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To bring biomarkers closer to clinical application, they should be generalizable, reliable, and 

maintain performance within the constraints of routine clinical conditions. The functional striatal 

abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, 

trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, 

we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) 

in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) 

from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis. We also 

measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability 

with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on 

classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic 

capability of the FSA by the correlation between baseline scores and symptom improvement 

over 12 weeks of antipsychotic treatment in a separate cohort (n = 97). Similar analyses were 

conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent 

diagnostic discrimination (AUC = 75.4%, 95% CI = 67.0–83.3%; in non-affective psychosis 

AUC = 80.5%, 95% CI = 72.1–88.0%, and in affective psychosis AUC = 58.7%, 95% CI = 44.2–

72.0%). Test-retest reliability ranged between ICC = 0.48 (95% CI = 0.35–0.59) and ICC = 0.22 

(95% CI = 0.06–0.36), which was comparable to that of networks intrinsic connectivity. Phase 

encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42–0.59), generally lower 

than for networks intrinsic connectivity. By increasing scan length from 2 to 10 min, diagnostic 

classification of the FSA increased from AUC = 71.7% (95% CI = 63.1–80.3%) to 75.4% (95% 

CI = 67.0–83.3%) and phase encoding direction reliability from ICC = 0.29 (95% CI = 0.14–0.43) 

to ICC = 0.51 (95% CI = 0.42–0.59). FSA scores did not correlate with symptom improvement. 

These results reassure that the FSA is a generalizable diagnostic – but not prognostic – biomarker. 

Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, 

next the development of prognostic biomarkers should be on treatment-response data.

INTRODUCTION

Personalized medicine aims to use biomarkers to match individuals with their most 

appropriate interventions [1]. This is particularly relevant in psychiatry, since most often 

treatment choice is determined by trial-and-error, which is associated with disengagement 

and greater chance of suboptimal outcomes [2]. For personalized medicine to deliver on its 

promise of improving outcomes, biomarker development should fulfill several criteria. Akin 

to the phases of drug discovery, these consecutive steps are: identifying a biological measure 

fit for the clinical paradigm of interest; demonstrating that it scales with the clinical measure 

of interest independent of potential confounding (internal validity); showing out of sample 

performance (external validity); and finally proving clinical utility [3].

In a recent review covering the state of the field in biomarker development [4], we 

identified the Functional Striatal Abnormalities (FSA) [5] index among the most developed 

in schizophrenia. FSA is a data-driven measure informed by previous evidence on the 

role of striatal function in schizophrenia. For its development, investigators used functional 

magnetic resonance images (fMRI) acquired from seven independent scanners (n = 1100), 

which were used to derive intra- and extra-striatal functional connectivity and striatal 

fractional amplitude of low-frequency fluctuations (fALFF) images. Features from these 
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three sources were selected using a support vector machine classifier trained to discriminate 

between patients with non-affective psychosis (n = 560) and controls (n = 540), and the FSA 

score value was defined as the distance in the feature space to the separating hyperplane. 

Polarity was defined so that positive values were predictive for healthy controls. The authors 

found accuracy of 80.4%, sensitivity of 79.3%, and specificity of 81.5% based on leave-one-

site-out cross-validation. Despite not having been developed as a predictive biomarker, post-

hoc analyses showed that in two separate cohorts for which there were data on treatment 

response, baseline FSA score was significantly correlated with symptom reduction (r = 0.62, 

0.42; p < 0.01 and p < 0.01 respectively), showing promise as a prognostic biomarker.

While these data are encouraging, the ability to move biomarkers towards clinical practice 

depends on independent confirmations of external validity [3]. The FSA’s performance 

was tested by leave-one-site-out cross-validation [5], but validation of these results 

by independent groups under generalizable conditions (i.e., different scanners, imaging 

protocols, or participant characteristics) is still necessary [6]. Furthermore, in addition 

to testing the accuracy of predictions, several additional requirements for an effective 

biomarker include characterization of reliability; examination of potential confounding 

effects by clinical and demographic variables; testing sensitivity to effects of imaging 

acquisition and analysis parameters. Biomarker stability in the face of these potential 

confounds is critical to plan subsequent experiments geared towards demonstrating clinical 

utility.

Here, we aim to advance this line of research on biomarker development in schizophrenia 

by testing whether the classification performance of the FSA replicates in the Human 

Connectome Project for Early Psychosis (HCP-EP) [7], a publicly available dataset. The 

objective of this manuscript is to replicate the findings reported in the original FSA 

publication, using an approach and independent data as similar as possible to the original, in 

order to test the external validity of this biomarker. Furthermore, we aim to study parameters 

that affect internal validity and reliability. Specifically, we measured the effects of relevant 

confounding on FSA values, calculated test-retest (i.e., run 1 vs run 2) and phase encoding 

direction reliability (i.e., FSA generated from PA scan vs from AP scan). In addition, we 

repeated these analyses for intrinsic connectivity for the Yeo networks, which have been 

well characterized [8]. Also, we concatenated scan runs and resliced them to obtain scans of 

increasing lengths from which we obtained FSA and network intrinsic connectivity to study 

the effects of increasing scan duration on accuracy of classification and reliability. Finally, 

since the HCP-EP [7] does not have data on treatment response, to replicate the post-hoc 

finding of the correlation between treatment response and baseline FSA scores, we tested 

this on a separate cohort of individuals with first episode psychosis who were treated with 12 

weeks of antipsychotics (Fig. 1).

METHODS

Participant characteristics

We included data from the HCP-EP as in its 1.1 public release of August 2021 [9]. 

Participants were patients within 5 years of having been diagnosed with either non-affective 

or affective psychosis (total n = 101, n = 78 non-affective and n = 23 affective psychosis), 
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and healthy controls (n = 51). All participants were administered the SCID-5 [10] diagnostic 

interview, which generated rule in and rule out diagnoses. Main entry criteria included age 

16–35 and confirmation of primary psychosis for patients and ruling out history of primary 

psychosis or active affective, substance use, or anxiety disorder for controls. About half of 

the patients were receiving treatment with antipsychotics at the time of the scan (n = 42, for 

those on treatment with a mean dose of 384.1 mg/d) and overall were mildly symptomatic 

(mean total PANSS = 46.29, SD = 16.58). Data were acquired at four sites: Indiana 

University, Brigham and Women’s Hospital, McLean Hospital, and Massachusetts General 

Hospital. All procedures were approved by the Partners Healthcare Human Research 

Committee/IRB and comply with the regulations set forth by the Declaration of Helsinki.

In addition, for the prediction of treatment response we used data from the Zucker 

Hillside Hospital cohort (ZHH cohort) 97 patients at the time of their first treatment for 

psychosis (non-affective n = 69, affective psychosis n = 28) with minimal exposure to 

antipsychotics (43% treatment naïve, median exposure = 5 days). Inclusion criteria were: 

1) Demonstration of acute psychosis by presence of scoring ≥4 (moderate) on one or more 

of these Brief Psychopathology Rating Scale (BPRS-A) [11] items: hallucinatory behavior, 

unusual thought content, conceptual disorganization; 2) Early phase of illness as defined 

by having taken antipsychotic drugs for a cumulative lifetime period of 2 weeks or less; 3) 

age 16 to 30; 4) competent to sign informed consent. Exclusion criteria were: 1) serious 

neurological or endocrine disorder; 2) any medical condition which requires treatment 

with a medication with psychotropic effects; 3) significant risk of suicidal or homicidal 

behavior; 4) inability to provide informed consent; 5) contraindications to monotherapy with 

risperidone; 6) contraindications to MR imaging. Diagnostic eligibility was confirmed by 

the SCID-5 [10]. Patients underwent a standardized treatment protocol with risperidone or 

aripiprazole for 12 weeks, and regular clinical ratings. Patients underwent assessment by 

the BPRS-A [11] at baseline and weeks 2,4,6,8 and 12, and change in symptom severity 

between last assessment and baseline was calculated. In addition, we calculated treatment 

response, defined as two consecutive ratings of much or very much improved on the CGI, 

as well as a rating of ≤3 on four psychosis-related items of the BPRS-A [11], resulting 

in n = 52 (53.61%) responders (being the rest either non-responders or early exits). This 

recently collected dataset is different from those in which we have developed similar work 

[12]. This sample size was deemed adequate since it is larger than the one in the original 

study. All participants were scanned at treatment onset after providing informed consent as 

approved by the Institutional Review Board of the Feinstein Institutes for Medical Research. 

Participant characteristics are described in Supplementary Table S1.

fMRI acquisition

Resting state fMRI (rs-fMRI) scans were collected on 3T Siemens Prisma scanners using 

a multi-band accelerated echo-planar imaging sequence described in detail in the Human 

Connectome Project [13]. For each study participant, a T1-weighted scan (TR = 2400 msec, 

TE = 2.22 msec, voxel size = 0.8 mm3, scan length = 6 min, 38 s) and two rs-fMRI sessions 

(TR = 800 ms, TE = 37 ms) were acquired at each timepoint. During each fMRI session, 

two runs of 5-min 47-s scans (i.e. 420 volumes) were collected in opposite phase encoding 

directions (one with PA and the other with AP). Rs-fMRI scans were collected with eyes 

Rubio et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



open. To ensure signal stability, the first 13 volumes were discarded in data analysis. Each 

rs-fMRI scan consisted of 72 contiguous axial/oblique slices in the AC-PC orientation (TR 

= 720 ms, TE = 33.1 ms, matrix = 104 × 90, FOV = 208 mm, voxel = 2 × 2 × 2 mm, 

multi-band ×8). The only major differences in acquisition for the scans from the ZHH cohort 

were that the rsMRI runs were of 7-min 17-s rsMRI runs, one each with AP and PA phase 

encoding directions (total 2 runs at each timepoint, 594 volumes each), and that images were 

acquired with eyes closed, with verification of wakefulness.

Calculation of FSA scores and intrinsic connectivity of canonical networks

Image preprocessing.—Scans from both datasets were preprocessed using HCP based 

pipelines [14]. Briefly, structural preprocessing included gradient distortion correction, 

brain extraction, cross-modal registration of T2 weighted (T2w) images to T1w, bias field 

correction based on square root (T1w*T2w) and non-linear registration to MNI space. 

The functional preprocessing methods used were gradient distortion correction, motion 

correction, and EPI image distortion correction based on spin-echo EPI field maps and 

spatial registration to T1w image and MNI space [14]. An initial high pass filter of 2000 

Hz was applied to remove slow drift trends before nuisance regression was performed using 

FMRIB’s ICA-based X-noiseifier (FIX) [15–17]. Functional images then underwent 5-mm 

full-width-at-half-maximum spatial smoothing. Finally, we ran global signal regression 

(GSR), since this step was taken in the original FSA publication [5], and also additional 

literature has suggested that GSR may facilitate behavioral predictions from rs-fMRI [18]. 

Both GSR and no-GSR results are presented. To control for head motion, frame-wise 

displacement (FD) was calculated for each scan time point [19]. We applied a stringent 

motion threshold so that individuals for whom >30% of volumes had FD > 0.3 were 

excluded from the analyses. This led to the exclusion of 13 and 8 individuals in the HCP-EP 

dataset and ZHH cohort respectively.

Calculation of FSA and intrinsic network connectivity.—For the FSA calculation, 

we followed the procedures described in the original study [5], using publicly available 

scripts for the calculation of the FSA [20], using weights and features as originally 

developed, since our objective is to replicate the original findings in an independent dataset. 

The input to calculate the FSA were the preprocessed resting state fMRI images as described 

above, resliced to 3 mm isotropic voxels, and fALFF images [21] that we calculated 

separately using the RestPlus toolbox in Matlab [22]. For this step, we used preprocessed 

images as described above. Fourier transformation was used at every voxel to calculate the 

power of BOLD signal in the low frequency range of 0.01–0.08 Hz, and then divided by the 

entire frequency range. Both resting state and fALFF images were finally used to calculate 

the FSA scores, which reflect the distance to the separating hyperplane between cases and 

controls based on the model developed in the original publication [5]. For each scan, we 

generated FSA values for each run (i.e., 1 and 2), phase encoding direction (PA and AP) and 

GSR (with and without).

In addition to the FSA, we measured the intrinsic network connectivity for each subject 

using custom python scripts based on nilearn [23]. We chose these resting state fMRI 

measure as a control given its high reproducibility and ease of interpretation [8]. For 
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this step, we generated voxel-wise connectivity matrices for each scan and fetched the 

‘Dictionaries of Functional Modes’ (DiFuMo) atlas [24] subsequently deriving functional 

connectivity for the Yeo networks [8]: cognitive control, default mode, dorsal attention, 

salience, somatosensory and visual. We extracted and averaged the correlations between 

nodes within each network as the intrinsic connectivity value for each subject.

Generation of values based on scans of increasing length.—We used 

concatenation and slicing to generate scans of increasing length from which to calculate 

FSA and network intrinsic connectivity values. For this step, we normalized, mean centered, 

and concatenated the two consecutive runs in each phase encoding direction for each 

individual’s rs-fMRI scan. Subsequently, we sliced each ~10’ concatenated scan in 10 

increments (i.e., first 82 volumes, first 164 volumes…). Finally, we preprocessed each 

increment and analyzed it to obtain FSA and intrinsic network connectivity values as 

described above.

Analyses

Distribution and potential confounding.—We compared the distribution of the FSA 

and the network intrinsic connectivity by participant type (patients vs controls) and 

calculated the corresponding effect sizes of the difference in values between patients and 

controls. Then, we ran a linear regression including as dependent variable the FSA and 

independent variables age, sex, race, medication dose, and illness severity score to measure 

whether these variables may behave as confounding. Of those, antipsychotic dose is relevant, 

since antipsychotics may have effects on the connectome that if picked up by the FSA, 

instead of features associated with the diagnosis, could confound the results. In addition, we 

examined whether these variables affected differently patients or controls by running group 

interactions.

Classification performance and correlation with symptom improvement.—We 

calculated receiver operating characteristic (ROC) curves to estimate the accuracy of 

classification of diagnosis. Analyses were repeated separately for patient sub-groups that 

only included affective and non-affective psychoses. Since the FSA was developed on 

patients with non-affective psychosis, we hypothesized that it would perform better in 

this population. We ran separate ROCs models for FSA derived from PA GSR, PA 

NoGSR, AP GSR and AP NoGSR scans. Classification accuracy was measured by the 

area under the curve (AUC) of the ROC curve, and 95% confidence intervals (95% CIs) 

were generated using 2000 bootstraps. ROCs were also used to identify the score with 

the best discriminating ability (i.e., value with greatest true positive and lowest false 

positive fraction), which was then used to calculate the sensitivity and specificity for that 

discriminating threshold. As a reference, it has been suggested that AUC > 80% is necessary 

for clinical utility of a biomarker [25] although lower accuracy may still be useful depending 

on consequences of wrong classification and alternatives to the biomarker [4].

To replicate the post-hoc finding reported in the original publication, of a significant 

correlation between baseline FSA score and total symptom improvement following an 

antipsychotic trial, we ran a correlation between FSA scores derived for each phase 
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encoding direction and GSR condition, and total symptom improvement defined as 

difference in total BPRS-A score between the baseline assessment and the last available 

measure. Although other approaches such as using individual random slopes of a mixed 

model may be reflect better individual treatment response [26], we designed the analyses to 

be as similar to the original study [5].

Test-retest and phase encoding direction reliability.—We compared the FSA and 

intrinsic network connectivity from each run (i.e., test-retest reliability) and PA vs AP scans 

(i.e., phase encoding direction reliability) by using the intraclass correlation coefficient 

(ICC), an established measure of reliability [27] that reflects the ratio of within-individual 

variance over total variance. Specifically, we used a two-way mixed, single score intraclass 

correlation coefficient [ICC(3,1)] generating also 95% CIs, which is recommended to test 

the reliability of the same measure by one rater [28]. We calculated reliabilities for the entire 

sample, as well as separately for patients and controls. As a rule of thumb ICC is deemed 

poor <0.4, fair 0.4–0.59, good 0.6–0.74, and excellent >0.75 [29]. The reason to focus on 

phase encoding direction reliability, in addition to test-retest, is based on recent findings 

from our group about general differences in reliability in the connectome by phase encoding 

direction [30].

Effects of scan length on classification performance and reliability.—For this 

particular part of the analyses, we re-calculated FSA and network intrinsic connectivity 

values from the scans of increasing lengths described above. For values generated from 

scans of each duration, we calculated AUCs with corresponding 95% CIs, as well ICC with 

95% CIs for phase encoding direction reliability.

RESULTS

Distribution and potential confounding

FSA values were significantly lower in patients than in controls (p < 0.0001) for both phase 

encoding directions and GSR analyses, in the same direction as in the original publication 

[5], with effect sizes that ranged between cohen’s d = 0.79 (95% CI = 0.44–1.15) for 

PA No GSR to d = 0.91 (95% CI = 0.55–1.26) (Fig. 2; see effect sizes and p values in 

Supplementary Table S2). Differences between patients and controls were for the most part 

not significant for intrinsic network connectivity, and when significant of small effect size. 

Out of all the networks and scans (i.e., PA vs AP and GSR vs No GSR, only somatosensory 

network PA No GSR, d = 0.41 (95% CI = 0.07–0.75) and default mode network AP No 

GSR, d = 0.35 (95% CI = 0.01–0.68) were different between patients and controls. As 

expected, network intrinsic connectivity values were lower in scans that were subject to 

GSR. Age, sex, race, antipsychotic dose, total psychopathology and negative symptoms 

scores did not have any significant impact on FSA values (Supplementary Table S3).

Classification performance and correlation with symptom improvement

For classification of diagnosis (i.e., psychosis vs healthy control), the classification 

performance of the FSA ranged between AUC = 75.7%, (95% CI = 67.3–84.1%) for PA 

scans with GSR with sensitivity of 82% and specificity of 65%, and AUC = 73.6%, (95% CI 
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= 65.0–82.2%) for AP scans without GSR with sensitivity of 76% and specificity of 66%. 

When the discrimination was between non-affective psychosis and healthy controls, the 

classification ranged between AUC = 80.5% (95% CI = 72.1–88.0%) for PA scans with GSR 

with specificity of 82% and sensitivity of 73% and AUC = 74.5% (95% CI = 65.2–82.1%) 

for AP scans without GSR with specificity of 65% and specificity of 77%, whereas when 

the discrimination was between affective psychosis and healthy controls the classification 

ranged between AUC = 70.2% (95% CI = 57.4–81.9%) for AP scans without GSR with 

specificity of 43% and specificity of 96% and AUC = 58.7% (95% CI = 44.2–72.0%) for 

PA scans with GSR with sensitivity of 82% and specificity of 39% (Fig. 3, panels A–C; 

Supplementary Table S4).

When we tested correlation between baseline FSA scores and change in total symptom 

severity in the ZHH cohort, we found that the regression coefficients ranged between r = 

0.038 p = 0.75 for AP scans without GSR and r = 0.089 p = 0.45 for PA scans with GSR 

(Fig. 3, panel D). When using a dichotomous definition of treatment response, classification 

performance ranged between AUC = 55.7% (95% CI = 40.4–70.8%) for PA scans with 

GSR with sensitivity of 35% and specificity of 88%, and AUC = 49.3% (95% CI = 34.4–

65.9%) for AP scans with GSR with sensitivity of 72% and specificity of 41%. When the 

classification was between non-affective psychosis and healthy controls, the classification 

performance ranged between AUC = 55.7% (95% CI = 39.2–51.5%) for PA scans with GSR 

with sensitivity of 31% and specificity of 93%, and AUC = 47.9% (95% CI = 33.2–63.7%) 

for PA scans without GSR with sensitivity of 31% and specificity of 93%. There were not 

enough individuals with affective psychosis with enough data on treatment response to run 

separate classification analyses (Supplementary Table S5; Supplementary Fig. S1).

Test-retest and phase encoding direction reliability

Test-retest reliability between two runs within the same scan session for the FSA ranged 

between ICC = 0.48 (95% CI = 0.35–0.6) for AP scans without GSR, and ICC = 0.22 

(95% CI = 0.06–0.37) for PA scans without GSR. Test-retest reliability for network intrinsic 

connectivity ranged between ICC = 0.5 (95% CI = 0.37–0.61) for cognitive control network 

in AP scans with GSR and ICC = 0.07 (95% CI =−0.09–0.22) in salience network with PA 

No GSR scans (Fig. 4, panel A; Supplementary Table S6).

Phase encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42–0.59), 

while it ranged between ICC = 0.86 (95% CI = 0.82–0.88) for the dorsal attention network 

and ICC = 0.75 (95% CI = 0.70–0.80) for the somatosensory network (Fig. 4, panel B; 

Supplementary Table S7).

Effects of scan length on classification performance and reliability

Using a slice of approximately 2’ (164 volumes) out of the concatenated runs (total 820 

volumes) the diagnostic classification of the FSA ranged between AUC = 67.2% (95% CI = 

57.6–76.7%) for AP scans without GSR and AUC = 71.7% (95% CI = 63.1–80.3%) for PA 

scans with GSR. When the entire concatenated scan was used, the diagnostic classification 

ranged between AUC = 73.6% (95% CI = 65.0–82.2%) for AP scans without GSR and AUC 
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= 75.7% (95% CI = 67.3–84.1%) for PA scans with GSR. None of the classifications made 

by network intrinsic connectivity were significant, regardless of the scan time (Fig. 5).

When the same slice scheme was used to test phase encoding direction reliability, we found 

significant increments in reliability for the FSA, starting from ICC = 0.29 (95% CI = 0.14–

0.43) in slices of approximately 2’ duration to ICC = 0.56 (95% CI = 0.45–0.66) when using 

the entire concatenated scan. Similar increments were observed across network intrinsic 

connectivity values (Fig. 6).

DISCUSSION

Using a public independent dataset, we found that the original findings on the performance 

of the FSA as a diagnostic biomarker for schizophrenia [5] are generalizable out of sample. 

However, the post-hoc finding of the association between treatment response and baseline 

FSA scores in the original report [5] did not replicate in a separate treatment response 

dataset, suggesting that while as a diagnostic biomarker of schizophrenia the FSA has 

demonstrated external validity, it may be limited as a prognostic biomarker in its current 

form. Furthermore, this biomarker showed test-retest reliability comparable -and in some 

cases superior – to that of the Yeo networks, which have been previously well-validated 

[8]. Like recent work by our group [30], we identified differences in reliability by phase 

encoding direction, which seemed to be more pronounced in the FSA than in network 

intrinsic connectivity, although this did not have any significant impact in the accuracy of 

predictions. Similarly, there seemed to be greater gains in reliability than in accuracy of 

predictions by increasing the scan length.

Despite differences in participant demographic and clinical characteristics, scanner type, 

acquisition parameters, and preprocessing approach – all of which may reduce the 

reliability of fMRI scans and potentially the reproducibility of findings [31–33] – the 

results in the HCP-EP are consistent with those of the Chinese datasets in which it was 

developed. In addition to a classification accuracy of 75.7% (vs 80.1% in the original 

publication), we also observed consistently higher FSA values in controls than in patients, 

improvement in classification accuracy when only non-affective psychoses were included, 

and better results with global signal regression, all of which were reported in the original 

publication [5]. Furthermore, we did not find significant effects of demographic, clinical, 

or acquisition variables on FSA values, highlighting the internal validity of this biomarker. 

The replication of these findings attests to the value of the approach used to develop the 

FSA: advanced multivariable classification methods on large datasets with leave-one-site-

out cross-validation. Similar methods applying data-hungry models with contingencies to 

mitigate overfitting have been successfully applied to other areas of medicine, such as 

liquid biopsy for cancer [34], radiomics in medical imaging [35], or ophthalmology [36]. 

However, diagnostic biomarkers have limited applicability in psychiatric conditions since 

the psychiatric interview is still necessary to assess the needs of each individual. It is 

possible that diagnostic biomarkers that classify individuals with a first episode of psychosis 

between different diagnostic trajectories (e.g., schizophrenia vs bipolar disorder) could be 

useful, although this was separate from the diagnostic question assessed by the FSA. Despite 

there may not be immediate clinical application of this biomarker, it is remarkable that the 
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FSA findings replicate under so different conditions, which as a field, brings closer the 

application of neuroimaging biomarkers in psychiatric disorders.

An application more likely to be adopted in the clinic is that of prognostic biomarker. 

Predicting that an individual will not respond to an antipsychotic could avoid unsatisfactory 

experiences with ineffective treatments, a known risk factor of non-adherence [37] and 

ultimately relapse [38]. Furthermore, it could reduce the time while someone is acutely 

psychotic – and potentially a danger to self or others – by allowing the expedited use of 

clozapine, the only drug approved for treatment resistant schizophrenia [39]. Neuroimaging 

biomarkers could be very helpful for this purpose since clinical information alone is rather 

limited to predict treatment response [40]. However, it may be necessary to develop these 

biomarkers using datasets from treatment response, instead of datasets of cases vs controls. 

It is not entirely surprising that despite robust performance for diagnosis classification, the 

FSA – for which features were selected using case-control datasets – was limited as a 

prognostic biomarker. Our interpretation is that, despite similar approach and comparable 

independent data, including in sample size, the original correlation between baseline FSA 

and treatment response did not replicate, and therefore it cannot be confirmed that the FSA 

has external validity as a prognostic biomarker. Meta-analyses on functional connectivity 

in schizophrenia vs controls [41], and in treatment responders vs non-responders [42] do 

not necessarily overlap in their findings, aligning with the idea that the pathophysiology 

of the schizophrenia syndrome may go beyond the mechanisms engaged by antipsychotic 

drugs. In fact, in about one third of individuals with schizophrenia, positive symptoms fail 

to respond to antipsychotic drugs [43], and furthermore negative symptoms or cognitive 

deficits, core aspects of the syndrome, are not engaged by antipsychotic medication [44]. 

Thus, the mechanisms involved in treatment response likely account for only a proportion 

of the connectivity abnormalities observed in schizophrenia that were used for feature 

selection of the FSA. A similar example is the application of polygenic risk scores (PRS) 

in schizophrenia. PRSs can classify individuals with schizophrenia with AUCs ranging 

between 60 and 66% [45], but in general the proportion of the variance on treatment 

response explained by schizophrenia PRSs is lower [46]. There were differences in 

the demographic and scanning parameter characteristics between the treatment response 

cohort and the case-control sample from the HCP-EP which make reasonable to test the 

performance of the FSA as a prognostic biomarker in other datasets prior to completely 

ruling out this capability. Overall, this line of research suggests that applying approaches 

like the ones used to develop the FSA on large datasets of treatment response could be 

helpful to optimize prognostic biomarkers in schizophrenia and bring them closer to clinical 

application.

We observed effects of the phase encoding direction of the scan on reliability. Compared 

with network intrinsic network connectivity, the reliability of FSA values generated from 

PA vs AP scans was significantly lower, suggesting that FSA values are more vulnerable to 

phase encoding direction effects than other connectivity measures. AP scans showed better 

test-retest reliability; however, the predictions of AP and PA scans were not significantly 

different, suggesting that phase encoding direction may be more relevant for reliability 

than for accuracy of predictions. Similarly, we observed significant improvements in phase 

encoding direction reliability by increasing the acquisition length, however this had little 
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effect on predictions, which were already good with scans of about 2 min. This apparent 

decoupling between accuracy of predictions and reliability has been well documented [47–

50], and indeed reflects the fact that accuracy and reliability are related but independent 

constructs, and that possibly the FSA draws on features that are disease related in a 

categorical sense rather than on a continuous liability to psychosis proneness. For instance, 

a given measure may get better reliability by capitalizing on reliable but uninformative 

features in the connectome (i.e., consistent noise), whereas other measures may capitalize on 

various states that while different, are all related to the phenotype of interest. Thus, it has 

been argued that since these discrepancies may occur, the focus in biomarker development 

should be on accuracy of predictions rather than on reliability [50]. Yet, to our knowledge 

in the development of the FSA there was no explicit management of the potential effects 

of phase encoding direction. These data indicate that in future iterations of biomarker 

development at the very least it should be explicitly managed in the analyses, and ideally at 

the stage of image acquisition.

These data should be interpreted in the light of several limitations. First, the sample size 

in this replication was relatively small (n = 152) compared to the development sample size 

in the original study (n = 1100). However, this sample size is comparable to the sample 

sizes for the cross-validation sets that were used in the original analyses. Second, we did 

not test the specificity of the replication by attempting to measure the discrimination of 

diagnoses other than psychosis, although we observed that predictions were significantly 

better for discrimination between non-affective psychosis and healthy controls than between 

affective psychosis and healthy controls. Third, treatment response was tested on a cohort 

slightly different from the cohorts used to test treatment response in the original FSA study 

(multiepisode patients treated with both clozapine and non-clozapine antipsychotics vs first 

episode patients treated with non-clozapine antipsychotics). Fourth, test-retest reliability 

could only be tested for the individual runs, but only reliability between scans of different 

phase encoding direction (i.e., PA vs AP) could be tested used in the time analysis since we 

concatenated both runs to obtain longer scans to test the effects of acquisition length. Fifth, 

despite concatenation of both runs, scans were relatively short and did not reach a plateau 

in the time analysis, thus not allowing to conclude about the minimal scan duration for 

best reliability and accuracy. Sixth, although treatment response causes the actual observed 

phenotype – symptom change over time – other elements contribute to this, including 

regression to the mean, placebo response and measurement error. However, approaches to 

separate true treatment response from these other components of symptom improvement 

over time, such as a placebo-controlled trial or a head-to-head of a clozapine vs a non-

clozapine antipsychotic may have ethical challenges. Seven, theoretically the classification 

could have been confounded by antipsychotics effects (i.e., the FSA would be sensitive to 

fMRI changes caused by antipsychotics, rather than the illness, and classify accordingly). 

However, we believe that the risk of confounding by antipsychotics is small, since in the 

original publication there was no antipsychotic effect on FSA scores (p = 0.36), in the 

HCP-EP dataset more than half of the patients were not medicated at the time of the scan, 

and that in our regression, antipsychotic dose was not associated with FSA scores. Finally, 

the finding that acquisitions as short as 2 min yielded FSA scores that already classified 
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diagnosis significantly suggests that spatial autocorrelation pattern in addition or instead of 

the temporal dynamics may account for the classificatory power.

In conclusion, using the framework for biomarker development of consecutive contingent 

phases – target identification, internal validity, external validity, and demonstration of 

clinical utility [3] - this work emphasizes the internal validity of the FSA given the limited 

effect of common confounding, such as demographic or clinical characteristics. It also 

confirms the external validity as a diagnostic biomarker by replicating the original findings 

out of sample under rather different conditions. By and large, the test-retest reliability 

of the FSA comparable to that of the intrinsic connectivity in the Yeo networks [8], 

which have been well studied. These findings demonstrate the value of multi-site research 

to develop large datasets in which data hungry advanced statistical techniques can be 

applied, yielding robust results. To move forward biomarker development in schizophrenia 

– from demonstrating external validity to clinical utility – it is necessary to apply similar 

approaches to treatment response data, to generate robust prognostic biomarkers that can 

predict treatment response.
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Fig. 1. Overall study in context.
A Framework for the development of biomarkers, as in Abi-Dargham and Horga. Nat 

Med 2016. In a recent review (Abi-Dargham et al. World Psychiatry 2023), the FSA was 

highlighted as one of the most advanced biomarkers in schizophrenia, at the stage of external 

validation. B Summary of the development and leave-one-site-out cross-validation of the 

FSA as a diagnostic biomarker, as in Li et al. Nat Med 2020. C The current work consists 

in calculating FSA scores using the same method as in the original research to replicate 

the classification of diagnosis and correlation with treatment response by the FSA, to 

corroborate external validation.
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Fig. 2. Distribution of FSA and network intrinsic connectivity values between patients and 
controls.
Distribution of FSA and intrinsic network connectivity values derived from scans in both 

phase encoding directions (posterior to anterior and anterior to posterior) with and without 

global signal regression by participant group (patients vs controls). AP Anterior to posterior, 

FSA Functional Striatal Abnormality score, GSR Global signal regression, NoGSR No 

global signal regression, ns non-significant, PA Posterior to anterior; ****p value < 0.0001.
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Fig. 3. Receiver operating characteristic curves for prediction of diagnosis by FSA score and 
prediction of treatment response.
Classification of diagnosis and treatment response by FSA scores (panels A–C) and 

correlation between baseline FSA scores. Each panel represents FSA scores derived from 

anterior to posterior (AP) and posterior to anterior (PA) phase encoding direction scans, with 

and without global signal regression. Diagonal line represents chance classification. Panel 

A represents all the sample, panel B represents the discrimination in diagnosis between 

non-affective psychosis and healthy controls, and panel C represents the discrimination in 

diagnosis between affective psychosis and healthy controls. Panel D represents % change in 

total symptom severity over a course of 12 weeks of antipsychotic treatment in individuals 

with acute psychosis, also with FSA scores derived from anterior to posterior (AP) and 

posterior to anterior (PA) phase encoding direction scans, with and without global signal 

regression. AP Anterior to posterior, FSA Functional Striatal Abnormality score, GSR 

Global signal regression, NoGSR No global signal regression, PA Posterior to anterior.
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Fig. 4. Test-retest and phase encoding direction reliability of the FSA and network intrinsic 
connectivity.
Test-retest (left) and phase encoding direction (right) reliability of FSA and intrinsic network 

connectivity. For test-retest reliability (left) each measure is derived respectively from 

anterior to posterior (AP) and posterior to anterior (PA) phase encoding direction scans, with 

and without global signal regression. In phase encoding direction reliability (right) averaged 

measures from two consecutive runs in the same phase encoding direction are being 

compared in scans with global signal regression. AP Anterior to posterior, ContA Intrinsic 

reliability in cognitive control network, DMNB Intrinsic connectivity of default mode 

network, Dors Intrinsic connectivity of dorsal attention network, FSA Functional Striatal 

Abnormality score, GSR Global signal regression, NoGSR No global signal regression, 

PA Posterior to anterior, Sal Intrinsic connectivity of salience network, Som intrinsic 

connectivity of somatosensory network, Vis Intrinsic connectivity of visual network.
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Fig. 5. Accuracy of discrimination between cases and controls by scan acquisition time by the 
FSA and by intrinsic network connectivity.
Dotted lines represent 95%CI for AUC for increasing scan length. AP Anterior to posterior, 

ContA Intrinsic reliability in cognitive control network, DMNB Intrinsic connectivity 

of default mode network, Dors Intrinsic connectivity of dorsal attention network, FSA 

Functional Striatal Abnormality score, GSR Global signal regression, NoGSR No global 

signal regression, PA Posterior to anterior, Sal Intrinsic connectivity of salience network, 

Som intrinsic connectivity of somatosensory network, Vis Intrinsic connectivity of visual 

network.
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Fig. 6. Phase encoding direction reliability by scan acquisition time for the FSA and by intrinsic 
network connectivity.
Dotted lines represent 95% CI for ICC of phase encoding direction reliability for increasing 

scan length. AP Anterior to posterior, ContA Intrinsic reliability in cognitive control 

network, DMNB Intrinsic connectivity of default mode network, Dors Intrinsic connectivity 

of dorsal attention network, FSA Functional Striatal Abnormality score, GSR Global signal 

regression, NoGSR No global signal regression, PA Posterior to anterior, Sal Intrinsic 

connectivity of salience network, Som intrinsic connectivity of somatosensory network, Vis 

Intrinsic connectivity of visual network.
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