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Abstract

Backgrounds—Specific metabolites have been reported to be potentially associated with 

Alzheimer’s disease (AD) risk. However, the comprehensive understanding of roles of metabolite 

biomarkers in AD etiology remains elusive.

Methods—We performed a large AD metabolome-wide association study (MWAS) by 

developing blood metabolite genetic prediction models. We evaluated associations between 

genetically predicted levels of metabolites and AD risk in 39,106 clinically diagnosed AD cases, 

46,828 proxy AD and related dementia (proxy-ADD) cases, and 401,577 controls. We further 

conducted analyses to determine microbiome features associated with the detected metabolites and 

characterize associations between predicted microbiome feature levels and AD risk.

Results—We identified fourteen metabolites showing an association with AD risk. Five 

microbiome features were further identified to be potentially related to associations of five of 

the metabolites.

Conclusions—Our study provides new insights into the etiology of AD that involves blood 

metabolites and gut microbiome, which warrants further investigation.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia. The late-onset AD 

(LOAD) occurring after age 65 contributes to the majority of AD cases. The number of 

people with dementia increased to 57.4 million in 2019 globally, and this number was 

estimated to reach 152.8 million in 2050 [1], resulting in a great challenge to healthcare 

systems worldwide. Reduced glucose [2–4] and increased glucose-6-phosphate (G6P) [5] 
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levels were reported in AD patients compared with cognitively normal individuals in several 

studies. Several metabolites (kynurenine, 3-Hydroxy-L-kynurenine, 3-hydroxyanthranilic 

acid, quinolinic acid, kynurenic acid, Xanthurenic acid, picolinic acid, and cinnabarinic acid) 

involved in Kynurenine Pathway (KP), a metabolic pathway involved in the production of 

nicotinamide adenine dinucleotide (NAD+), were also reported to be associated with AD [6]. 

The glucose, G6P, and KP were related to energy metabolism in organisms. Furthermore, 

the gamma-glutamylglutamine [7], alpha-glutamyltyrosin [8], carnosine, and kynurenic 

acid (KYNA) [9] were also reported to be associated with AD risk. The carnosine was 

reported to have multiple biological functions, including pH buffering, metal-ion chelation, 

and antioxidant activities, which are beneficial for human health [10]. The KYNA could 

antagonize the function of α7 nicotinic and N-methyl-d-aspartate receptors, which are 

critical for normal brain development and cognitive processes. Thus, decreased cerebral 

KYNA levels may have beneficial effects [11].

Metabolite abundance can be influenced by normal physiological processes, development 

of diseases, environmental factors, and genetic variations [12, 13]. The conventional 

metabolome-wide association study (MWAS) that focuses on measured overall metabolite 

levels is a powerful method to identify biomarkers of risk of disease [14], which could 

provide new insights into the roles of specific metabolism pathways in disease etiology. 

To date, only a few studies assessing metabolites levels have been performed for AD [15–

18]. A recent study [19] evaluating 249 blood metabolites in 118,021 individuals reported 

two metabolites (β-hydroxybutyrate and acetone) to be associated with AD risk. Another 

study [20] reported four metabolites (S-HDL-free cholesterol, M-HDL-phospholipids, 22:6, 

docosahexaenoic acid, and glutamine) to be associated with AD. The results from these 

studies are not always consistent. For example, one glycerophospholipid (PC ae C34:0) 

was identified to be associated (false discovery rate (FDR) < 0.1) with global cognition, 

episode memory, perceptual speed, and semantic memory in Huo’s study. While in Varma’s 

study, authors did not observe an association between PC ae C34:0 and memory (p 
= 0.94). Several potential reasons may explain such inconsistencies, including general 

population attributes and analytical and preprocessing approach differences across studies. 

To better characterize metabolite markers related to AD risk, it is critical to conduct studies 

with reduced limitations of existing research. In the current study, we employed genetic 

instruments to assess the associations between genetically predicted metabolite levels and 

AD risk. This approach should be less susceptible to selection bias, reverse causation, and 

confounding effects because the alleles are transferred from parents to offspring randomly 

when the gamete is formed. GWAS has reported multiple genetic variants associated with 

levels of many metabolites in blood [21–23]. Many of these genetic variants collectively 

can provide strong instrumental variables for evaluating the associations of genetically 

predicted metabolite levels with AD risk in a sufficiently powered study. In the current study, 

comprehensive metabolite genetic prediction models were established to serve as genetic 

instruments. Such instruments synthesizing predictive effects of multiple variants have been 

demonstrated to capture higher proportion of exposure levels compared with instruments 

of individual quantitative trait loci (QTL) single nucleotide polymorphisms (SNPs) (24). 

In our earlier work focusing on DNA methylation, association analyses using prediction 
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models could almost fully capture all associations that can be identified using the QTL as 

instruments, while additionally identifying multiple novel associations [24].

Gut microbiota, another layer of omics markers that is getting rapid attention in the research 

community, plays a key role in the metabolic metabolism of the human host. The abnormal 

abundance of microbiota gut has been reported to potentially lead to multiple human 

diseases, including AD [25]. To better characterize the relationship between the identified 

metabolites and AD risk, we further assessed whether specific microbiome features may 

be also associated with these metabolites and AD risk. To test this, we leveraged gut 

microbiota GWAS summary statistics from the FINRISK study to evaluate the bi-directional 

metabolite-microbiome associations, as well as the associations of predicted microbiome 

levels with AD risk.

Materials and Methods

Genetic Instruments for Metabolite Levels in Blood

The included study subjects were twins enrolled in the TwinsUK registry [26], the largest 

cohort of community-dwelling adult twins in the UK. A total of 1,696 subjects, containing 

data of both genotypes and metabolites at three clinic visits, were involved in the current 

study. The abundance of metabolites in blood was performed at Metabolon (Durham, North 

Carolina, USA), resulting in 901 quantified metabolites. Among them, 644 consistently 

heritable (coefficient of variation (the ratio of the standard deviation and mean) of the 

heritability values estimated from all three visits was less than 0.5) metabolites were used 

for further study, as described in the original study publication [23]. Then, the identity-

by-descent (IBD) was used to identify cryptic relatedness with independent genotyped 

SNPs. Individuals with an IBD proportion greater than 0.95 were identified as twins, and 

individuals who had an IBD proportion ranging from 0.2 to 0.95 were identified to be 

related. All individuals falling into these categories were subsequently removed from the 

downstream analysis. A total of 881 unrelated European ancestry subjects were determined 

for further analyses. The mean of the quantile normalized metabolite values from the three 

visits were rank-based inverse normal transformed using the R package RNOmni [27] before 

downstream analyses. Principal components were generated using EIGENSOFT [28] with 

72,646 variants, which were composed of disequilibrium (LD)-pruned (R2 < 0.2) common 

(MAF ≥ 5%) genotyped variants with 200 SNPs window. The abundance of each metabolite 

was adjusted by sex, mean age across the three visits, mean body mass index (BMI) across 

the three visits, and the first ten principal components. Then, the metabolite residuals were 

rank-based inverse normal transformed again for downstream analysis.

Genotyping of the TwinsUK dataset was done with a combination of Illumina arrays 

(HumanHap300, HumanHap610Q, 1M-Duo, and 1.2MDuo 1M). Genotype imputation was 

further performed using the Michigan Imputation Server [29], and the HRC (Version r1.1 

2016) was used as a reference panel. We removed single-nucleotide polymorphism (SNPs) 

with imputation quality (R2) < 0.8, minor allele frequency (MAF) < 0.05, or with > 5% 

missing data in the 881 subjects. A total of 5,288,025 SNPs and normalized metabolite 

residuals were set as trait values to perform linear regression with an additive genetic model 

using PLINK (v2.00a2LM). For SNPs showing an association at a p-value below 5×10−7, 
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their cis-SNPs (within 100 kb) were extracted as potential predictors for each metabolite 

of interest for model building. To include potential predictors from multiple chromosomes, 

we converted all the chromosome numbers to Z and combined them as a single pseudo 

chromosome. Here, we selected 5×10−7 as the threshold to maximize potentially informative 

SNPs while avoiding too much noise. The strand-ambiguous SNPs (A-T/T-A and C-G/

G-C) were excluded. The TWAS/FUSION framework [30] was used to establish genetic 

prediction models with four statistics methods, including best linear unbiased predictor 

(BLUP), least absolute shrinkage and selection operator (LASSO), Elastic Net, and top 

SNPs. The model showing the most significant cross-validation P-value was selected for 

each metabolite of interest and only prediction models with a cross-validation performance 

R2 (percentage of the variances of metabolite levels explained by the model) ≥ 0.01 were 

retained for the downstream association analysis, which is a common threshold used in such 

studies [31–36].

Association Analysis Between Genetically Predicted Metabolite Abundances and AD risk

For the association analyses between predicted metabolite levels and AD risk, we 

analyzed publicly available GWAS summary statistics of 39,106 clinically diagnosed 

AD cases, 46,828 proxy-ADD cases, and 401,577 controls from European ancestry, as 

described elsewhere [37]. In brief, the subjects of AD, proxy-ADD cases, and controls 

were collected from The European Alzheimer & Dementia Biobank dataset (EADB), 

GR@ACE/DEGESCO study, The Rotterdam Study (RS1 and RS2), European Alzheimer’s 

Disease Initiative (EADI) Consortium, Genetic and Environmental Risk in AD (GERAD) 

Consortium/Defining Genetic, Polygenic, and Environmental Risk for Alzheimer’s Disease 

(PERADES) Consortium, The Norwegian DemGene Network, The Neocodex–Murcia study 

(NxC), The Copenhagen City Heart Study (CCHS), Bonn studies, and UK Biobank. The 

Illumina or Affymetrix microarray was used to genotype the polymorphisms in each study. 

For the subjects from UK Biobank, a combined panel (HRC, UK10K, and 1000G) was used 

to perform the genotype imputation and the SAIGE software was used to assess associations 

between SNPs and AD risk with forty PCs and batch as covariates. All subjects from 

The Rotterdam Study (RS1 and RS2) were imputed with the HRC reference panel and 

the PLINK software was used to perform the genome-wide association with three PCs as 

covariates. The genotyping data of all remaining subjects was imputed with TOPMed or 

HRC reference panel and SNPTEST was used to identify the associations between SNPs 

and AD risk with or without PC as covariates. We used TWAS/FUSION [30] to investigate 

the main associations. The modified script FUSION.compute_weights.modified.R (https://

github.com/Arthur1021/Metabolites-prediction-models) was used to establish genetic 

prediction models for metabolites, omitting the filtering step based on estimated heritability. 

The FUSION.assoc_test.R script was further used for testing the associations of predicted 

metabolite levels with AD risk. For this, we used the LD reference panel derived from the 

TwinsUK data. We used the false discovery rate (FDR) corrected p-value threshold of ≤ 0.05 

to determine significant associations between genetically predicted metabolite abundances 

and AD risk. To further investigate potential regulatory mechanisms of SNPs associated 

with the identified metabolites, we annotated the SNPs used in genetic prediction models, 

as well as those in proximity (r2 > 0.60) to the SNPs using ANNOVAR software. The SNPs 
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were annotated into one of nine functional categories, including exonic, intronic, intergenic, 

upstream, 3′-UTR, 5′-UTR, ncRNA intronic, ncRNA exonic, and downstream.

Sensitivity analyses

To further examine whether the identified associated metabolites from the main analyses 

may be robust to our analysis strategies, two alternative strategies were used to test their 

associations under different scenorios. First, in the main analyses we used rank-based 

inverse normalization to fit the normal distribution of the metabolite levels for adjusting 

for covariates. Before fitting the metabolite prediction models, we applied rank-based 

inverse normalization to the residuals again. To test if the second step influence downstream 

associations, in a sensitivity analysis we used the residuals without normalization for the 

downstream analysis. Second, four available covariates (sex, mean age across the three 

visits, mean BMI across the three visits, and the first ten principal components) were used 

in the main analyses to reduce potential confounding effects. In another sensitivity analysis 

we did not adjust for mean BMI across the three visits, then performed the same steps to test 

if adjustment of BMI may affect the downstream metabolite associations. Furthermore, we 

assessed the robustness of the significant association results by examining different p-value 

cutoffs (p-value < 1×10−7, p-value < 5×10−8, and p-value < 1×10−8) for selecting genetic 

variants for model building.

Identify causal effects of metabolites on AD

To further explore the likely causal effects of metabolites associated with AD risk, we 

used Summary-data-based Mendelian Randomization (SMR) [38] and Polygenic risk scores-

continuous shrinkage (PRS-CS) [39] methods to replicate the main results. The SMR v.1.30 

software was used to explore the potential mechanisms linking metabolites and AD risk, 

we implemented the SMR by leveraging quantitative trait loci (mQTL) of the identified 

metabolites and summary-level data from the AD GWAS. For PRS-CS, PRS-CS software 

was used to infer mQTL weights using mQTL summary data and an external LD reference 

panel (1000 Genome Project Phase 3) of the European populations. Then the SNP weights 

were applied to conduct association analysis with AD GWAS summary statistics.

Two-sample MR Analysis involving microbiome features

Two-sample Mendelian randomization (MR) analysis is a statistical method aiming to 

identify potential causal effect of an exposure on an outcome using summary statistics 

from genome-wide association studies (GWAS) in two independent samples [32, 34, 40–

43]. Employing a two-sample MR approach can effectively mitigate or reduce biases 

arising from unmeasured confounding or reverse causality. Additionally, this method 

offers enhanced statistical power and increased flexibility when selecting exposure and 

outcome variables [44]. In the current study, potential causal relationships between 

identified blood metabolites, gut microbiota, and AD risk were further investigated using 

two-sample MR [45]. GWAS summary results for the 14 identified metabolites were 

collected in the TwinsUK study and GWAS summary results for 468 gut microbiota 

features were collected from the FINRISK study which focuses on European ancestry 

participants [46]. For the microbiome study, briefly, 5,959 subjects with matched gut 

microbial metagenomes and genome information were involved. The Illumina genome-wide 
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SNP arrays (the HumanCoreExome BeadChip, the Human610-Quad BeadChip, and the 

HumanOmniExpress) were used to detect variations in the population and two Finnish-

population-specific reference panels (2,690 high-coverage whole-genome sequencing and 

5,092 whole-exome sequencing samples) were used to perform imputation using IMPUTE2 

v.2.3.0 software. The gut microbiome from stool samples was characterized by shallow 

shotgun metagenomics sequencing with Illumina HiSeq 4000 Systems and the taxonomic 

profiling was performed using Centrifuge v.1.0.4. Then, the GWAS was performed using 

a linear mixed model (LMM) using BOLT-LMM v.2.3.2 with the top ten PCs, age, sex, 

and genotyping batch as covariates. The bidirectional associations were further performed to 

infer the associations between metabolite abundance (as exposure or outcome) and microbial 

abundance (as outcome or exposure), and between microbial abundance (exposure) and AD 

risk (outcome). We used SNPs associated with each of the metabolites of interest at p < 5 × 

10−8 as genetic instruments. Of the 14 identified metabolites, eleven have at least one variant 

included as instruments. For the analyses treating the gut microbiota as exposure, consistent 

with suggestions from authors of the original study, the 147 microbial features associated 

with at least one variant at p < 1 × 10−8 were included. Aligned with suggestions from the 

previous study [46], all SNPs showing an association at p < 1 × 10−5 for each of the 147 

microbial features were selected as potential SNP instruments. Subsequently, LD-clumping 

with a strict threshold (r2 < 0.001 in the 1000 Genomes European data within 10 kb 

windows) was conducted to select independent instruments for metabolite and microbial 

abundance. Data harmonization was conducted using TwoSampleMR software, by selecting 

default parameter option 2 to ensure the effect of SNPs on the exposure and the outcome 

correspond to the same allele [45]. Then, the Wald ratio (WR) (when only one instrument 

SNP was available) or inverse variance weighted (IVW) method (when there was more than 

one instrument SNP) was used to perform the two-sample MR analysis. The threshold of 

p < 0.05 was used to determine significant associations for further consideration. For the 

implicated microbial features, we further evaluated their associations with AD risk, using the 

same instruments.

Results

Metabolites genetic prediction models

The overall design of this study was displayed in Fig. 1. After testing 644 consistently 

heritable metabolites with 5,288,025 SNPs, at the p-value threshold of 5×10−7, a total of 447 

metabolites were associated with at least one SNP. We tried to establish prediction models 

for these 447 metabolites. Satisfactory models with prediction performance of at least 0.01 

(the proportion of variation that can be explained by the predicting SNPs, or 10% correlation 

between predicted and measured metabolite levels) were established for 422 metabolites. 

The proportion of the metabolite level variance that can be explained by the predicting SNPs 

range from 1% to 54.80%, with a median value of 3.95% (Fig. S1). The distribution of the 

genetic prediction models was similar to a previous study [47]. The detailed information for 

the performance of the prediction models established for the 422 metabolites was included 

in Table S1.
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Associations of Predicted Metabolite levels in Blood with AD Risk

Using the GWAS summary statistics of AD, we identified 14 metabolites whose genetically 

predicted abundances in blood were associated with AD risk at a false discovery rate 

(FDR) of < 0.05 (Fig. 2 and Table 1). Among them, nine metabolites exhibited a 

significant association with AD risk after Bonferroni correction (p-value = 1.18×10−4). 

The association results for all 422 tested metabolites each with four different prediction 

modeling methods were included in Table S1. The detailed information for the SNPs 

included in the prediction models of 14 associated metabolites was shown in Table S2. 

Twelve of them were known metabolites and involved in amino acid, peptide, lipid, energy, 

and carbohydrate super pathways, and X - 17178 and X - 21735 were unknown compounds. 

All the metabolites were observed to be inversely associated with AD risk except for 

3-(3-hydroxyphenyl)propionate sulfate (Z-score = 8.52, p-value = 1.62×10−17) (Table 

1). Five metabolites (phenylalanylserine, leucylalanine, alpha-glutamyltyrosine, alpha-

glutamylglycine, and gamma-glutamylglutamine) were involved in peptide pathway and four 

(androsterone sulfate, 5alpha-androstan-3beta,17beta-diol disulfate, epiandrosterone sulfate, 

and 5alpha-androstan-3alpha,17beta-diol monosulfate (1)) metabolites were involved in lipid 

pathway. This indicates potential importance of peptides and lipids in the etiology of AD. 

The succinylcarnitine was involved in the tricarboxylic acid cycle (TCA) cycle and the 

arabonate/xylonate was involved in the pentose phosphate pathway. Both of them play key 

roles in carbohydrate metabolism and could interact with each other through glycolysis, 

suggesting that energy metabolism could be important for AD development. Furthermore, 

functional annotation using ANNOVAR suggested that of the predicting SNPs of associated 

metabolites, there were nonsynonymous SNPs in six genes, namely TIMELESS, GLS2, 

CYP3A43, KCNH6, MS4A6A, and HEATR4 (Table S3). Interestingly, all the six genes, 

TIMELESS [48], GLS2 [49], CYP3A43 [49], KCNH6 [50], MS4A6A [51], and HEATR4 
[52], had been previously reported related to AD. For example, the gene GLS2 had 

significantly lower expression (FDR < 0.05) in the hippocampus/entorhinal cortex of AD 

patients compared with controls [53]. The KCNH6 [50] was reported as a candidate target 

for AD by combining the Genotype-Tissue Expression (GTEx) and Drug Gene Interaction 

(DGI) databases. The transcripts level of MS4A6A was found to be significantly higher (p < 

0.003) in the blood of individuals with AD compared with the control group [51].

Sensitivity analyses

We further performed sensitivity analyses as described above. Regardless of whether 

we conduct rank-based inverse normalization for the residuals, the associations of the 

14 identified metabolites remained highly significant with the same directions of effect 

(Table S4). When we remove BMI as a covariate in outcome adjustment, 13 out of the 

14 (92.86%) metabolites (except for M02730 (gamma-glutamylglutamine)) demonstrated 

significant associations with the same directions. In addition, we set different p-value 

thresholds (1×10−7, 5×10−8, and 1×10−8) for selecting potential SNP predictors. Among 

the 14 metabolites that displayed significance associations in the main analyses, 11 exhibited 

potential SNP predictors at the different thresholds, whereas three metabolites (M45415, 

M48255, and M02730) did not have any SNPs associated at the corresponding thresholds. 

Notably, ten out of the 11 metabolites were successfully replicated using different p-value 
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thresholds, except for M41530 (alpha-glutamylglycine) (Table S4). These support the 

robustness of our findings.

Robustness of the identified metabolites-AD risk associations using SMR and PRS-CS 
methods

To further evaluate whether the identified blood metabolites-AD risk associations may 

be robust for different methods, we additionally applied SMR and PRS-CS analyses. 

Results from the SMR suggest that 12 out of the 14 metabolites showed suggestive causal 

effects on AD risk at nominal significance level (p-value < 0.05) with consistent effect 

directions, except for alpha-glutamylglycine and X - 21735 (Table S5). Subsequently, we 

employed the Heterogeneity in Dependent Instrument (HEIDI) approach to examine the null 

hypothesis that the associations identified by the SMR test are attributed to pleiotropy, and 

no metabolites were rejected with PHEIDI < 0.01 (Table S5). Furthermore, the PRS-CS 

analysis demonstrated that all the 14 identified associated metabolites showed an association 

with AD risk at a nominal significance level (p-value < 0.05) with consistent effect 

directions (Table S6). The corresponding weights obtained from the PRS-CS analysis were 

included in Table S7.

Analyses involving microbiome features

We further applied two-sample MR analysis to better understand relationships among gut 

microbiota, blood metabolites, and AD risk. There were five microbiota-metabolite-AD and 

two metabolite-microbiota-AD with consistent directions of association. The genetically 

predicted UBA1066 sp900317515 abundance was positively associated with levels of 

5alpha-androstan-3beta,17beta-diol disulfate and X – 21735. Genetically predicted levels 

of 5alpha-androstan-3beta,17beta-diol disulfate and X – 21735 were negatively associated 

with AD risk. There was also a negative association between genetically predicted UBA1066 

sp900317515 abundance and AD risk. These results suggested the gut microbiota UBA1066 

sp900317515 abundance could potentially be associated with AD risk by regulating 

the levels of 5alpha-androstan-3beta,17beta-diol disulfate or X – 21735 in blood (Fig. 

S2 and Table S8). The genetically predicted CAG-884 sp000433875, Bifidobacterium 

adolescentis, and actinobacteria abundances were negatively associated with leucylalanine, 

araboname/xylonate, and gamma-glutamylglutamine levels, respectively. For these three 

metabolites, their predicted levels were negatively associated with AD risk. Interestingly, 

there were positive associations of predicted abundances of CAG-884 sp000433875, 

Bifidobacterium adolescentis, and actinobacteria with AD risk. These results suggested 

that the three gut microbial features (CAG-884 sp000433875, Bifidobacterium adolescentis, 

and actinobacteria) could be positively associated with AD risk by regulating the 

levels of metabolites (leucylalanine, araboname/xylonate, and gamma-glutamylglutamine, 

respectively) in blood (Fig. S2 Table S8). Furthermore, we identified that the predicted 

levels of X – 21735 were negatively associated with CAG-552 abundance, and predicted 

CAG-552 abundance was positively associated with AD risk. There was also a negative 

association between predicted levels of X – 21735 and AD risk. These results indicated that 

X – 21735 levels in blood could be negatively associated with AD risk by influencing 

the CAG-552 abundance in the gut (Fig. S2 Table S8). Additionally, predicted levels 

of 5alpha-androstan-3beta,17beta-diol disulfate were identified to be positively associated 
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with UBA1066 sp900317515 levels, and predicted UBA1066 sp900317515 abundances 

were negatively associated with AD risk. These results were consistent with the negative 

association between predicted levels of 5alpha-androstan-3beta,17beta-diol disulfate and AD 

risk (Fig. S2).

Discussion

This is the first study with a large sample size to systematically evaluate the 

associations between genetically predicted blood metabolite abundances and AD risk 

using comprehensive genetic prediction models as instruments. Overall, we identified 14 

metabolites that were significantly associated with AD risk. We compared our results 

with those of a previous study [54]. A total of four metabolites (epiandrosterone sulfate, 

5alpha-androstan-3beta,17beta-diol disulfate, sphingomyelin, and glutamine) were identified 

to have a causal effect on AD in the previous study [54]. Three of these metabolites 

were available in the current study, with the exception of sphingomyelin. Importantly, our 

findings revealed nominal p-values < 0.05 for all the three metabolites with consistent 

effect directions, indicating the reliability of our results (Table S9). Combining with 

information of gut microbiota, we identified five consistent directions of effect for the 

microbiome-metabolite-AD risk pathway and two consistent directions of effect for the 

metabolite-microbiome-AD risk pathway.

The ‘amyloid hypothesis’ proposed amyloid-beta (Aβ) as the central event in the 

pathological process of the AD [55], and Aβ was an important signature for the 

identification of AD [56]. In the current study, we identified one metabolite, 3-(3-

hydroxyphenyl)propionate sulfate, which might be positively associated with AD risk by 

regulating the amount of Aβ. The 3-(3-hydroxyphenyl)propionate sulfate showed a highly 

significant association with AD risk at p-value = 1.45×10−17 (Table 1). The organic anion 

transporter 1 (OAT1) was reported to be involved in the process of AD. When crossed 

OAT1 knockout mice with the tg2576 (AD model), the heterozygous OAT1-deficient 

tg2576 mice showed impaired learning and memory, as well as higher soluble Aβ amount 

compared with age-matched control tg2576 mice [57]. Knockout of the homologous 

gene organic anion transporter 3 (OAT3) showed significantly increased levels of the 3-(3-

hydroxyphenyl)propionate sulfate compared with wild type with more than 8-fold change 

(p-value ≤ 0.05) [58]. In our results, the predicted 3-(3-hydroxyphenyl)propionate sulfate 

levels in the blood were positively associated with AD risk. We speculate that the deficiency 

of OAT genes could simulate the production of the 3-(3-hydroxyphenyl)propionate sulfate in 

AD mice, resulting in Aβ accumulation, and thus accelerating the process of AD.

In the current study, we identified five dipeptides, including phenylalanylserine (Phe-

Ser), leucylalanine (Lue-Ala), alpha-glutamyltyrosine, alpha-glutamylglycine, and gamma-

glutamylglutamine, to be associated with AD risk (Table 1). The Phe-Ser, Lue-Ala, 

alpha-glutamyltyrosine, and alpha-glutamylglycine were identified to be associated with 

the angiotensin-converting enzyme (ACE) gene in previous studies [23, 59, 60]. ACE 
was reported to be associated with AD [61] through regulating the blood pressure [62–

64]. We speculate that the amount of Phe-Ser, Lue-Ala, alpha-glutamyltyrosine, and alpha-

glutamylglycine may be associated with AD risk by regulating blood pressure. Additionally, 
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the observed inverse associations between predicted levels of gamma-glutamylglutamine (Z-

score = −3.14, p-value = 1.67×10−3) and alpha-glutamyltyrosine (Z-score = −4.80, p-value = 

1.61×10−6) with risk of AD were consistent with findings of previous studies [7, 8].

Several epidemiologic studies show that sex affects the incidence, development, and 

clinical manifestation of AD, resulting in a higher risk of AD in females [65–68]. In the 

Framingham Heart Study, a total of 2,611 (1,061 men and 1,550 women) cognitively intact 

subjects were involved to study the development of AD during one’s lifetime. The result 

showed that the remaining lifetime risk of AD and developing any dementing illness was 

higher in females than in males. The remaining lifetime risk of AD for a 65-year-old 

female was 12%, compared with only 6.3% for a male [69]. In our result, we identified 

four androgen-related metabolites, 5alpha-androstan-3beta,17beta-diol disulfate (Z-score = 

−4.28, p-value = 1.88×10−5), 5alpha-androstan-3alpha,17beta-diol monosulfate (1) (Z-score 

= −3.72, p-value = 2.00×10−4), androsterone sulfate (Z-score = −4.33, p-value = 1.46×10−5), 

and epiandrosterone sulfate (Z-score = −4.24, p-value = 2.27×10−5) to be inversely 

associated with risk of AD. In previous studies, the plasma dehydroepiandrosterone 

(DHEA) concentrations were reported to be significantly lower in AD patients compared 

with controls [70, 71]. The DHEA could be converted to androstenedione (AAD) or 

testosterone (T) by a series of reactions involving the activity of 17β-hydroxysteroid 

dehydrogenase (17β-HSD) and 3β-hydroxysteroid dehydrogenase (3β-HSD). Then, AAD 

or T is converted to androstenedione (AAD) and 5α-dihydrotestosterone (DHT) with the 

steroid 5α-reductase and 5α-reductase. DHT could be converted to 5α-androstan-3α,17β-

diol or 5α-androstan-3β,17β-diol with the activity of 3β-HSD, from which the two 

metabolites (5α-androstan-3α,17β-diol monosulfate (1) and 5α-androstan-3β,17β-diol 

disulfate) associated with AD risk are derived (Fig. 3). Similarly, the other two metabolites 

(androsterone sulfate and epiandrosterone sulfate) negatively associated with AD risk are 

also derived from androsterone (A) and epiandrosterone (EpiA), respectively (Fig. 3). 

Notably, these two metabolites were previously reported to be significantly lower in AD 

patients [72], which was the same effect direction as in the current study. Overall, we 

identified four metabolites in the DHEA metabolism pathway associated with AD risk.

Two metabolites (succinylcarnitine and arabonate/xylonate) were also detected to be 

negatively associated with AD risk. The succinylcarnitine is involved in the energy super 

pathway, while the arabonate/xylonate participates in the carbohydrate super pathway. Based 

on findings of previous studies, the dysfunctional glucose metabolism in AD patients 

resulted in a lack of ATP in the brain. Then the cognitive function was impaired due 

to the lack of energy which led to synaptic dysfunction and neuronal death result [73]. 

Succinylcarnitine was identified to be negatively (Z-score = −3.71, p-value = 2.96×10−4) 

associated with risk of AD, which was consistent with findings of a previous study 

[74]. Both succinylcarnitine and arabonate/xylonate are involved in glucose or energy 

metabolism, indicating their potential link with etiology of AD. Notably, metabolomics was 

considered the type of markers that is the closest to phenotype compared with other types of 

‘omics’ markers [75]. A previous study elucidated how the identified associated metabolites 

could be used for drug development treating the diseases of interest [76]. This study 

involved ten cohorts from Biobanking and BioMolecular Resources Research Infrastructure 

of the Netherlands (BBMRI-NL) to test the drug-metabolite associations. Researchers could 
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explore the candidate drugs by combining the drug-metabolite association and metabolite-

disease association studies [76]. Due to relatively limited information of the drug-metabolite 

atlas, we are not able to find any drug-metabolite associations for the 14 metabolites 

identified in the current study, unfortunately. Future more comprehensive databases that 

are expected to be available will help us identify novel candidate drugs for AD through the 

identified metabolites A previous study reported that glutamine supplementation might be 

of interest in preventing or delaying the degenerative diseases of aging [77], which provides 

new insight into potential utility of the identified associated metabolites for AD. Among 

the 14 associated metabolites, 13 metabolites (except for 3-(3-hydroxyphenyl)propionate 

sulfate), showed negative associations with AD, suggesting that these metabolites may also 

be used as supplementation for preventing or delaying AD, if there are more supporting 

evidence from future research.

In the current study, we used data of 881 subjects to develop comprehensive genetic 

prediction models for metabolite levels in blood. The GWAS summary statistics from the 

largest AD study to date, which includes 39,106 clinically diagnosed AD cases, 46,828 

proxy-ADD cases, and 401,577 controls, were used for the association analyses between 

metabolites and AD risk. The design of using genetic instruments could decrease the 

selection bias and reverse causation, which usually arise in traditional epidemiological 

design [33, 34]. Our study provides an improved power in detecting the metabolite-

AD associations through leveraging comprehensive metabolite genetic prediction models 

compared with the design of simply using individual metabolite quantitative trait loci as 

instruments, due to higher proportions of metabolite levels that can be captured by the 

strategy of using multiple potentially informative SNPs.

We further applied another innovational design involving microbiome features to further 

understand the detected associations of metabolites-AD risk. As the first attempt of its 

type, our work uncovers novel metabolites and microbiome features potentially playing an 

important role in AD etiology, which warrants further investigation.

On the other hand, there are also some potential limitations of our study. First, we can’t 

eliminate potential false-positive discoveries, which can be caused by correlated metabolite 

levels among subjects, correlated genetically predicted metabolite levels, and shared genetic 

variants, although we carefully adjusted for available covariates. The in vivo and in vitro 
experiments are required to confirm the potential effect of the associated metabolites on 

AD risk. Second, some metabolites were not evaluated for their associations with AD risk 

due to a lack of associated variants at our pre-defined threshold as potential predictors 

for model development. Novel strategy that can cover more metabolites will be needed in 

the future study for examining additional metabolites. Thirdly, although we adjusted for 

sex during model building, most subjects of TwinsUK used in metabolite model building 

are females. In the AD GWAS both females and males were included. Further studies are 

needed to validate the identified metabolites associated with AD risk. Lastly, consistent with 

our goal of characterizing genetically predicted metabolite level-AD risk associations, in 

the current work we only focused on the genetically regulated components of metabolites 

levels, which are just a proportion of the overall variance of metabolite levels that can be 

captured in studies directly measuring the metabolite levels in AD cases and controls. Future 
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work evaluating the directly measured metabolite levels in a well-designed prospective study 

setting would be useful to further characterize AD related metabolites.

In summary, in this large-scale study, we identified fourteen metabolites in blood, involving 

amino acid, peptide, lipid, energy, and carbohydrate super pathways, to be associated with 

AD risk. The 3-(3-hydroxyphenyl)propionate sulfate is positively associated with AD risk 

and the other 13 metabolites are inversely associated with AD risk. We further observed 

that five microbial showed associations with AD risk through interactions with associated 

metabolites in blood. Our study provides substantial new information to improve our 

understanding of the interaction of blood metabolites and gut microbiome with the risk 

of AD.
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Fig. 1. 
The overall design of this study.
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Fig. 2. 
Fourteen metabolites whose genetically predicted levels in blood are associated with AD 

risk.

The blood metabolites involved in amino acid, peptide, lipid, carbohydrate, energy, and 

unknown super pathways are shown in olive, orange, teal, navy blue, patriarch, and grey 

ellipses, respectively. The figure is generated by ChemDraw software.
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Fig. 3. 
Selected aspects of dehydroepiandrosterone (DHEA) metabolism.

The reported metabolites associated with AD, intermediate metabolites in the DHEA 

metabolism pathway, and metabolites identified in the current study are shown in red box, 

grey boxes, and teal boxes, respectively. The catalytic enzyme in each reaction is shown in 

orange rounded boxes. Dark straight lines with arrows indicate the direction of reactions. 

Dashed lines with arrows show the association between metabolites and AD risk. R2 

represents the proportion of metabolite level variance explained by the genetic instruments. 

This pathway is reviewed in [78–80].
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