related, infrastructure-
related, and other data and their purpose in the V2X communication-related research,
and are tabulated respectively.
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Table 16. Vehicles-related data used in V2X.

Field Data Purpose Refs.

V2V
V2I

X-, Y-, and Z-axis acceleration data along with latitude
and longitude

To adjust vehicle parameters according to
surrounding vehicles and their speeds and

eliminate their influence
[27,36,52]

V2X

Position and orientation described by six degrees of
freedom and other sensor data, including

accelerometers, gyroscopes, magnetometers, camera
systems, radars, and Global Navigation Satellite

Systems (GNSSs)

To improve the mobility experience of
C-ITS in terms of efficiency, safety, and

comfort, minimization of
human-controlled driving

[1]

V2V
V2I Video, frames, and photos Detection and prediction using ML models

of vehicles, road signs, and obstacles [37]

V2V
V2N

(Relative) Speed, RPM, heading, current action, brake
status, and GPS coordinates of vehicle location

Data are used for auxiliary means to
achieve better dynamic adjustment

between vehicles and to determine any
crash risk of the subject vehicle

[2,32,92,123]

V2V
V2I
V2N

The metadata, preamble (for synchronization) data,
network ID, node ID, cyclic redundancy check (CRC),

and time stamps

To ensure that all systems correctly
understand the start of data transmission,

the identification readings are required
[27,92]

V2V
V2I
V2N

Diagnostic parameters in assessing the technical state of
automatic vehicles: work process parameters;

parameters of associated processes (vibration, noise);
geometrics parameters (clearances, freewheeling,

misalignment); and other vehicle telematics data like
maintenance requirements and servicing

To enhance traffic safety by warning the
driver about mere defects or not allowing

automatic driving if there are severe defects
[12,119,141]

Table 17. Infrastructure-related data used in V2X.

Field Data Purpose Refs.

V2I Video, frames, photos, and
statistical-numerical information

Detection and prediction using ML models of empty or best
parking place [8]

V2X

Road service data: accident and collision
warnings, traffic information, information

on traffic jams, or warning of an
approaching rescue vehicle

Represent and inform other drivers, including vulnerable
road users (pedestrians and cyclists), about warnings, e.g.,

emergency brake lights, and rerouting suggestions by
combining cooperative sensing

[81,126]

V2I
V2D Identification code unique to each sign

The traveling vehicle broadcasts requests for the tags’
identifications by RFID and an identification code unique to

each sign is transmitted back
[31]

V2I
V2D Identification code unique to each road part

The traveling vehicle broadcasts requests for the tags’
identifications by RFID and an identification code unique to

each road part, e.g., in tunnels, is transmitted back
[142]

V2I
Information on electronic license plates,

such as Electronic Product Code (EPC) and
phase difference of the backscatter signals

To detect different traffic violations of corresponding
vehicle drivers [68]

V2I Numerical information about available or
occupied parking places

Keep-alive message transmissions, where the parking status
is periodically sent if the parking lot status does not change [49,65]

V2I Sensor mesh information
A mesh network where each sensor is connected to every

other sensor and the information is transmitted to the
base station

[30,61]

V2I Image information of vehicle’s plate. An image of the vehicle’s plate information is converted into
text, then it is sent [143]

V2I Ultrasonic sensors, light sensors, magnetic
sensors, or accelerometer readings To detect user and vehicle statuses in a parking place [15,62]

V2I RFID ID and timestamp RFID tag detects and sends arrival time and information
about the car or driver (license card or car plate) [16]
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Table 18. Other related data used in V2X.

Field Data Purpose Refs.

V2G

Load profile of each (sub-)station, information
about each EV, such as the availability and state

of charge level of battery, actual power grid
loading, target loading, and number of

grid connections

To optimize the performance of multiple charging EVs
connected to the grid [117]

V2P Image of pedestrian and corresponding data
Images are taken from a vehicle, converted into

coordinates, and sent to the other vehicle together with
the first vehicle’s position

[33]

V2X

Pedestrian position and information concerning
its movement, latitudes and longitudes of the

smartphone and vehicle, and the moving vectors
of the smartphone and the vehicle

For vehicle and pedestrian safety applications to control
the vehicle, several essential vehicle parameters,

avoidance of severe or deadly collisions, and
rerouting vehicles

[19]

V2P
V2D

RFID tag’s unique ID, timestamp, and
geographical coordinates of the parked car

Uses data regarding when the tag was read and when and
where the person left the car for medical purposes or to

detect a wandering person
[67]

V2X The secret key of binary sequence/shared
key encryption

For security to avoid information leakage and interruption
during transmission using a lower power signal [144]

V2X

Transition time, device ID, device ID of
transmitter of last received message, and
reception time of last received message

(in-network time)

Uses this safety-related data in the form of low-power
beacons to protect data transfer against stationary

roadside attackers
[7]

V2X Common Awareness Messages (CAM) or Basic
Safety Messages (BSMs)

These are defined as a broadcast message to avoid packet
loss and contain vital, safety-related information: location,

speed, heading, and general operation details
[32]

V2V
V2I
V2N

Weather attributes: temperature sensor data,
humidity, moisture, precipitation, visibility,

wind, etc. of specific coordinates from the cloud;
road characteristics: speed limit, soft or hard

turns, highway exits, bridges, etc.; intermediate
waypoints where the car needs to reduce its

speed: road friction measurements and
surface temperature

Based on real-time data, systems inform the driver about a
recommended speed that the vehicle should adapt to or
automatically reduce to in extreme situations in order to

avoid dangerous driving and accidents.
To enhance road traffic safety by exchanging real-time or
updated weather and traffic data using VANET protocols

[12,14]

Considering there will be more and more vehicles, especially electric vehicles, in the
future, there is a strong likelihood that there will not be enough resources to charge vehicles
fully or efficiently without the addition of more public charging grids (V2G). Therefore,
more attention is needed to individualize smart charging systems at homes, housing estates,
and apartment buildings (V2H) by utilizing previous research on smart parking systems.

The current challenge for most communication types and data transfer is to make
them secure and robust. The more information is used in communication, the more it
is responsible for different aspects of autonomous driving and the loss or overwriting
of one part of the data sequence can vitally affect the whole system. Therefore, signal
authentication in V2X communication is one of the main challenges.

4. Discussion and Conclusions

Sensors are an essential part of vehicular-to-everything communication, allowing for
localization of vehicles, obstacles, and infrastructure elements like signs, traffic lights, road
markings, etc. Integrating various sensors not only in vehicles but also in infrastructure
elements allows for to the functional expansion of parking and tunnel monitoring, and
thus better management of overall traffic and greenhouse gas emissions.

Vehicular communication systems require various sensors of different physical natures
with essential properties like range, computational resources, robustness, and sensitivity
to noise, which must be evaluated and then chosen according to the task. Autonomous
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systems have expanded the range of measurements, requiring us to take into account not
only common features like speed and distance but also color and shape. This requires a
synergy of sensors that can be achieved with the development of sensor fusion and ML
methods and architectures.

Vehicular communication systems’ functionalities are very dependent on reliable
data transfer. Communication can be influenced by many factors, including security, data
corruption, bandwidth limitations, and physical interferences. Summarizing the review,
three main scenarios of data transfer can be distinguished:

• Regular scenario. Data are transferred using OBU in vehicles (V2V scenario) using
RSUs (V2I scenario) without significant or critical signal losses. However, the main
challenge in adapting this equipment is the high speed of vehicles and the dynamic
environment for real-time data transmission between vehicles or another RSU. Com-
munication tools can be radio TX and RX, action TX, and sensor RX (e.g., light signaling
and detection).

• Lack of data scenario. The system does not receive required data to properly complete
the tasks, for example to follow road lines or to keep a constant distance from the car
in the front. Data transfer is weakened by car overcrowding, dense infrastructure,
or reflectors, e.g., buildings and power lines, low signal interruption, and hazardous
environments affected by weather (blizzards, sand dust). Visual data can be affected
by unwanted obstacles, (trees or bushes grown up in front of road signs which partially
or fully block a view). A Software Defined Radio (SDR) testbed can be used to evaluate
the broadcast distance power, packet delivery ratio, throughput, latency, reliability,
and packet loss rate of the signal. Furthermore, computational analysis using 3D
ray-tracing tools/3D ray-launching algorithms for the vehicle to the infrastructure of
wireless sensor networks (WSNs) can be simulated to evaluate the received power,
power delay profile, delay spread, and coherence bandwidth.

• Faulty scenario A common scenario has faulty information interpreted as correct data.
For example, non-intentional road patterns may be interpreted as road lines. Faulty
or unstable information is sent via V2V or V2I connectivity, and may be affected by
high signal interruption, the risk of a hacked signal and being replaced by another, de-
layed signals, disappearing signals (tunnels, underground parking), or a misdirection
situation of crossing cars signaling from the wrong direction (visual-based problem).
Therefore, additional security key protocols (and time stamps) are necessary, and
additional short-range communication infrastructure and additional object or light
recognition (via machine learning) tools are a plus.

Integration of AI machine learning methods is essential to enhance and ensure reliable
performance for data processing, which is essential in every level of a vehicular communi-
cation system, including recognition of system elements, decision making, data transfer,
and planning. However, robustness of the AI system strongly depends on training data
and monitoring of the model in real-time because the system can encounter unexpected
values and data distribution drift over time. The most commonly used ML architectures
for vehicle-to-everything communication include NN, CNN, KNN, RNN, decision tree,
and adapted GA in some cases. Nevertheless, future challenges require us to search for
new solutions. The hybrid architectures of ML are designed for different types of vehicle
communication techniques. For example, while CNNs are more efficient with spatial data
like images, RNNs deal better with sequential data. Joining these two networks, the spatial
distribution of traffic from images and the sequential features of traffic dynamics can bypass
the limitations of both networks. Another addition for ML architectures are transform-
ers, which have encoder–decoder architecture and were first introduced for syntax and
semantics characterization and translation tasks. Now, they are used effectively for vision
tasks and demonstrate better results than CNNs. Developing a combination of DNNs
and transformer architectures enables efficient real-time task classification and a smoother
operation in the highest automation modes.
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Further research of the mentioned ML algorithms and their combinations is essential
for the development of intelligent transportation systems as the infrastructure of smart
cities will grow in the future. Going forward, there are also plans to focus on vehicle
localization in closed environments like tunnels to enable local detection of static and
dynamic obstacles and to ensure communication with the target destination due to the
predicte increase in transport flow in the growing city. Autonomous driving facilities must
conform to the rules for vehicle-to-vehicle and vehicles-to-infrastructure communication.
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