Table 2.
The suggested network architecture’s ideal parameters were chosen.
Parameters | Values | Optimal Value |
---|---|---|
Batch Size in GAN | 4, 6, 8, 10, 12 | 10 |
Optimizer in GAN | Adam, SGD, Adamax | SGD |
Number of CNN Layers | 3, 4, 5 | 4 |
Learning Rate in GAN | 0.1, 0.01, 0.001, 0.0001 | 0.0001 |
Number of Graph Conv Layers | 2, 3, 4, 5, 6, 7 | 6 |
Batch Size in GCN | 8, 16, 32 | 16 |
Batch normalization | ReLU, Leaky-ReLU, TF-2 | TF-2 |
Learning Rate in GCN | 0.1, 0.01, 0.001, 0.0001, 0.00001 | 0.001 |
Dropout Rate | 0.1, 0.2, 0.3 | 0.1 |
Weight of optimizer | ||
Error function | MSE, Cross Entropy | Cross Entropy |
Optimizer in GCN | Adam, SGD, Adadelta, Adamax | Adadelta |