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Background: Early allograft dysfunction (EAD) is a common complication after liver transplantation (LT) and is associated with poor
prognosis. Graft itself plays a major role in the development of EAD.We aimed to reveal the EAD-specificmolecular profiles to assess
graft quality and establish EAD predictive models.
Methods: A total of 223 patients who underwent LT were enrolled and divided into training (n=73) and validation (n= 150) sets. In
the training set, proteomics was performed on graft biopsies, together with metabolomics on paired perfusates. Differential
expression, enrichment analysis, and protein–protein interaction network were used to identify the key molecules and pathways
involved. EAD predictive models were constructed using machine learning and verified in the validation set.
Results: A total of 335 proteins were differentially expressed between the EAD and non-EAD groups. These proteins were
significantly enriched in triglyceride and glycerophospholipid metabolism, neutrophil degranulation, and the MET-related signaling
pathway. The top 12 graft proteins involved in the aforementioned processes were identified, including GPAT1, LPIN3, TGFB1,
CD59, and SOS1. Moreover, downstream metabolic products, such as lactate dehydrogenase, interleukin-8, triglycerides, and the
phosphatidylcholine/phosphorylethanolamine ratio in the paired perfusate displayed a close relationship with the graft proteins. To
predict the occurrence of EAD, an integratedmodel using perfusate metabolic products and clinical parameters showed areas under
the curve of 0.915 and 0.833 for the training and validation sets, respectively. It displayed superior predictive efficacy than that of
currently existing models, including donor risk index and D-MELD scores.
Conclusions: We identified novel biomarkers in both grafts and perfusates that could be used to assess graft quality and provide
new insights into the etiology of EAD. Herein, we also offer a valid tool for the early prediction of EAD.
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Introduction

Liver transplantation (LT) is a life-saving treatment for patients
with acute liver failure and end-stage liver diseases. However, the
disparity between the need for LT and the shortage of donor
organs leads to the use of extended criteria donors (ECD), which

increases the risk of poor graft function and reduces graft
survival[1]. Early allograft dysfunction (EAD), which has an
incidence ranging from 27 to 55%[1–4], represents marginal graft
function during the first week following LT and is associated with
adverse outcomes. First, EAD is associated with inferior
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survival[2,5]. For instance, in a large-center retrospective study
conducted by the Mayo Clinic that included 1950 cases of
LT, EAD significantly decreased the 1-, 3-, and 5-year graft
and patient survivals[5]. Second, EAD causes dysfunction in
other organs. Several studies have demonstrated that EAD inde-
pendently increases the risk of acute kidney injury and chronic
kidney failure in LT recipients[4,6]. EAD has also been reported
to correlate with post-transplant ascites, sepsis, and
multiple organ failure[7,8]. Third, EAD prolongs the duration of
mechanical ventilation, intensive care unit (ICU) stay, and
hospitalization[5,6]. In addition, EAD increases total hospital
costs[9]. Graft quality is believed to play a dominant role in early
graft function, thereby dramatically influencing graft survival and
mortality[10]. Therefore, in the era of ECD, there has been a
continued effort to establish effective systems to assess donor liver
quality and to rapidly predict the risk of EAD[11].

The relationship between clinical risk factors (e.g. advanced
donor age, severe steatosis, and prolonged ischemia time) and the
occurrence of EAD has been demonstrated[12,13]. Currently, a
series of scoring systems, such as the donor risk index (DRI)[14],
early allograft failure simplified estimation score[15], and liver
graft assessment following transplantation score[12], have been
established to predict early graft outcomes. Furthermore, newly
developed biological and bioinformatics technologies revealed
the molecular features of grafts, providing insights for EAD
prediction. Kurian et al.[16] found an alteration in inflammatory
and metabolic responses in grafts developing EAD using an RNA
microarray and constructed a gene expression classifier with
good diagnostic accuracy. Cortes et al.[17] and Faitot et al.[18]

performed different metabolomics studies on donor liver grafts
and established graft metabolic scoring systems to predict EAD.
Moreover, integrating molecular features into clinical models
could achieve better accuracy in predicting EAD. We previously
investigated metabolic features of the primary nonfunction of
grafts, a severe type of graft dysfunction, and built an integrated
model, presenting an area under the diagnostic curve of 0.930[19].
Therefore, a better understanding of graft molecular profiles
could help in providing more accurate predictions and earlier
prophylaxis of EAD following LT.

Functionally, proteins participate in most physiological pro-
cesses, and specific alterations in protein levels could influence and
predict disease onset and progression[20]. Previous studies have
found that some graft proteins, such as CXCL1[16],
CEACAM1[21], VEGF[22], and occult collagen[23], might be linked
to the development of EAD. Facilitated by recent advances in high-
throughput technologies, mass spectrometry (MS)-based pro-
teomics and metabolomics have been greatly developed and pro-
vide a powerful platform for biomarker identification and disease
mechanism exploration[20]. Proteomics could be used to rapidly
identify and quantify proteins in the liver, whereas metabolomics
could help determine the levels of metabolites, which are the end
products of cellular regulatory processes and are considered the
ultimate response of biological systems to pathophysiological
changes. Protein levels influence the metabolic profile and meta-
bolite concentrations, which in turn affect protein expression[24].
Therefore, integrative omics could provide new insights into bio-
logical entities and disease management strategies.

In this study, we used a proteomics approach to identify the
molecular features of grafts that had developed EAD. Moreover,
we detected metabolic products in perfusate, which were released
from the grafts as the end products of cellular regulatory

processes and roughly reflect the pathophysiological changes in
donor grafts during organ preservation[25]. We aimed to provide
a global view of the biological processes, screen for key molecules
that contribute to EAD development, and construct integrated
models to predict EAD prior to LT.

Methods

Patients and sample procurement

We enrolled adult patients who received LT between April 2020
and August 2021 at our center. Re-transplantations and split,
domino, and multi-organ transplantations, as well as cases with
insufficient data, were excluded. Ultimately, 223 patients were
included in this study. All graft tissues and perfusates were obtained
before implantation and rapidly stored at −80°C until analysis. The
study design is illustrated in Supplementary Figure S1
(Supplemental Digital Content 1, http://links.lww.com/JS9/C107).
Out of the 223 cases, 90 paired liver samples were obtained and
sent for proteomics analysis. To avoid the impact of fatty change in
proteomics, we excluded grafts with fatty liver (macrovesicular
steatosis >30%) (n=2, 1 developed EAD following LT). In
addition, 15 samples failed in the quality control of proteomics
detection. Finally, 73 available liver samples were applied for
proteomics analysis. Then, the paired 73 perfusates were used for
metabolomics analysis. Next, we performed integrative omics
analysis to reveal the EAD-specific molecular features. As for model
construction, 73 cases of LT were enrolled as a training set, while
the other 150 cases were considered as a validation set. Patients
with hepatitis B virus (HBV) infections received a standard antiviral
protocol (nucleoside analogs combined with low-dose immu-
noglobulin therapy), as previously described[26]. A tacrolimus-
based immunosuppressive protocol was applied to LT recipients, as
previously reported[27]. This study was approved by the Ethics
Committee of our hospital according to the Regulations on Human
Organ Transplant and national legal requirements. This study
complied with the guidelines of the China Ethical Committee and
the Declaration of Helsinki. No organs were obtained from exe-
cuted prisoners. Written informed consent was obtained from the
patients for publication and any accompanying images. Moreover,
the work has been reported in line with the STROCSS criteria[28]

(Supplemental Digital Content 2, http://links.lww.com/JS9/C108).

Endpoint definition

EAD was defined as total bilirubin ≥ 10 mg/dl (171 µmol/l) or an
international normalized ratio ≥1.6 on postoperative day 7, or

HIGHLIGHTS

• Early allograft dysfunction (EAD) negatively impacts graft
and patient outcomes.

• Graft proteomics showed that grafts with lipid disorders
and activated inflammatory infiltration were susceptible
to EAD.

• The downstreammetabolic products in perfusate displayed
a close connection with graft proteins.

• An Integrated-Model based on perfusate metabolic pro-
ducts and clinical parameters could excellently identify
liver recipients with a high risk of EAD.
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alanine transferase (ALT) or aspartate transferase (AST) levels
> 2000 U/l within the first 7 postoperative days[29].

Measurement and data analysis of graft proteomics using
4D-DIA-MS

Each graft tissue sample was used for four-dimensional data-
independent acquisition (4D-DIA)-based proteomics analysis.
Details of the measurement process are described in the
Supplementary Materials (Supplemental Digital Content 1,
http://links.lww.com/JS9/C107). Original data were obtained
through database retrieval and proteins with an expression value
≥ 50% in any of the sample groups were retained. Proteins with a
missing value <50% were filled in with the mean value from the
same sample group[30,31]. Through median normalization and
log2 conversion, credible proteins were obtained, whereafter
principal component analysis (PCA) was performed. The fold
change (FC) and P-value were calculated using the t-test results.
Differentially expressed proteins (DEPs) were defined as proteins
with |log2 FC| > log21.5 and P-value <0.05 between the EAD
and non-EAD groups. Heatmaps were generated using the
Euclidean Distance Matrix Hierarchical Clustering method.
Metascape online analysis (https://metascape.org/) was used for
pathway analysis. The molecular complex detection (MCODE)
network is provided at https://metascape.org/. A protein–protein
interaction (PPI) network was constructed using the STRING
database (https://string-db.org/), and the Degree method of the
CytoHubba plug-in in Cytoscape was used to screen hub
proteins.

Measurement and data analysis of perfusate metabolomics
using LC–MS and GC–MS

LC–MS and GC–MS-metabolomics analyses were performed on
each perfusate sample in the training set. We performed PCA
according to the categories of the EAD and non-EAD groups.
Differentially expressed metabolites (DEMs) were selected based
on the combination of a variable influence on projection (VIP)
value >1 and P-value <0.05. Metabolomics pathway analysis
was performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. Moreover, an integrative analysis of
graft proteomics and perfusate metabolomics was conducted
based on the KEGG database and KEGG Markup Language
(KGML) network analysis.

Machine learning for feature selection and model
establishment

We employed the eXtreme Gradient Boosting (XGBoost) method
to analyze the contribution of each DEP, and SHapley Additive
exPlanations (SHAP) values were processed to select features[32].
Finally, these variables were included to construct the XGBoost
algorithm model. For increased confidence, this process was
repeated 20 times. To control the overfitting, we applied early
stopping with 10 rounds[33]. To assess the performance of the
model, the receiver operating characteristic (ROC) curve, the area
under the curve (AUC), accuracy, specificity, and sensitivity were
calculated.

Statistical analysis

Quantitative variables were presented as mean ± SD or median
(interquartile range). Student’s t-test orWilcoxon’s rank-sum test

was used to compare quantitative variables between the two
groups. Categorical variables are presented as values (percen-
tages) and compared using the Chi-square or Fisher’s exact tests.
Statistically significant clinical and perfusate parameters were
entered into the risk factor analysis. Moreover, several clinical
risk factors [e.g. donor ALT/AST levels, warm/cold ischemia
time, and model for end-stage liver disease (MELD) score]
reported in previous studies were included in the analysis[19,34].
The cutoff value was selected according to the diagnostic sensi-
tivity, specificity, and clinical value. A risk factor analysis was
performed using a logistic regression model. Clinical and perfu-
sate biochemical variables with P< 0.05 in the univariate analysis
were entered into a step-by-step multivariate regression analysis.
The establishment of predictive models and the calculation of risk
scores have been described in our previous study[19]. Correlations
between the parameters were assessed using Spearman or Pearson
correlation analyses. The 5-fold cross-validation analysis was
applied to evaluate the performance of the predictive models[35].
The ROC curve and AUC were calculated to evaluate the diag-
nostic accuracy. The calibration of themodel was assessed using a
calibration curve and the Brier score. Internal validation was
performed using 1000 bootstrap samples, and discrimination of
the model was evaluated. A nomogramwas constructed using the
predictive model as a graphical representation. All statistical
analyses were conducted with SPSS v.25.0 (SPSS Inc., Chicago,
IL, USA) and R v.4.2.0 software. Statistical significance was set at
P< 0.05.

Results

Incidence, prognosis, and clinical characteristics of early
allograft dysfunction

Of the 223 LT recipients, 39.0% (87/223) developed EAD.
Among patients with EAD, 19.5% (17/87) died within one year,
whereas only 4.4% (6/136) of those without EAD died
(P< 0.001). Basic clinical characteristics of the donors, recipients,
and surgical procedures are presented in Supplementary Table S1
(Supplemental Digital Content 1, http://links.lww.com/JS9/
C107). Compared with those without EAD, patients with EAD
had a longer ICU stay (11.0 days vs. 6.0 days; P<0.001), hospital
stay (28.0 days vs. 23.0 days; P=0.011), and mechanical venti-
lation time (2.0 days vs. 1.0 days; P<0.001).

There were 73 graft biopsies available for omics analysis,
which served as the training set. Of the 73 patients, 37 developed
EAD and 36 did not. As shown in Table 1, age, sex, graft source,
graft histopathology, ABO mismatch, recipient HBV status, and
surgical characteristics were comparable between the EAD and
non-EAD groups. The EAD group showed more grafts with
higher donor gamma-glutamyl transpeptidase levels (100.0 U/l
vs. 49.5 U/l; P=0.020), heavier graft weights (1.5 kg vs. 1.2 kg;
P= 0.002), and longer graft warm ischemia times (39.0 min vs.
25.5 min; P=0.040).

Graft proteomic profiles of early allograft dysfunction

In the training set (n= 76), 4D-DIA-based proteomics analysis
was performed to identify the molecular signatures of EAD.
According to the PCA results, there was a significant segregation
between the proteins identified in the EAD and non-EAD groups
(Fig. 1A). A total of 5926 proteins were identified in all 73
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Table 1
The comparison of clinical factors in the training set.

EAD group (n= 37) Non-EAD group (n= 36) P

Donor characteristic
Age (years) 47.0± 13.0 47.0± 15.0 0.961
Male sex (n/%) 30 (81.1%) 28 (77.8%) 0.727
Source of organs (n/%) 0.565

DCD 25 (67.6%) 22 (61.1%)
DBD 12 (32.4%) 14 (38.9%)

Cause of death (n/%) 0.713
Trauma 17 (45.9%) 14 (38.9%)
CVA 16 (43.8%) 16 (44.4%)
Other 4 (13.7%) 6 (16.7%)

Blood biochemistry
Cr (μmol/l) 103.5 (62.0, 188.0) 79.0 (54.0, 153.7) 0.168
TB (μmol/l) 15.5 (9.4, 23.6) 15.0 (10.4, 29.0) 0.695
ALT (U/l) 42.0 (22.0, 121.0) 35.6 (21.5, 65.8) 0.150
AST (U/l) 63.0 (31.5, 109.0) 45.0 (34.8, 80.0) 0.363
γGTP (U/l) 100.0 (41.0, 133.5) 49.5 (27.0, 81.5) 0.020

Graft weight (kg) 1.5± 0.3 1.2± 0.3 0.002
Hepatocellular swelling 0.994

None or mild 20 (54.1%) 19 (52.8%)
Moderate 11 (29.7%) 11 (30.5%)
Severe 6 (16.2%) 6 (16.7%)

Hepatocellular necrosis (n/%) 0.620
None 35 (94.6%) 33 (91.7%)
Spotty necrosis 2 (5.4%) 3 (8.3%)
Zonal necrosis 0 0

Inflammatory infiltration (n/%) 0.930
None 13 (35.1%) 12 (33.3%)
Mild 19 (51.4%) 18 (50.0%)
Moderate 5 (13.5%) 6 (16.7%)

Graft fibrosis (n/%) 0.713
0 20 (54.1%) 21 (58.3%)
1 13 (35.1%) 13 (36.1%)
2 4 (10.8%) 2 (5.6%)

Graft macrosteatosis > 20% (n/%) 1 (2.7%) 1 (2.8%) 0.984
Positive culture of perfusate (n/%)a 11 (29.7%) 11 (30.6%) 0.939
ABO mismatch (n/%) 6 (16.2%) 6 (16.7%) 0.959

Surgical characteristics
DWIT (min) 8.0 (0, 12.0) 6.0 (0, 13.0) 0.541
DCIT (h) 8.3 (5.8, 9.5) 7.7 (6.1, 9.2) 0.908
GWIT (min) 39.0 (0, 49.0) 25.5 (0, 35.0) 0.040
Anhepatic time (min) 55.0 (50.5, 62.0) 52.0 (43.5, 62.5) 0.189
Operation time (h) 5.7 (4.8, 6.8) 5.1 (4.6, 6.1) 0.108
Blood loss (l) 1.5 (1.0, 2.1) 1.2 (0.8, 2.5) 0.280
RBC transfusion (U) 6.0 (4.0, 10.3) 6.3 (2.4, 10.0) 0.370

Recipient characteristic
Age (years) 54.0± 9.0 53.0± 10.0 0.575
Male sex (n/%) 29 (78.4%) 27 (75.0%) 0.733
BMI (kg/m2) 21.1 (18.8, 23.1) 21.5 (20.0, 23.2) 0.616
Etiology of liver disease (n/%) 0.405

HBV-related cirrhosis 21 (56.8%) 26 (72.2%)
HCC 14 (37.8%) 13 (36.1%)
Alcoholic cirrhosis 2 (5.4%) 6 (16.7%)

MELD score 33.0 (27.0, 40.0) 31.0 (15.0, 40.0) 0.182
Child–Pugh score 11.0 (9.0, 11.0) 10.0 (8.0, 12.0) 0.987

aPositive was defined as the growth of any microorganism in perfusate culture.
ALT, alanine transferase; AST, aspartate transferase; BMI, body mass index; Cr, creatinine; CVA, cerebrovascular accident; DBD, donation after brain death; DCD, donation after cardiac death; DCIT, donor cold
ischemia time; DWIT, donor warm ischemia time; GWIT, graft warm ischemia time; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; MELD, model for end-stage liver disease; RBC, red blood cell; TB, total
bilirubin; γGTP, gamma-glutamyl transpeptidase.
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samples. Compared with those of the non-EAD group, the EAD
group showed 335 DEPs with |FC| >1.5 and P<0.05 (Fig. 1B).
Among these proteins, 214 were upregulated and 121
downregulated.

To identify the proteomic features of EAD, the 335 DEPs were
analyzed using Metascape online analysis. The enrichment clus-
ters are shown in Figure 1C. We also selected a subset of repre-
sentative terms from the full clusters and converted them into a
network layout, demonstrating that these terms could be classi-
fied into the top 20 enrichment clusters. Moreover, 335 DEPs
were extracted to form a PPI network that was divided into nine
functional clusters using theMCODE plug-in (Fig. 1D). Notably,
the top five enrichment clusters identified in the Metascape ana-
lysis (metabolism of lipids, neutrophil degranulation, cellular
amide metabolic process, oxidative phosphorylation, and orga-
nophosphate biosynthetic process) overlapped with the key
processes in MCODE1 (the most significant cluster in the
network).

Next, we focused on the above five processes and the 80 DEPs
involved, which effectively separated the two groups (Fig. 2A).
Among the DEPs involved in lipid metabolism (Supplementary
Fig. S2A, Supplemental Digital Content 1, http://links.lww.
com/JS9/C107) and organophosphate biosynthetic process
(Supplementary Fig. S2B, Supplemental Digital Content 1, http://
links.lww.com/JS9/C107), the top five upregulated lipoproteins
(DGAT1, LIPC, PLIN1, LPIN3, and GPAT1) were identified
as key targets for triglyceride (TG) or glycerophospholipid
(GPL) metabolism[36–38]. Regarding neutrophil degranulation
(Supplementary Fig. S3, Supplemental Digital Content 1, http://
links.lww.com/JS9/C107), RETN downregulation and CREG1
and CD59 upregulation were identified as the top three targets
that could protect against hepatic inflammation during acute liver
injury[39–41]. Furthermore, DEPs in both the cellular amide
metabolic (Supplementary Fig. S4A, Supplemental Digital
Content 1, http://links.lww.com/JS9/C107) and oxidative phos-
phorylation processes (Supplementary Fig. S4B, Supplemental
Digital Content 1, http://links.lww.com/JS9/C107) were sig-
nificantly clustered in the MET-related signaling pathway. Four
MET-associated proteins (PIK3CA, TGFB1, MET, and SOS1)
were dramatically upregulated in the EAD group compared with
those in the non-EAD group. MET could interplay with PIK3CA,
TGFB1, or SOS1 for reciprocal activation, which would
trigger diverse signaling pathways (e.g. PI3K/Akt/mTOR, Ras
signaling pathways) and enhance lipid synthesis and hepatic
regeneration[42,43]. The key pathways and proteins associated
with EAD are summarized in Table 2. They were not significantly
correlated with the clinical parameters (Supplementary Fig. S5,
Supplemental Digital Content 1, http://links.lww.com/JS9/
C107). The relative expression levels of the 12 DEPs are shown in
Figure 2B.

Perfusate metabolomic profiles of early allograft dysfunction

Perfusates and liver grafts are closely linked during organ pre-
servation. For instance, grafts require the nutrients present in
perfusates, which they release metabolic products into.
Therefore, evaluation of graft status may be achieved through the
detection of metabolic products in the perfusate. MS-based
metabolomics was performed on 73 paired perfusate samples. In
the LC–MS-based platform, there was significant segregation in
the PCA results between the EAD and non-EAD groups (Fig. 3A).

Based on the Human Metabolome Database, Lipidmaps (v2.3),
and METLIN Database, we quantified 3354 metabolites in the
perfusate (Fig. 3B), of which 193 were DEMs (112 upregulated
and 81 downregulated) with VIP > 1 and P<0.05. KEGG
pathway analysis revealed that these DEMswere enriched in GPL
metabolism, ABC transporters, and pentose and glucuronate
interconversions (Fig. 3C). In the GC–MS-based platform, the
PCA plot showed significant differences between the EAD and
non-EAD groups (Fig. 3D). A total of 425 metabolites were
shown (Fig. 3E), and 94 DEMs (62 upregulated and 32 down-
regulated) with VIP >1 and P< 0.05 identified. KEGG pathway
analysis indicated that these DEMs were clustered in ABC
transporters, amino acid-related pathways (e.g. aminoacyl-tRNA
biosynthesis, D-amino acid metabolism, and valine/leucine/iso-
leucine biosynthesis), the citrate cycle, and pentose and glucur-
onate interconversions (Fig. 3F). Next, we detected biochemical
profiles and cytokines using a panel and found significant dif-
ferences between the EAD and non-EAD groups (Supplementary
Table S2, Supplemental Digital Content 1, http://links.lww.com/
JS9/C107). The EAD group had higher levels of ALT, AST, lac-
tate dehydrogenase (LDH), TG, and interleukin-8 (IL-8). In
addition, the metabolic products in the perfusate did not differ
significantly between positive and negative culturing of perfusates
(Supplementary Fig. S6, Supplemental Digital Content 1, http://
links.lww.com/JS9/C107). The representative differentially
expressed metabolic products are shown in Figure 3G.

Integrated proteomics and metabolomics approach for
assessing graft quality

To further reveal the EAD-specific molecular features and assess
graft quality, we performed an integrative analysis of graft pro-
teomics and perfusate metabolomics based on the KEGG data-
base and KGML network analysis. Pathway enrichment analysis
revealed that the DEPs and DEMs were significantly correlated
and enriched in some common processes, such as GPL metabo-
lism, oxidative phosphorylation, the mTOR signaling pathway,
glycolysis, pentose and glucuronate interconversions, and gly-
cerolipid metabolism (Fig. 4A).

According to the integrative analysis, we selected the top
DEMs, including ribitol, L-threonine, L-phenylalanine, L-valine,
phosphorylethanolamine (PE), phosphatidylcholine (PC), crea-
tine, and TG. Correlation analysis between DEPs in the graft and
metabolic products in the perfusate showed a good correlation
(Fig. 4B). For instance, the PC/PE ratio was negatively correlated
with GPL synthesis-related proteins (e.g. GPAT1 and LPIN3);
LDH significantly correlated with TG/GPL synthesis proteins
(e.g. LPIN3 and PLIN1) andMET-related proteins (e.g.MET and
TGFB1); TG positively correlated with LIPC, CD59, TGFB1, and
SOS1; and IL-8 positively correlated with CD59.

Taken together, these results showed an EAD-specific sig-
nature, including the activation of TG and GPL metabolism,
neutrophil degranulation, and the MET-related signaling path-
way. The hypothesis of the development of EAD is shown in
Figure 4C. For instance, grafts with upregulated GPAT1 and
LPIN3 protein contents indicated an active TG and GPL meta-
bolism and toxicity, which was reflected by the reduced PC/PE
ratio and increased TG and cytokine levels in the perfusate.
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Figure 1. Graft proteomic features of EAD. (A) Principal component analysis plot of the EAD and non-EAD groups. (B) The volcano plot for the DEPs. Red
represented FC > 1.5 andP<0.05; blue represented FC<1/1.5 and P< 0.05. (C) The top 20 enrichment clusters were identified byMetascape online analysis (left)
and a subset of representative terms from the full cluster and converted into a network layout (right). Each termwas represented by a circle node, where its size was
proportional to the number of input genes that fall under that term, and its color represented the cluster to it belonged. Terms with a similarity score > 0.3 were
linked by an edge (the thickness of the edge represents the similarity score). (D) All DEPs were extracted to form a PPI network. Using the MCODE plug-in method,
nine densely connected network components were identified. MCODE1 was the most significant cluster in the network. DEP, differentially expressed protein; EAD,
early allograft dysfunction; FC, fold change; MCODE, molecular complex detection.
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Prediction models of early allograft dysfunction

We first employed a decision tree to select and rank the DEPs that
could be used to construct a predictivemodel (Supplementary Fig.
S7A, Supplemental Digital Content 1, http://links.lww.com/JS9/

C107). We further trained an integrated XGBoost machine
learning model (Proteomics-Model) based on the DEPs, which
showed an AUC of 0.988, accuracy of 0.973, specificity of 0.972,
and sensitivity of 0.973 (Supplementary Fig. S7B, Supplemental

Figure 2.Graft proteins that are involved in the key enrichment pathways. (A) Heatmap of 80 selected DEPs (according to P-value) involved in the five processes identified by
Metascape online analysis. (B) The relative expression level (normalized original value) of 12 key proteins between the EAD group and non-EAD group (***P<0.001; **P<0.01;
*P<0.05), which participated in the process of triglyceride and glycerophospholipid metabolism (DGAT1, LIPC, PLIN1, LPIN3, and GPAT1), neutrophil degranulation (RETN,
CREG1, and CD59), and MET-related signaling pathway (PIK3CA, TGFB1, MET, and SOS1). DEP, differentially expressed protein; EAD, early allograft dysfunction.
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Digital Content 1, http://links.lww.com/JS9/C107). The calibra-
tion curves of the Proteomics-Model showed excellent con-
cordance between the predicted and actual probabilities
(Supplementary Fig. S7C, Supplemental Digital Content 1, http://
links.lww.com/JS9/C107).

Given the simplification of the detection of perfusate bio-
chemistry and cytokine levels, as well as the close interaction
between the graft and perfusate, we further considered perfusate
metabolic products as potential biomarkers for predicting EAD.
In multivariate analysis, we found that perfusate LDH, TG, and
IL-8 levels were independent factors influencing the development
of EAD (Table 3). Accordingly, we built a predictive model using
clinical parameters and perfusate metabolic products (Integrated-
Model), which displayed an AUC of 0.915, accuracy of 0.836,
specificity of 0.833, and sensitivity of 0.838 in the training set
(Fig. 5A). Calibration curves of the Integrated-Model exhibited
good concordance between the predicted and actual probabilities
(Fig. 5B). A nomogram was constructed using the coefficients of
this model (Fig. 5C), and the probability of developing EAD
calculated using the nomogram formula.

EAD occurred in 33.3% of the LT recipients in the validation
set (n= 150). We found that the Integrated-Model could stratify
patients with EAD from those without, with an AUC of 0.833,
accuracy of 0.787, specificity of 0.830, and sensitivity of 0.700.
Furthermore, we compared the diagnostic efficacy of the
Integrated-Model and current existing models, including the
DRI, eurotransplant-donor risk index (ET-DRI), and D-MELD
scores in both the training and validation sets (Fig. 5D). The
integrated model showed superior predictive efficacy compared
with that of the other models.

Discussion

To the best of our knowledge, this is a pioneering study as it was
the first to explore the EAD-specific liver graft proteomic profiles
and associated downstream metabolic features in the perfusate.
Compared with that of grafts without EAD, those developing
EAD displayed significant activation of TG andGPLmetabolism,
neutrophil degranulation, and the MET-related signaling path-
way. To provide more evidence to support this, we identified the
metabolic products present in the paired perfusate, which not
only presented an EAD-specific distinction but also uncovered the
close connection between the liver graft and perfusate. Based on
the cross-omics analysis, we suggest that grafts with lipid dis-
orders (TG and GPL upregulation) and inflammatory infiltration

may be susceptible to EAD. Key molecules, including GPAT1,
LPIN3, TG, PC/PE, LDH, and IL-8, which are involved in the
above-mentioned processes, could serve as potential biomarkers
for assessing graft quality.

This study emphasized the concern of using liver grafts in
patients with lipid metabolism disorders. It is well-known that a
hepatic macrosteatosis level above 60% increases the incidence of
EAD[1]. Herein, we showed that liver grafts with overactivation of
TG metabolism, both the synthesis (e.g. DGAT1, LPIN3, and
GPAT1) and accumulation (e.g. PLIN1), could increase the risk of
EAD, even though steatosis has not been pathologically pre-
sented. As the first rate-limiting enzyme in TG synthesis, GPAT1
acylates glycerol-3-phosphate into phosphatidic acid in the
mitochondria, which is then dephosphorylated by LPIN3 to
produce diacylglycerol (DAG)[36]. DAG is then esterified by
DGAT1 to ultimately form TG[44]. Previous studies have shown a
close relationship between increased GPAT1 and DGAT1 levels
and higher liver TG concentrations and plasma lipid levels[45].
Genetic variation in GPAM, which encodes GPAT1, is associated
with poor liver function in various chronic liver diseases (e.g.
alcohol-related liver disease and cirrhosis)[44,46]. In addition,
PLIN1 promotes TG accumulation by inducing lipid droplet
formation and structural modifications and inhibiting lipolysis[38].
In non-alcoholic fatty liver disease, the overexpression of PLIN1
has relevance with oxidative injury and hepatocyte ballooning[47].
TG itself is straightforwardly toxic to hepatocytes and indirectly
leads to hepatic damage by promoting the overproduction of
lipotoxins (e.g. free Fas and lysophosphatidic acid)[48]. Consistent
with the proteomic findings, we observed a dramatically increased
TG concentration in the perfusate of grafts that developed EAD.
Therefore, we highlighted the potential value of TG metabolism-
related proteins as early warning signs of EAD.

Our previous metabolomics-based[49] and the present cross-
omics studies showed that activated GPL metabolism (e.g.
GPAT1 and LPIN3) may be linked to the development of EAD.
Two key proteins, GPAT1 and LPIN3, play dominant roles in
GPL metabolism and increase the production of PC and PE[37].
Balancing the PC/PE ratio is essential to maintain cellular mem-
brane integrity[50]. In this study, EAD was associated with
downregulated PC and upregulated PE levels, leading to a
reduced PC/PE ratio in the perfusate. The downregulation of PC
and the reduced PC/PE ratio could increase membrane perme-
ability, leading to the leakage of hepatocellular content into the
extracellular environment[51]. Injured hepatocyte membrane
integrity was confirmed by a sharp increase observed in ALT and

Table 2
Central pathways and proteins contributed to the development of early allograft dysfunction.

Process Key pathways TOP proteins Functions

Metabolism of lipids TG metabolism DGAT1, LPIN3, GPAT1 TG synthesis[36]

PLIN1 TG accumulation[38]

LIPC TG hydrolysis[36]

GPL metabolism LPIN3, GPAT1 GPL synthesis[37]

Organophosphate biosynthetic process GPL metabolism GPAT1 GPL synthesis[37]

Neutrophil degranulation Neutrophil degranulation RETN, CREG1, CD59 Protections against IRI[39–41]

Cellular amide metabolic process MET-related signaling pathway PIK3CA, TGFB1, MET, SOS1 Lipid regulation[42]

Hepatic regeneration[43]

Oxidative phosphorylation

GPL, glycerophospholipid; IRI, ischemia-reperfusion injury; TG, triglyceride.
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AST levels in the perfusates. This process could further activate
Kupffer cells and trigger the infiltration of other immune cells
(e.g. neutrophils), thereby leading to cytokine-mediated injury in
hepatocytes[51,52]. Therefore, we hypothesized that GPL-related
toxicity plays a role in EAD etiology. The inhibition of GPAT1 or
LPIN3 could reduce the production of GPLs, which may provide
a potential therapeutic strategy for grafts developing EAD.

There is also evidence of a close link between EAD and graft
lipid disorders. Liver grafts developing EAD displayed upregu-
lation of MET-associated proteins (e.g. MET and PIK3CA) and
activation of the MET/PI3K/Akt/mTOR signaling pathway,
according to the combined proteomics and metabolomics ana-
lyses. MET is a receptor of the hepatocyte growth factor (HGF),
which is secreted by Kupffer, hepatic stellate, and vascular

Figure 3. Perfusate metabolomic features of EAD. (A) Principal component analysis plot of the EAD and non-EAD groups in LC–MS-metabolomics. (B) The volcano
plot for the DEMs in LC–MS-metabolomics. Red represented FC >2 and P< 0.05; blue represented FC <0.5 and P< 0.05. (C) KEGG pathway analysis between
the EAD and non-EAD groups in LC–MS-metabolomics. (D) Principal component analysis plot of the EAD and non-EAD groups in GC–MS-metabolomics. (E) The
volcano plot for the DEMs in GC–MS-metabolomics. Red represented FC >2 and P< 0.05; blue represented FC <0.5 and P< 0.05. (F) KEGG pathway analysis
between the EAD and non-EAD groups in GC–MS-metabolomics. (G) The representative differential expressedmetabolic products between the EAD and non-EAD
groups (***P<0.001; **P<0.01; *P<0.05). DEMs, differentially expressed metabolites; EAD, early allograft dysfunction; FC, fold change; IL-8, interleukin-8; LDH,
lactate dehydrogenase; PC, phosphatidylcholine; PE, phosphorylethanolamine; TG, triglyceride; UDPGA, UDP glucuronic acid.
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endothelial cells[43]. Upon binding to HGF, MET is
activated and recruits PIK3CA to stimulate the PI3K/Akt/mTOR
signaling pathway, thereby functioning as a crucial regulator
of metabolism, including nucleic acids, lipids, proteins, and
carbohydrates[42]. By elevating glucose flux into the pentose
phosphate pathway, the activated PI3K/Akt/mTOR signaling
pathway provides sufficient NADPH for lipid synthesis, parti-
cularly of TG and GPL, and promotes lipid droplet formation[42].
Moreover, activation of the MET/PI3K/Akt/mTOR signaling
pathway could inhibit lipolysis and lipid oxidation, leading to
lipid accumulation[42,53].

In addition to regulating lipid metabolism, the HGF/MET-
associated signaling pathway is indispensable for liver regenera-
tion and repair through triggering diverse pathways, such as the
PI3K/Akt andRas pathways[43,54].WhenMET is activated, SOS1
is recruited to stimulate the Ras pathway, promoting cell pro-
liferation and growth[54]. In contrast, TGFB1 can block activa-
tion of the HGF/MET axis via binding to HGF, restoring
hepatocytes[55]. Thus, the coordination and balance between
MET, PIK3CA, SOS1, and TGFB1 are essential for repair after
liver injury. Previous studies have demonstrated that the HGF/
MET axis can be rapidly activated in cases of acute liver failure

Figure 4. Integrative analysis of graft proteomics and perfusate metabolomics. (A) The network showed the interaction of differentially abundant proteins and
metabolites and the related metabolic pathways. (B) The correlation plot between the TOP DEMs and DEPs (***P< 0.001; **P<0.01; *P< 0.05). (C) The key graft
proteins and perfusate metabolic products reflected the graft status, including TG and GPL metabolism, cellular membrane permeability, and neutrophil degra-
nulation, which were associated with EAD. ALT, alanine transferase; AST, aspartate transferase; EAD, early allograft dysfunction; FC, fold change; GPL, glycer-
ophospholipid; IL-8, interleukin-8; LDH, lactate dehydrogenase; PC, phosphatidylcholine; PE, phosphorylethanolamine; TG, triglyceride; UDPGA, UDP
glucuronic acid.
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and partial hepatectomy[56,57]. In rat LT and ischemia-reperfu-
sion injury (IRI) models, HGF pretreatment of recipients resulted
in improved graft function and reduced mortality[58]. In this
study, the grafts that developed EAD showed significant activa-
tion of MET-related proteins, indicating active hepatic regen-
eration and severe organ injury.

Enrichment of the neutrophil degranulation pathway further
suggests the involvement of inflammatory regulation in EAD
development. It is well-known that the inflammatory phase is
inevitable during organ procurement, preservation, and implan-
tation. Several clinical situations such as marginal donor livers,
prolonged ischemia time, andmassive blood loss, mayworsen the
inflammatory phase[59]. Moreover, the comprehensive remodel-
ing of liver immunity via donor-recipient interplay causes
inflammation[60]. As the first responders to inflammation and
infection, neutrophils can be recruited to serve as a signal for the
severity of injury[61]. Our proteomics analysis demonstrated that
grafts developing EAD displayed dysregulation of proteins
involved in neutrophil degranulation, such as RETN, CREG1,
and CD59. It has been reported that RETN, CREG1, and CD59
protect against hepatic IRI, a well-known cause of EAD, through
the PI3K/Akt pathway[39], mitogen-activated protein kinase sig-
naling pathway[40], and complement response[41], respectively. In
the perfusate, IL-8, a potent human neutrophil-attracting
chemokine[62], was significantly upregulated in the EAD group
compared with that in the non-EAD group and showed a positive
correlation with graft CD59. Herein, we highlighted the vital role
of these neutrophil degranulation-related proteins and perfusate
IL-8 in the early warning signs of EAD. In addition, graft pro-
teomics revealed the potential mechanism underlying acute kid-
ney injury after LT. Norén et al.[63] performed proteomics
analysis in a liver graft and found significantly differential
expressed proteins, which were related to immune and inflam-
matory responses, host defense, and neutrophil degranulation,
between the acute kidney injury group and the non-acute kidney
injury group. Therefore, a more severe graft inflammation status,

possibly as a consequence of donation after circulatory death
(DCD), steatosis, or long-distance traveling liver graft, would be
associatedwith poor organ function after LT. Strategies aiming to
alleviate sterile inflammation such as pharmacological therapies
and machine perfusion have been developed to preserve organ
function and improve long-term transplant outcomes, particu-
larly for expanded criteria donors like DCD[64].

From bench to bedside, accurate prediction of EAD would be
of great help in early intervention and improving treatment out-
comes. We believe that the integrative analysis of proteomics and
metabolomics could not only reveal the early biological processes
leading to EAD but also identify biomarkers for disease predic-
tion. We established a Proteomics-Model that could effectively
disaggregate the EAD cases from those of the others with extre-
mely high accuracy. Graft biopsies can be easily collected during
graft preservation and are available for histological assessment
and accurate injury quantification, thus serving as potential tools
for assessing graft quality and predicting treatment outcomes.

To predict EAD in a timely manner, we focused on the bio-
chemistry and cytokine levels in the perfusate, which can be
obtained noninvasively and rapidly. We found that metabolic
products, such as LDH, TG, and IL-8, were independent risk
factors for the development of EAD. These results were consistent
with the proteomics findings showing that perfusates were more
enriched in the products of oxidative stress, inflammation, and
TG and GPL metabolism in the EAD group than in the non-EAD
group. We further established an integrated model using perfu-
sate metabolic products and clinical parameters. Themodel could
triage grafts that were susceptible to EAD with an AUC >0.8 in
both the training and validation sets. The model also showed
better predictive efficiency than that of existing models.

This study had pros and cons. The major advantage was the
integrative omics approach employed. Liver proteomics and
perfusate metabolomics were well connected. Proteomics analysis
could rapidly identify and quantify graft proteins, whereas
metabolomics could determine the levels of perfusate metabolites,

Table 3
Risk factors of early allograft dysfunction.

Univariate Multivariate

OR (95% CI) P OR (95% CI) P

Donor, surgical, and recipient characteristics
γGTP > 100 (U/l) 3.925 (1.424, 11.80) 0.011 10.78 (2.032, 89.68) 0.011
ALT > 100 (U/l) 3.840 (1.178, 15.07) 0.034
AST > 60 (U/l) 2.322 (0.916, 6.073) 0.079
Graft weight > 1.5 (kg) 3.156 (1.137, 9.499) 0.032 10.92 (2.014, 94.18) 0.013
GWIT > 35 (min) 4.594 (1.708, 13.34) 0.003 9.106 (2.202, 50.30) 0.005
DWIT > 7.5 (min) 1.647 (0.656, 4.212) 0.291
DCIT > 8 (h) 1.868 (0.737, 4.848) 0.191
MELD score > 25 2.900 (1.067, 8.390) 0.041 5.573 (1.194, 34.55) 0.041

Perfusate parameters
ALT > 400 (U/l) 5.372 (2.032, 15.18) < 0.001
AST > 850 (U/l) 5.417 (2.044, 15.37) < 0.001
LDH > 2500 (U/l) 5.278 (1.860, 16.81) 0.003 6.026 (1.206, 41.03) 0.041
TG > 0.6 (mmol/l) 5.280 (1.490, 25.02) 0.017 11.05 (1.547, 113.2) 0.026
IL-8 > 20 (pg/ml) 3.111 (1.174, 8.718) 0.025 5.182 (1.249, 26.39) 0.031

The cutoff value was selected according to the diagnostic specificity and sensitivity.
ALT, alanine transferase; AST, aspartate transferase; DCIT, donor cold ischemia time; DWIT, donor warm ischemia time; GWIT, graft warm ischemia time; IL-8, interleukin-8; LDH, lactate dehydrogenase; MELD,
model for end-stage liver disease; TG, triglyceride; γGTP, gamma-glutamyl transpeptidase.
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Figure 5. Prediction of EAD. (A) The receiver operating characteristic curve of the Integrated-Model in the training set. (B) The calibration curves of the Integrated-
Model in the training set. (C) The nomogram of the Integrated-Model. (D) The receiver operating characteristic curves of Integrated-Model, DRI, ET-DRI, and
D-MELD scores in the training set and validation set. AUC, the area under the curve; D-MELD, donor age and model for end-stage liver disease; DRI, donor risk
index; EAD, early allograft dysfunction; ET-DRI, eurotransplant-donor risk index; MELD, model for end-stage liver disease.
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which are the end products of cellular regulatory processes in the
liver. Therefore, the integrative omics analysis comprehensively
proposed a coordinated mechanism for the development of EAD
in different biological layers and identified the key molecules
involved. Integration of key molecules into the clinical model
significantly improved its diagnostic efficacy. However, this study
had some limitations. First, protein detection, quantitation, and
analysis using common technologies, such as immunology-based
methods, are time-consuming. Therefore, it still lacks efficacy for
timely decision-making regarding the use or discarding of donor
allografts. Second, the predictive efficacy of our models needs to
be verified in large cohorts from different regions and patient
populations. Themechanisms underlying the roles of key proteins
and pathways in graft function require further exploration.
Third, the use of perfusates has some limitations, as mentioned in
the International Liver Transplantation Society Consensus
Guidelines[65]. For instance, the microorganisms and surgeons
involved in the backbench and retrieval would influence the levels
of perfusate molecules. The perfusate samples, which were
obtained in a static storage setting, may not include all the
metabolic products. Some metabolites may not have diffused out
in the storage bag, and variable degrees may still retained in the
liver. In addition, single-cell technologies, including single-cell
transcriptomics, proteomics, and metabolomics, could effectively
identify the molecular landscape of signal cells in organisms and
allow an understanding of the heterogeneity and relevance
between cells[66]. These technologies may better elucidate the
differences between grafts that develop EAD and those that
do not.

In summary, this study provides a better understanding of the
etiology of EAD from the perspective of graft proteomics and its
close correlation with perfusate metabolic products. We
demonstrated that grafts susceptible to EAD showed over-
activated TG andGPLmetabolism and inflammatory infiltration.
Graft proteins, such as LPIN3, TGFB1, CD59, and SOS1, could
be used as biomarkers for assessing graft quality and may also
serve as potential therapeutic targets. Perfusate metabolic pro-
ducts, including LDH, IL-8, TG, and PC/PE, could help decipher
the pathophysiology of grafts and effectively predict the risk
of EAD.
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