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Background: Currently, there is a lack of ideal risk prediction tools in the field of emergency general surgery (EGS). The American
Association for the Surgery of Trauma recommends developing risk assessment tools specifically for EGS-related diseases. In this
study, we sought to utilize machine learning (ML) algorithms to explore and develop a web-based calculator for predicting five
perioperative risk events of eight common operations in EGS.
Method: This study focused on patients with EGS and utilized electronicmedical record systems to obtain data retrospectively from five
centers in China. Five ML algorithms, including Random Forest (RF), Support Vector Machine, Naive Bayes, XGBoost, and Logistic
Regression, were employed to construct predictive models for postoperative mortality, pneumonia, surgical site infection, thrombosis,
andmechanical ventilation >48 h. The optimal models for each outcome event were determined based onmetrics, including the value of
the Area Under the Curve, F1 score, and sensitivity. A comparative analysis was conducted between the optimal models and Emergency
Surgery Score (ESS), Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and American Society of Anesthesiologists
(ASA) classification. A web-based calculator was developed to determine corresponding risk probabilities.
Result: Based on 10 993 patients with EGS, we determined the optimal RF model. The RF model also exhibited strong predictive
performance compared with the ESS, APACHE II score, and ASA classification. Using this optimal model, the authors developed an
online calculator with a questionnaire-guided interactive interface, catering to both the preoperative and postoperative application
scenarios.
Conclusions: The authors successfully developed an ML-based calculator for predicting the risk of postoperative adverse events in
patients with EGS. This calculator accurately predicted the occurrence risk of five outcome events, providing quantified risk probabilities
for clinical diagnosis and treatment.
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Introduction

In the past decade, acute care surgery (ACS) has rapidly devel-
oped as an emerging specialty[1], comprising subspecialties of
emergency general surgery (EGS), trauma surgery, and surgical

critical care[2]. The burden of EGS has increased in recent years.
Epidemiological data from 2001 to 2010 showed a 28% increase
in hospitalizations for EGS in the United States, with over 27
million annual hospitalizations, of which ~28.8% (approxi-
mately 7.97 million cases) required emergency surgical
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intervention[3]. According to U.S. Census Bureau projections, the
incidence of EGS and the public health insurance burden will
increase at an annual rate of 45%, reaching $41.2 billion by
2060[4]. Additionally, compared with nonemergency surgeries,
patients undergoing emergency surgery face higher risks of
mortality and postoperative complications[5,6]. For the same type
of procedure, the risk of death in emergency surgery patients can
be up to eight times higher than that in elective surgery patients.
Even after controlling for preoperative variables and surgical
type, emergency surgery has proven to be an independent
risk factor for postoperative mortality and complications[6].
Therefore, in this unique patient population, the development of
appropriate perioperative risk prediction tools is crucial. These
tools would not only guide clinical decision-making but also
aid in resource allocation across different medical units and
institutions[4].

The field of EGS encompasses a wide spectrum of complex
diseases, with patients often presenting diverse physiological
disturbances. Additionally, patients with EGS frequently require
rapid decision-making owing to the urgency of their condition,
yet information may be insufficient. Therefore, the construction
of a risk assessment system for EGS faces unique challenges[1]. In
2014, the American Association for the Surgery of Trauma
(AAST) recognized the urgency and unique challenges in devel-
oping risk assessment tools for the EGS population and con-
ducted a review of existing surgical risk assessment tools[7]. They
reviewed existing surgical-related risk assessment tools, including
ICU risk assessment systems, the anesthesia-related American
Society of Anesthesiologists (ASA) classification system, and
other surgical-related risk stratification systems. The ICU risk
assessment systems, such as the Acute Physiology and Chronic
Health Evaluation II (APACHE II), Simplified Acute Physiologic
Score (SAPS), Multiple Organ Dysfunction Score (MODS),
Sequential Organ Failure Assessment (SOFA), and Mortality
Prediction Model (MPM)[8–10], have been well validated in ICU
patient populations but have not been validated specifically in the
perioperative period, especially in patients undergoing emergency
surgery. Therefore, their use in EGS populations outside of the
ICU is not recommended[7]. The anesthesia-related ASA classifi-
cation system categorizes patients into five grades based on the
presence of mild-to-severe life-threatening systemic diseases.
Currently, no research has explicitly demonstrated its applic-
ability in the EGS population, and the grading system itself is
subjective. Clinical studies conducted by nonanesthesia specia-
lists or those unfamiliar with the classification system may have
significant differences in determining the ASA classification[1].
Other surgical-related risk stratification systems, such as the
Emergency Surgery Score (ESS), ACS-NSQIP Universal Surgical
Risk Calculator, and Predictive Optimal Trees in Emergency
Surgery Risk (POTTER) Calculator, have been validated in some
centers with emergency surgical patients[11–13]. However, their
predictive efficacy in specific EGS populations requires further
validation. Based on a review of these various risk assessment
tools, AAST developed and published the AAST EGS grading
system for 16 common EGS diseases in 2016. Future research
should explore the construction of relevant risk assessment tools
by combining patient age, acute physiology, and comorbidity
status[1,14,15].

Risk prediction tools can facilitate the accurate identification
of high-risk patients, thereby guiding surgical decision-making,
informed consent, or referral to units or institutions with higher

levels ofmedical resource allocation. Given the broad spectrum of
EGS diseases, lack of predictability in diagnosis and treatment,
and absence of specialized teams trained in EGS, medical adverse
events are more likely to occur[4]. An ideal EGS risk assessment
system would be able to quickly and accurately predict the risk of
death and postoperative complications in the early stages of
patient management and guide the allocation of medical resour-
ces to improve quality of care. However, an ideal EGS risk pre-
diction tool has not yet been developed[4]. In this study, we
developed five algorithm models using machine learning (ML)
algorithms that can predict the risk of five adverse events for eight
EGS-related surgeries. Based on these models, we designed a web-
based calculator that provides quantifiable risk probabilities for
the diagnosis and treatment of such patients in a clinical setting
with the aim of optimizing the quality of care.

Methods

Data sources and patients

This study was approved by the Ethics Committee of Union
Hospital, Tongji Medical College, Huazhong University of Science
and Technology (Approval No. 2020 0516-01), and registered in
Chinese Clinical Trial Registry (ChiCTR 2000039772). All parti-
cipating sub-centers’ ethics committees have approved this study.

According to the anatomical grading system for 16 common
EGS diseases developed by the AAST, this study focused on eight
diseases in the spectrum of abdominal emergency surgical
patients: acute appendicitis, acute cholecystitis, hernia (including
intra-abdominal and extra-abdominal hernias), acute intestinal
obstruction, peptic ulcer perforation (gastric or duodenal ulcer
perforation), mesenteric arterial thrombosis, acute colonic
diverticulitis, and ulcerative colitis. This study included five cen-
ters, including Wuhan Union Hospital, Central Hospital of
Wuhan, Central People's Hospital of Yichang, Union Dongxihu
Hospital, and Central Hospital of Hefeng County. Using current
diagnostic codes, all patients (> 18 years old) who underwent
EGS between 2012 and 2022 were retrieved from the Electronic
Medical Records System (EMRS). Patients who underwent EGS

HIGHLIGHTS

• Risk prediction tools is crucial to facilitate the accurate
identification of high-risk patients, thereby guiding surgical
decision-making, informed consent, or referral to units or
institutions with higher levels of medical resource
allocation.

• No accurate tool were developed to assess the risk of
postoperative outcome events in emergency general
surgery (EGS).

• Employed five machine learning algorithms to develop
models for predicting five outcome events of EGS, and
selected the optimal model - Random Forest.

• Developed five machine-learning-based predictive models
for perioperative risk in EGS.

• Developed a web-based risk prediction calculator for
patients undergoing EGS, providing quantified risk prob-
abilities for five outcome events, including postoperative
mortality, pneumonia, SSI, thrombosis, and mechanical
ventilation >48 h.
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within 24 h were included in this study[16]. To minimize the
complexity of the risk prediction model, specific calculators for
individual surgeries were not included in this study. Furthermore,
patients with known pregnancies, infectious diseases under fixed-
point treatment, and those lacking surgical and discharge records
were excluded from this study. This retrospective study has been
reported in line with the strengthening the reporting of cohort,
cross-sectional, and case–control studies in surgery (STROCSS)
criteria[17] (Supplemental Digital Content 1, http://links.lww.
com/JS9/C90).

Prediction variable selection

Seventy percent (7695 cases) of the cases were randomly selected
and included in the derivation cohort, whereas the remaining
30% (3298 cases) were used for model testing. To improve the
accuracy of the model, variables were selected from five dimen-
sions, including age, anatomy, physiology, comorbidities, and
surgery-related factors. Considering the diagnostic and treatment
practices at each center and the variable definitions from the
American College of Surgeons National Surgical Quality
Improvement Program (ACS-NSQIP) database, 33 research
variables were defined. These variables included age, sex, BMI,
history of alcohol consumption, smoking history, hypertension,
diabetes, chronic obstructive pulmonary disease, renal disease
history, previous abdominal surgery, neurological disorders,
tumor, cardiac history, hormone use, preoperative sepsis, white
blood cell (WBC), red blood cell (RBC), hemoglobin (Hb), pla-
telet (PLT), hematocrit (Hct), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total bilirubin (TBIL), albu-
min (ALB), creatinine (Crea), blood urea nitrogen (BUN), sodium
ion (Na+ ), potassium ion (K+ ), total carbon dioxide (TCO2),
prothrombin time (PT), international normalized ratio (INR),
AAST EGS Grade, and ASA classification. Regarding the defini-
tion of postoperative outcome events, Scarborough et al.[18]

analyzed complication events in 7.91 million EGS surgical
patients and found that the most common complications were
postoperative bleeding (6.2%), surgical site infection (SSI)
(3.4%), postoperative pneumonia (2.7%), postoperative urinary
tract infection (1.5%), postoperative thromboembolism (1.1%),
and postoperative myocardial infarction (0.5%). Based on pre-
vious reports and the research data, we ultimately defined five
outcome variables: postoperative mortality, pneumonia, SSI,
thrombotic events, and mechanical ventilation >48 h[12,13,19,20].
The occurrences of death, postoperative SSI, and mechanical
ventilation > 48 h refer to events that happened during the in-
hospital postoperative period and were explicitly documented
in medical records. Pneumonia and thrombotic events were
diagnosed as such through imaging examinations after
excluding their presence before surgery. Supplemental Table 1
(Supplemental Digital Content 2, http://links.lww.com/JS9/C91)
shows the distribution of the demographic and clinical char-
acteristics. We present the five hospitals using quartiles categor-
ized into low, medium, high, and very high volume hospitals.
Regarding the selection of variable dimensions for the model, the
concept of anatomical and physiological construction has already
been applied in trauma risk assessment models, such as the
Trauma and Injury Severity Score (TRISS)[21]. In this study, we
integrated the severity grading of disease anatomy with demo-
graphic, physiological, comorbidity, and surgery-related para-
meters based on existing literature.

Data preprocessing

Because the data originated from various real-world hospital
databases, they inevitably contained some missing values
(1.54%, 6782/439720). To address this, we followed common
data analysis practices described in the literature by fillingmissing
values with the median of the corresponding feature[22,23].
Additionally, we performed min–max normalization on the
entire dataset by mapping all features to the range of [0, 1] using
the maximum and minimum values of each feature. This
normalization eliminates scale differences among different
features and ensures comparability and analysis within the same
numerical range, thereby enhancing the performance of the
algorithm model.

In ML modeling, a sample class ratio lower than 9:1 is gen-
erally considered imbalanced. In our dataset, the proportion of
each outcome event was significantly lower than this ratio, indi-
cating an extremely unbalanced class distribution. To address
this issue, we employed various techniques such as up-sampling
with SMOTE, Borderline SMOTE, random under-sampling,
TomekLink under-sampling, and a combination of SMOTE and
down-samplingmethods. Ultimately, we determined that random
under-sampling provided the highest recognition accuracy for
handling imbalanced data; therefore, we used this method to
obtain a balanced dataset for modeling. This approach involves
randomly removing samples from the majority class to achieve
class balance.

Development of model

Figure 1 presents the model construction process, while
Supplemental File 1 (Supplemental Digital Content 3, http://links.
lww.com/JS9/C92) presents the code involved in model proces-
sing. Building a prognostic model for disease outcomes requires
the consideration of individual-specific time-point risks, which is
a classical ML classification problem. Commonly used modeling
algorithms include Logistic Regression (LR), Random Forest
(RF), Naive Bayes (NB), Support Vector Machine (SVM), and
eXtreme Gradient Boosting (XGBoost)[24,25]. In this study, the
data were divided into the derivation and testing cohorts.
The derivation cohort was used for model development, whereas
the testing cohort was used to evaluate the generalization per-
formance of the model. Five ML algorithms were employed to
develop models for predicting five outcome events: postoperative
mortality, pneumonia, SSI, thrombotic events, and mechanical
ventilation for > 48 h. The models were evaluated using 10-fold
cross-validation to improve performance and enhance general-
ization ability. The feature importance was studied and ranked
using the RF model to explore the importance of various features
in real-world scenarios. The effectiveness of the modeling
was tested based on the top five, 10, 15, and 20 important
features. The results showed that using the top 15 important
features yielded a modeling performance comparable to that
obtained using all features. Therefore, graphical representations
of the top 15 ranked features by importance were presented
for each outcome event. Using a prebuilt optimal algorithm
model, we developed a web interface based on questionnaire-gui-
ded responses (https://www.bychjh.com/severe-calculator-pc/#/).
This interface allows clinicians to perform real-time online calcu-
lations of risk probabilities for different prognostic outcomes in
patient populations with relevant diseases.
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Statistical analysis

Data analysis was performed using R Studio 3.4.3 and Python
3.8, utilizing various packages, including XGBoost, GLM, and
MI. Graphs were generated using R or GraphPad Prism, version
9.2.0. Continuous variables were described as mean ± SD
(X ± SD) ormedian interquartile range (IQR), and between-group
comparisons were conducted using the Student’s t-test or Mann–
WhitneyU test. Categorical variables are presented as frequencies
(%), and between-group comparisons were assessed using
Pearson’s χ2 test or Fisher’s exact test. Statistical significance was
defined as P<0.05. We evaluated the model performance and
selected the optimal model using metrics including the Area
Under the Curve (AUC), F1 score, sensitivity, specificity, accu-
racy, and precision. Given the focus of this study on the model’s
ability to identify endpoint events in medical data, where the
proportion of endpoint events is small, we placed greater
emphasis on the model’s performance in terms of the AUC value,
F1 score, and sensitivity. The corresponding risk probabilities
were presented quantitatively using an interactive web-based
calculator.

Results

Study population

Baseline characteristics of the derivation and testing cohorts are
presented in Table 1. A total of 10 993 EGS patients from five
medical institutions in China were included in this study. Among
them, there were 153 (1.39%) cases of postoperative in-hospital
death, 632 (5.75%) cases of postoperative pneumonia, 531
(4.83%) cases of postoperative SSI, 616 (5.60%) cases of post-
operative thrombosis, and 674 (6.13%) cases with mechanical
ventilation >48 h. The dataset was randomly divided into a
derivation cohort of 7695 cases and testing cohort of 3298 cases
in a 7:3 ratio.

Postoperative in-hospital mortality

Table 2 compares the performances of the five models in the
testing cohort. Figure 2 shows the ROC curves of the five models
for predicting in-hospital mortality. The RF model had the
highest AUC value (0.8961) and F1 score in the testing set,
indicating its superior discriminative ability for postoperative
mortality events. In addition, the RF model exhibited the highest
sensitivity and precision, suggesting strong identification cap-
abilities for mortality events. Therefore, the RF model demon-
strated the best predictive ability of postoperative in-hospital
mortality. Regarding the prediction of in-hospital mortality, the
top five relevant features according to the variable importance
distribution of the RF model were BUN level, preoperative sepsis
status, AAST EGS grading, ALB, and age (Fig. 3).

Postoperative complications

We employed five algorithms to model four postoperative out-
comes: postoperative pneumonia, SSI, thrombosis, and mechan-
ical ventilation >48 h. Table 3 presents the performance of these
five models in the testing cohort. The RF model demonstrated
higher AUC values (Fig. 2) and F1 scores than the other four
models, indicating its superior classification ability. Although the
RFmodel exhibited lower sensitivity than the XGBoost model for
postoperative pneumonia and mechanical ventilation >48 h, it
displayed a better AUC value, F1 score, accuracy, and precision,
suggesting a stronger capability to classify and identify these
events. Therefore, the RF model performed better in predicting
postoperative pneumonia and mechanical ventilation >48 h. For
the outcome of postoperative SSI, the RF model showed the same
sensitivity as the XGBoost model, but outperformed the other
four models in terms of AUC value, F1 score, accuracy, and
precision, indicating its superior classification and recognition
capability. Regarding postoperative thrombosis, the RF model
demonstrated stronger classification and outcome recognition

Figure 1. Model construction process.
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capabilities. Figure 3 provides a list of the top 15 most relevant
features associated with the variable importance distribution of
the RF model for predicting postoperative pneumonia, SSI,
thrombosis, and mechanical ventilation >48 h events.

Comparison of RF model with ESS, APACHE II score, and
ASA classification

Table 4 presents a performance comparison of the RFmodel with
the ESS, APACHE II score, and ASA classification. In predicting
postoperative thrombotic events, the RF model demonstrated a
significantly higher AUC value, F1 score, and sensitivity than ESS,
APACHE II score, and ASA classification (Table 4), which are
commonly utilized scoring tools in literature reports and clinical
practice. This indicates the better discriminative ability and out-
come prediction capability of the RF model. In addition, the RF
model accurately identified cases in which the outcome event did
not occur. Therefore, compared with other models, the RF model
shows superior performance in identifying outcome events and
achieving higher accuracy in their recognition.

Questionnaire-guided interactive interface online calculator

The RF model was ultimately selected as the algorithm tool for
the web-based calculator on our website (http://athenaai.jvlei.

Table 1
Baseline characteristic in the derivation and validation cohort.

All
(n= 10 993)

Derivation
cohort

(n= 7695)

Testing
cohort

(n= 3298) P

Age (years), median (IQR) 53.00 (30.00) 53.00 (31.00) 53 (29.00) 0.2882
Sex (n, %)
Male 5864 (53.34) 4097 (53.24) 1767 (53.58) 0.7466
Female 5129 (46.66) 3598 (46.76) 1531 (46.42)

BMI, median (IQR) 21.26 (4.00) 21.25 (3.68) 21.28 (3.89) 0.3315
Drink (n, %) 971 (8.83) 649 (8.43) 322 (9.76) 0.0244
Smoke (n, %) 1158 (10.53) 795 (10.33) 363(11.01) 0.2906
Abdominal surgery history
(n, %)

2222 (20.21) 1560 (20.27) 662(20.07) 0.8108

Hypertension (n, %) 1299 (11.82) 899 (11.68) 400 (12.13) 0.5071
Diabetes (n, %) 712 (6.48) 497 (6.46) 215 (6.52) 0.9062
COPD (n, %) 136 (1.24) 91 (1.18) 45 (1.36) 0.4292
Chronic kidney disease
(n, %)

168 (1.53) 123 (1.60) 45 (1.36) 0.3594

Nervous system disease
(n, %)

196 (1.78) 136 (1.77) 60 (1.82) 0.8505

Cancer (n, %) 437 (3.98) 304 (3.95) 133 (4.03) 0.8399
Cardiovascular disease
(n, %)

533 (4.85) 377 (4.90) 156 (4.73) 0.7052

Steroid use (n, %) 101 (0.92) 74 (0.96) 27 (0.82) 0.4715
Surgical sepsis
None (n, %) 10167 (92.49) 7127 (92.62) 3040 (92.18) 0.2146
Sepsis only (n, %) 559 (5.09) 394 (5.12) 165 (5.00)
Septic shock (n, %) 267 (2.43) 174 (2.26) 93 (2.82)

Laboratory test, median (IQR)
WBC (109 /l) 9.20 (6.81) 9.20 (6.79) 9.20 (6.88) 0.8410
RBC (109 /l) 4.29 (0.84) 4.29 (0.84) 4.29 (0.86) 0.9879
PLT (109 /l) 198.00 (85.50) 198.00 (86.00) 197.00 (84.00) 0.2929
Hct (%) 38.70 (7.30) 38.80 (7.30) 39.60 (7.40) 0.5308
Hb (g/l) 129.00 (27.00) 129.00 (27.00) 129.00 (27.00) 0.5146
ALT (U/l) 20.00 (17.00) 20.00 (17.00) 20.00 (17.00) 0.7527
AST (U/l) 21.00 (11.00) 21.00 (10.00) 21.00 (11.00) 0.3773
TBil (μmol/l) 16.37 (12.60) 16.31 (12.60) 16.40 (12.70) 0.8059
ALB (g/l) 39.70 (7.00) 39.62 (7.00) 39.76 (7.10) 0.4501
Crea (μmol/l) 69.30 (26.50) 69.30 (26.90) 69.30 (25.80) 0.4927
BUN (mmol/l) 5.25 (2.90) 5.27 (2.90) 5.20 (2.92) 0.8997
Na+ (mmol/l) 139.80 (4.00) 139.80 (4.00) 139.80 (3.90) 0.6138
K+ (mmol/l) 3.91 (0.54) 3.91 (0.54) 3.92 (0.52) 0.9869
TCO2 (mmol/l) 23.30 (3.50) 23.30 (3.50) 23.30 (3.50) 0.3941
PT (s) 13.60 (1.80) 13.60 (1.80) 13.60 (1.90) 0.1379
INR 1.08 (0.18) 1.08 (0.18) 1.08 (0.18) 0.3484

AAST EGS Grade (n, %)
1 6073 (55.24) 4274 (55.54) 1799 (54.55) 0.7571
2 1151 (10.47) 811 (10.54) 340 (10.31)
3 1501 (13.65) 1032 (13.41) 469 (14.22)
4 1093 (9.94) 763 (9.29) 330 (10.01)
5 1175 (10.69) 815 (10.59) 360 (10.92)

ASA classification (n, %)
1 658 (5.99) 441 (5.73) 217 (6.58) 0.1999
2 7358 (66.93) 5193 (67.49) 2165 (65.65)
3 2796 (25.43) 1939 (25.20) 857 (25.99)
4 167 (1.52) 111 (1.44) 56 (1.70)
5 14 (0.13) 11 (0.14) 3 (0.09)

ESS, median (IQR) 2.00 (2.00) 2.00 (2.00) 2.00 (2.00) 0.6812
APACHE II, median (IQR) 4.00 (4.00) 4.00 (4.00) 4.00 (4.00) 0.9143
In-hospital events
Postoperative Mortality
(n, %)

153 (1.39) 107 (1.39) 46 (1.39) 0.9860

Postoperative
pneumonia (n, %)

632 (5.75) 432 (5.61) 200 (6.06) 0.3527

Table 1

(Continued)

All
(n= 10 993)

Derivation
cohort

(n= 7695)

Testing
cohort

(n= 3298) P

Postoperative SSI
(n, %)

531 (4.83) 390 (5.07) 141 (4.28) 0.0756

Postoperative
thrombosis (n, %)

616 (5.60) 427 (5.55) 189 (5.73) 0.7043

Postoperative
mechanical
ventilation > 48 h
(n, %)

674 (6.13) 470 (6.11) 204 (6.19) 0.8763

AAST, American Association for the Surgery of Trauma; ALB, albumin; ALT, alanine aminotransferase;
APACHE II, Acute Physiology and Chronic Health Evaluation II; ASA, American Society of
Anesthesiologists; AST, aspartate aminotransferase; BUN, blood urea nitrogen; COPD, chronic
obstructive pulmonary disease; Crea, creatinine; EGS, emergency general surgery; ESS, Emergency
Surgery Score; Hb, hemoglobin; Hct, hematocrit; INR, international normalized ratio; IQR, interquartile
range; K+ , potassium ion; Na+ , sodium ion; PLT , platelet; PT, prothrombin time; RBC, red blood cell;
SSI, surgical site infection; TBIL, total bilirubin; TCO2, total carbon dioxide; WBC, white blood cell.

Table 2
Performance evaluation of five algorithm models in predicting
postoperative in-hospital mortality.

Testing cohort

Metrics XGBoost RF LR SVM NB

AUC 0.8504 0.8961 0.7893 0.7705 0.8024
F1 0.1214 0.1284 0.0955 0.1235 0.0904
Se 0.8500 0.9500 0.7500 0.6500 0.8000
Sp 0.8508 0.8422 0.8287 0.8910 0.8047
Pr 0.0654 0.0688 0.0510 0.0682 0.0479
Acc 0.8508 0.8435 0.8277 0.8881 0.8047

Acc, Accuracy; AUC, Area Under the Curve; F1, F1 score; LR, Logistic Regression; NB, Naive Bayes;
Pr, Precision; RF, Random Forest; Se, Sensitivity; Sp, Specificity; SVM, Support Vector Machine;
XGBoost, eXtreme Gradient Boosting.
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Figure 2. ROC curves of five algorithm models predicting five outcome events in the test cohort. A, Postoperative Mortality. B, Postoperative Pneumonia. C,
Postoperative SSI. D, Postoperative Thrombosis. E, Postoperative Mechanical Ventilation >48 h.

Figure 3. The relative importance ranking of predictive variables for five outcome events in the optimal model RF. A, For postoperative mortality-related events, the
top 5most relevant features in the distribution of variable importance are BUN, AST, preoperative sepsis, AAST EGSGrade and ALB. Following them are ALB, INR,
PT, age, TBIL, Crea, ALT, TCO2, RBC and K+ . B, For postoperative pneumonia events, the top 5 most relevant features in the distribution of variable importance
are diabetesmellitus, age, BUN, AAST EGSGrade and ALB. Following them are preoperative sepsis, K+ , TCO2, chronic obstructive pulmonary disease (ASA), INR,
Na+ , PT, hypertension, Crea and ASA Grade. C, For postoperative SSI outcome events, the top 5 most relevant features in the distribution of variable importance
are age, BMI, AAST EGSGrade, ALB, and diabetesmellitus. Following them are BUN, TCO2,WBC, K+ , Crea, INR,WBC, ALT, abdominal surgery history, TBIL and
AST. D, For postoperative thrombosis events, the top 5 most relevant features in the distribution of variable importance are preoperative sepsis, AAST EGS Grade,
WBC, age, and ALB. Following them are ASA Grade, BUN, TCO2, BMI, Crea, cancer history, Hct, INR, RBC, and PT. E, For postoperative events with Ventilation
>48 h, the top 5most relevant features in the distribution of variable importance are preoperative sepsis, AAST EGSGrade, BUN, age, and ALB. Following them are
WBC, Crea, ASA Grade, RBC, K+ , TCO2, TBIL, Hct, and PLT.
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com/severe-calculator-pc/#/), considering its superior predictive
performance compared with the XGBoost, SVM, NB, and LR
models. The calculator utilizes a questionnaire-guided approach,
allowing clinicians to calculate real-time risk probabilities for five
selected common adverse outcomes. This tool is suitable for
preoperative and intraoperative scenarios and enables predic-
tions under different circumstances. Patients and their families
can make informed decisions regarding surgery based on risk

probabilities, and prepare for possible postoperative complica-
tions. Clinicians can tailor the postoperative treatment plans
based on the indicated risks for each outcome. During the
intraoperative procedure, risk prediction probabilities can be
updated based on the AAST EGS anatomical grading system,
facilitating immediate communication between medical profes-
sionals and informed decisions regarding the postoperative ICU
transition. The web interface provides options in both Chinese
and English, making it accessible to a broader population
(Supplemental Fig. 1, Supplemental Digital Content 4, http://
links.lww.com/JS9/C93). As future multicenter studies will col-
lect more extensive data, the model developed in this research can
be further optimized and updated. It can also be integrated into
the EMRS, enabling automated risk probability prediction
immediately after patient examination.

Discussion

We developed an emergency surgical risk-prediction model for a
common spectrum of diseases in EGS. The model was developed
using a large dataset that covered different geographical locations
and considered variations in healthcare resource allocation. Five
ML algorithms were used to construct predictive models for
selected common outcome events during EGS. The predictive
performances of the models were compared, and our results
demonstrated that the RFmodel had a better predictive ability for
all endpoint events. The RF model belongs to the supervised
learning category, and is based on decision tree models, which are
tree-like predictive models. Each branch of the tree corresponds
to a feature split, and each leaf node represents a set of samples
that satisfy all constraints along the path. The constraints along
the path can be regarded as rules, providing good interpretability
for the decision tree results. The decision tree model selects the
field with the maximum information gain in the data samples as
the node of the tree, and establishes different branch nodes based
on different field values. This process was repeated for each
branch to form a decision tree[26].

Based on the RF model, we designed a web-based interactive
interface that allows the inclusion of links onmobile devices. This
interface provides real-time, convenient access to clinical emer-
gency physicians.

The ESS has been considered suitable for risk prediction in
emergency surgical patients, whereas the APACHE II score and
ASA classification are commonly used in clinical practice.
Compared to these models, our model still demonstrated an
excellent discriminative ability. We also used the POTTER cal-
culator, which is based onML algorithms for emergency surgical
populations in developed countries. However, the POTTER
calculator has limitations that render it unsuitable for clinical
practice in China. These limitations include discrepancies in unit
conversion for laboratory data, lack of support for input para-
meters specific to the Chinese population, and the inability to
accommodate certain admission pathways and referral para-
meters, such as transfers from community hospitals or emergency
departments[13]. Additionally, the inclusion of hospitals in the
ACS-NSQIP database requires conditional screening by the
American College of Surgeons[27], making it difficult for hospitals
in resource-limited areas to contribute data to the database. This
restricts the widespread applicability of POTTER calculators.

Table 3
Evaluation of predictive performance of five algorithm models for
postoperative complications.

Testing cohort

Complication Metric XGBoost RF LR SVM NB

Pneumonia AUC 0.7341 0.7573 0.6929 0.6988 0.6776
F1 0.2175 0.2710 0.2374 0.2497 0.2363
Se 0.8085 0.7394 0.5904 0.5851 0.5372
Sp 0.6597 0.7752 0.7954 0.8125 0.8179
Pr 0.1256 0.1659 0.1486 0.1587 0.1514
Acc 0.6682 0.7731 0.7837 0.7995 0.8019

SSI AUC 0.7825 0.7868 0.6957 0.7061 0.6178
F1 0.2470 0.2539 0.1726 0.1884 0.1424
Se 0.7935 0.7935 0.7161 0.6903 0.5226
Sp 0.7715 0.7801 0.6754 0.7218 0.7129
Pr 0.1463 0.1511 0.0981 0.1091 0.0824
Acc 0.7725 0.7807 0.6773 0.7204 0.7040

Thrombosis AUC 0.8048 0.8403 0.7903 0.7995 0.7601
F1 0.2676 0.3180 0.2951 0.2816 0.2557
Se 0.8764 0.8933 0.7809 0.8315 0.7584
Sp 0.7332 0.7874 0.7996 0.7676 0.7618
Pr 0.1579 0.1934 0.1819 0.1695 0.1538
Acc 0.7410 0.7931 0.7986 0.7710 0.7616

Ventilation > 48 h AUC 0.7646 0.7867 0.7421 0.7534 0.6944
F1 0.2512 0.2864 0.2642 0.2556 0.2551
Se 0.8762 0.8524 0.7524 0.8190 0.6000
Sp 0.6531 0.7211 0.7318 0.6877 0.7888
Pr 0.1466 0.1721 0.1602 0.1514 0.1620
Acc 0.6673 0.7295 0.7331 0.6961 0.7768

Table 4
Comparison between RF Model and ESAS, APACHE II, ASA.

Testing cohort

Complication Metric RF ESS APACHE II ASA

Death AUC 0.8961 0.7510 0.7147 0.6747
F1 0.1284 0.0679 0.0692 0.0541
Se 0.9500 0.6087 0.5000 0.5652

Pneumonia AUC 0.7341 0.6497 0.6337 0.5609
F1 0.2175 0.1758 0.1625 0.1320
Se 0.9500 0.4000 0.2450 0.3550

SSI AUC 0.7864 0.6110 0.5991 0.5964
F1 0.2497 0.0868 0.0654 0.1162
Se 0.8258 0.1773 0.1064 0.4255

Thrombosis AUC 0.8048 0.7074 0.6955 0.7131
F1 0.2676 0.2115 0.2226 0.2140
Se 0.8933 0.5238 0.4286 0.6349

Ventilation > 48 h AUC 0.7646 0.6620 0.6471 0.6710
F1 0.2512 0.2025 0.1743 0.2147
Se 0.8524 0.4706 0.3431 0.5735
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The limitations of this study lie primarily in the fact that the
predictive ability of ML depends on the accuracy and compre-
hensiveness of the data used. Althoughwe employed data filtering
and extraction based on EMRS to avoid biases introduced by
manual data entry, variations in the scope of data selection and
the accuracy of real-world data from different centers can still
introduce biases. The sampling method using ML in this study
specifically targeted retrospective big data for the intervention.
Additionally, we introduced disease anatomical severity grading
as an indicator, which helped to define the spectrum of diseases
studied. Multiple studies have shown good consistency in the
grading criteria before, during, and after surgery[28–30], greatly
enhancing the applicability of this indicator. However, in prac-
tical applications, familiarity with this grading system is required
by clinicians, and it relies on subjective judgment, introducing a
certain degree of operator bias. To reflect patient-related nutri-
tional indicators such as nutritional scoring scales and weakness
indices, it was not possible to calculate these indicators during
retrospective data collection and relied on data from future pro-
spective studies.

Finally, our study is not only based on clinical questions, but
also explores the existing gaps in the development of the EGS
discipline. The ultimate significance of constructing a clinical
predictionmodel lies in observingwhether the use of this model in
clinical practice changes physicians’ and patients’ diagnostic and
treatment behaviors, improves patient outcomes, and is cost
effective. This is what we refer to as the impact study of a clinical
prediction model.

Conclusions

In this study, we combined multicenter clinical big data from
different geographical locations with artificial intelligence algo-
rithms to develop a web-based risk prediction calculator for
patients undergoing emergency surgery for abdominal diseases in
general surgery. This tool provides quantified risk probability for
events, including postoperative mortality, pneumonia, SSI,
thrombosis, and mechanical ventilation > 48 h. Furthermore, it
can be integrated into healthcare systems to enhance its
practicality.
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