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Abstract

The discovery that subanesthetic doses of (R,S)-ketamine (ketamine) and (S)-ketamine 

(esketamine) rapidly induce antidepressant effects and promote sustained actions following drug 

clearance in depressed patients who are treatment-resistant to other therapies has resulted in 

a paradigm shift in the conceptualization of how rapidly and effectively depression can be 

treated. Consequently, the mechanism(s) that next generation antidepressants may engage to 

improve pathophysiology and resultant symptomology are being reconceptualized. Impaired 

excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to 

the pathophysiology of depression. Metaplasticity is the process of regulating future capacity 

for plasticity by priming neurons with a stimulation that alters later neuronal plasticity 

responses. Accordingly, the development of treatment modalities that specifically modulate the 

duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term 

potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the 

pathophysiology underlying depression and improve depression symptoms. We review evidence 

that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., 

ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the 

expression/maintenance of increased synaptic strength and resultant persisting antidepressant 

effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-

specificity, N-methyl-D-aspartate (NMDA) receptor subtype-selective inhibition vs activation, 

metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-

activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting 

antidepressants will be mediated, in part, by metaplastic effects that converge on consistent 

molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic 
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plasticity. We conclude that the convergence of these therapeutic mechanisms provides the 

opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism 

by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic 

advantages including decreased dosing frequency and associated diminished adverse responses by 

eliminating the requirement for the drug to be continuously present.

Major depressive disorder (MDD) is a leading disability in the world, affecting more than 

280 million people globally [1] and costing the United States economy hundreds of billions 

of USD annually [2]. Antidepressant drug discovery from the middle 20th century until the 

past decade has mostly centered on the premise of ameliorating MDD-specific impairments 

in monoaminergic signaling (e.g., serotonin, norepinephrine, dopamine, etc.) in the central 

nervous system, leading to the development of drugs such as selective monoamine reuptake 

inhibitors [3, 4]. Major drawbacks of these drugs are their requirement to be administered 

daily, a delayed onset of therapeutic benefit, and a modest response/remission rate [5-8], 

resulting in sustained suffering and a higher risk of unwanted outcomes, such as suicide, in 

depressed individuals. Many patients who do respond to typical monoaminergic therapies 

also discontinue their use due to side effects or adverse drug responses [9].

The emergence of rapid-acting antidepressants that may act on glutamatergic 

neurotransmission such as (R,S)-ketamine (ketamine) and (S)-ketamine (esketamine) has 

yielded a paradigm shift in the approach to depression research and treatment, which 

increasingly focuses on modulating glutamatergic transmission to ameliorate impaired 

synaptic plasticity [10-12]. Following administration of a sub-anesthetic dose, ketamine 

induces rapid clinical antidepressant actions coincident with drug exposure [13-17]. 

This discovery facilitated the development of a nasal spray containing the stereoisomer 

esketamine (Spravato ®) for treatment-resistant depression [18, 19]. While the effects of 

ketamine and esketamine are sustained after clearance of the parent drug or its biologically 

active metabolites, typically the effects are more sustained following repeated administration 

[16, 20-22]. These findings have led to many assessments of potential ketamine mimetics 

acting as NMDAR antagonists [23-34] in anticipation that they will maintain the rapid 

and sustained antidepressant efficacy of ketamine [35]. However, ketamine and its (S)-

ketamine stereoisomer present potential clinical challenges including N-methyl-D-aspartate 

receptor (NMDAR) inhibition-dependent dissociative/psychomimetic effects that occur 

even at subanesthetic, antidepressant doses [36, 37] and misuse liability that restricts the 

administration of these therapeutics to medically supervised settings [38-40].

Furthermore, many clinical studies have revealed that NMDAR antagonists do not induce 

robust, rapid, and/or sustained antidepressant effects [23-34] compared to what has been 

observed with ketamine [10, 12, 41, 42]. This leads to the conclusion that NMDAR 

antagonism is not solely responsible for the antidepressant effects of ketamine [43]. 

As a consequence, novel rapid-acting antidepressant drug development is increasingly 

looking beyond drug mechanisms that rely upon NMDAR inhibition [35, 44]. This shift 

is supported by preclinical studies that have found antidepressant effects of several bioactive, 

stereoisomer ketamine metabolites, which may contribute to the therapeutic effects of 

ketamine. This includes the norketamines and the hydroxynorketamines (HNKs), and in 
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particular, the major HNK metabolite found in humans and rodents following administration 

of a subanesthetic dose of ketamine, (2S,6S;2R,6R)-HNK [45]. HNK’s antidepressant-

relevant mechanism is independent of NMDAR inhibition [46, 47].

The present moment is an exciting, controversial period in the conceptualization of rapid-

acting antidepressant mechanisms. Numerous pharmacologically diverse, putative ketamine 

mimetics (e.g., NMDAR positive allosteric modulator (PAMs), metabotropic glutamate 

receptor 2/3 antagonists, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPAR) PAMS, serotonergic psychedelics) are being assessed for antidepressant efficacy 

in clinical trials [35, 48-50]. The distinct pharmacological initiating mechanisms of these 

proposed therapeutics suggest that each classification engages divergent signaling cascades 

to facilitate sustained antidepressant effects. However, we argue that the antidepressant-

relevant induction mechanism of each class of putative ketamine mimetics leads to 

sustained antidepressant effects via persistently (after the drug has been eliminated) 

modifying the threshold for the induction of synaptic plasticity through a process known 

as metaplasticity. In contrast to directly changing synaptic efficacy via induction of synaptic 

plasticity, a metaplastic stimulation acts as a primer, shifting the threshold for altering 

synaptic efficacy by a successive stimulus (Figure 1A). Notably, studies that we will 

review (vide infra) have found that ketamine, putative ketamine mimetics, and noninvasive 

neuromodulatory stimulation activate metaplastic mechanisms, which may prepare neural 

circuitry for correction upon subsequent stimuli including additional pharmacotherapy, 

psychotherapy, or neuromodulation treatment (Figure 1B). Thus, viewing metaplasticity as 

a convergent druggable mechanism across pharmacologically diverse, putative ketamine 

mimetics indicates a consolidatory mechanism. Importantly, such a unified viewpoint 

may facilitate the discovery of novel therapeutics, i.e., metaplastogens, to engage shared 

molecular mediators downstream of antidepressant-activated metaplastic mechanism(s) that 

may be targeted by next-generation therapeutics (Figure 1B).

SYNAPTIC MECHANISMS OF PLASTICITY

Short-term and long-term synaptic plasticity

The capacity for synapses to detect alterations in activity, integrate/store information, and 

when appropriate, adapt to novel stimulation via synaptic plasticity shapes behavioral 

responses and, therefore, is one of the most essential tasks of the nervous system. Hebbian 

plasticity illustrates this where the repetitive and contextual characteristics of an experience 

are associated with the pairing of repeated, persistent presynaptic stimuli with postsynaptic 

events such as membrane potential depolarization, leading to modulation of synaptic 

efficacy [51] and experience-dependent learning [52, 53]. Many variations of short-term 

[54] and long-term [55] synaptic plasticity have been reported. Importantly for this review, 

these plasticity mechanisms have been known to be 1) primed by activation of metaplastic 

mechanisms [56] and 2) engaged by rapid-acting antidepressants [10]. Thus, we will briefly 

review some forms of short-term and long-term synaptic plasticity here with a particular 

emphasis on NMDAR activation-dependent long-term plasticity.

Numerous forms of short-term plasticity such as synaptic facilitation and depression have 

been characterized [54]. An intense investigation of long-term alterations in synaptic 
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plasticity began after the discovery that synaptic potentiation persisted for hours after the 

application of brief, high-frequency stimuli to the dentate gyrus of anesthetized rabbits 

[57, 58]. The NMDAR is a well-established mediator of activity-dependent changes in 

neuroplasticity and is an ionotropic, ligand- and voltage-gated receptor [59-61], and has 

been considered a molecular detector of Hebbian plasticity. This is due to two requirements 

of NMDAR activity: i) availability of glutamate, which binds to the GluN2 subunit, 

and ii) membrane depolarization resulting in the release of a voltage-dependent Mg2+ 

block that enables Ca2+ influx [62]. The most well-studied forms of persisting, NMDAR-

dependent alterations in synaptic transmission are long-term potentiation (LTP) and long-

term depression (LTD), particularly due to findings suggesting these endpoints are synaptic 

substrates of learning and memory [63].

The persistent synaptic alterations inherent to NMDAR-dependent LTP/LTD has been 

described to involve three critical phases: induction, expression, and maintenance (Figure 

2) [55]. Electrophysiology studies generally initiate LTP induction via high-frequency, 

patterned stimuli (e.g., individual or repeated 1 s train(s) of 100 Hz), leading to exocytosis 

of vesicular glutamate from presynaptic terminals. Persistent postsynaptic cell depolarization 

after glutamate binds to AMPARs allows for a sufficiently large NMDAR-mediated influx of 

Ca2+ to promote an interaction of this divalent cation with calmodulin, producing the Ca2+/

calmodulin complex. The Ca2+/calmodulin complex subsequently mobilizes and activates 

kinases localized to dendritic spines, such as cAMP-dependent protein kinase A (PKA), 

protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [64].

Kinase activity facilitates LTP expression about one hour after LTP induction [64, 

65]. During LTP expression, CaMKII, PKA, and PKC potentiate synaptic efficacy 

through many mechanisms including phosphorylation-dependent enhancement of AMPAR 

conduction [66-69], the insertion of AMPARs in the postsynaptic density [70-72], and actin 

polymerization-mediated dendritic spine enlargement [73, 74].

The kinase activity-dependent phase of LTP expression gives rise to LTP maintenance, 

which begins several hours after induction, persists over a period of days [58, 75], and 

is dependent on postsynaptic protein synthesis [76]. Mechanisms of LTP maintenance are 

numerous and complex [65], but well-studied somatic, nuclear transcription mechanisms 

involved in LTP maintenance include Ca2+/calmodulin-dependent activation of postsynaptic 

adenylyl cyclase-cAMP-PKA [77, 78] and CaMKII/IV [79] thereafter enabling extracellular 

signal-regulated kinase-induced phosphorylation of transcription factor cAMP response 

element-binding protein (CREB) [80, 81]. Multiple mechanisms of CREB activation enable 

fine-tuning of cAMP response element-dependent molecular effectors (e.g., brain-derived 
neurotrophic factor [BDNF], Arc, c-fos, etc.). LTP maintenance also contributes to structural 

plasticity via the enhancement of dendritic spine density and de novo spine development [73, 

81-83]. It is also established that BDNF-tropomyosin receptor kinase B (TrkB)-mammalian 

target of rapamycin complex 1 (mTORC1)-dependent signaling plays critical roles in LTP 

maintenance [84].

Rather than high-frequency tetanic stimuli, electrophysiological induction of LTD can 

be initiated by repeated low-frequency stimulation (e.g., 1 Hz for 15 min). Similar to 

Brown and Gould Page 4

Mol Psychiatry. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LTP induction, low-frequency stimulation enables Ca2+ to enter the postsynaptic cell via 

NMDAR, but due to modest NMDAR channel opening, a relative reduction of Ca2+ influx 

occurs compared to LTP, resulting in LTD induction that leads to activation of protein 

phosphatases that promote LTD expression [85]. A phosphatase that features prominently in 

LTD expression is calcineurin, a Ca2+/calmodulin-sensitive phosphatase that is activated in 

parallel with CaMKII activation [86]. Low-level Ca2+ influx inherent to LTD induction 

enables transient activation of CaMKII but sustained activation of calcineurin due to 

greater affinity of the phosphatase for Ca2+/calmodulin, promoting LTD expression via 

calcineurin-induced activation of protein phosphatase 1-mediated dephosphorylation of 

surface level AMPARs [87, 88]. Calcineurin and other phosphatases contribute to LTD 

expression through endocytosis of surface AMPARs as well [89]. The alterations in synaptic 

transmission that persist via LTD maintenance are protein synthesis-dependent and yield a 

reduction in the size of dendritic spines, and in some cases, the removal of spines [90, 91].

While we have framed the mechanisms underlying NMDAR-dependent LTP/LTD 

expression and maintenance as sequential, many of these molecular events have been 

shown to occur simultaneously, underscoring the elegant endogenous molecular machinery 

involved in maintaining shifts in long-term synaptic efficacy that are modulated by activation 

of metaplastic mechanisms.

Metaplasticity: a druggable mechanism in the context of depression?

Many forms of stimuli can influence subsequent alterations in synaptic plasticity. 

Specifically, the threshold for the modification of synaptic efficacy can be altered as a 

result of previous experience [92]. That is, a priming event that induces neural activity 

(e.g., stimulation, stress, environmental enrichment, pharmacological agents, etc.) may 

persistently influence subsequent synaptic plasticity induction events (e.g., LTP, LTD) 

by a phenomenon known as metaplasticity (Figure 1A) [93]. Prominent theories such 

as the Bienenstock, Cooper, and Munro (BCM) model have been proposed to explain 

how experience primes synapses for subsequent nonlinear shifts in synaptic efficacy [94]. 

Within the BCM model, the capacity for activated synapses to exhibit a shift in efficacy is 

dependent upon a dynamic, bidirectional modification threshold. The modification threshold 

can be thought of as a sliding scale where the history of synaptic activity may promote or 

diminish the capacity for synaptic potentiation. For instance, the threshold for the capacity 

of LTP formation is reduced following periods of low activity, leading to a greater likelihood 

for the generation of LTP. The BCM model is supported by findings in a preclinical model 

of amblyopia in which the threshold for thalamocortical synaptic potentiation was reduced 

via visual deprivation, resulting in a subsequent capacity for restoration of ocular dominance 

plasticity in adult rats [95].

There are several other key features of metaplasticity beyond the experience-dependent 

component. For instance, unlike plasticity exerted by direct effects, or concurrent plasticity 

events that impact one another, metaplastic effects necessitate that the activity induced 

by the priming event activate a metaplastic mechanism(s) that persists until exposure to 

successive stimuli [56]. Activated metaplastic mechanisms as commonly studied persist for 

minutes to hours but may last up to days after exposure to pharmacological agents [96] or 
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behavioral experiences [97] that activate such mechanisms. That is, metaplastic effects occur 

following the termination of the priming stimulus (e.g., electrical stimulation of neural cells 

[92], clearance of a drug that activates cellular signaling [98], or behavioral experiences that 

stimulate physiological actions [99, 100]) that activate metaplastic mechanisms. Repeated 

exposure to the same metaplasticity induction stimulus can also enhance or prolong the 

activation of metaplastic mechanisms [101]. Thus, metaplastic effects will be referred to as 

a sustained, persisting, or prolonged effect(s) of therapeutic interventions herein. Further, in 

many cases, the efficacy of synaptic transmission is not directly modulated by metaplasticity 

but rather the metaplastic event alters the capacity of cellular activity for depression/

potentiation upon subsequent plasticity events [92, 102, 103]. Thus, metaplasticity can be 

defined as plasticity that alters the duration, direction, or magnitude of future synaptic 

plasticity induction events, presenting as quantitative (e.g., a change in the magnitude of 

potentiation or depression due to modulating the ability of the synapse to respond to a 

stimulus) or qualitative (e.g., shifting from LTD to LTP) alterations in the capacity for 

adjustments in synaptic efficacy.

One of the most well-investigated initiators of metaplasticity is the NMDAR [56]. NMDAR-

associated metaplasticity may occur homosynaptically (i.e., at synapses activated during the 

priming stimulation) or heterosynaptically (i.e., at synapses inactivated or weakly activated 

during the priming stimulation), and has been proposed to act as a regulator of synaptic 

plasticity through diverse mechanisms that subsequently facilitate adaptations in synaptic 

efficacy [104]. For instance, prior, repeated, homosynaptic activation of the NMDAR has 

been shown to impair LTP and facilitate LTD in the CA1 subfield of the hippocampus 

[92, 105]. NMDAR-dependent heterosynaptic metaplasticity has been observed in numerous 

synapses including the dentate gyrus where LTP induction in medial perforant pathway 

synapses persistently prevented LTP induction in the lateral perforant pathway in vivo 
[96]. These NMDAR-mediated metaplastic shifts have been proposed to fine-tune the 

saturation of synaptic potentiation, acting homeostatically to protect against aberrant levels 

of excitation as observed in disease states such as epilepsy [106]. NMDAR-dependent 

metaplasticity has also been postulated to modulate the stimulus threshold needed for 

learning including enhancing the capability for consolidation of novel information or 

impairing the capacity for synaptic plasticity events to integrate superfluous new knowledge 

[104].

Consistent with the hypothesis that metaplasticity is vital for maintaining nervous system 

activity, dysfunctional metaplasticity has been implicated in diverse conditions and disease 

states [104]. Specifically, stress, a major etiological factor in depression [107, 108], has been 

shown to induce complex network effects in rodents [109] where acute swimming stress or 

in vitro exogenous application of corticosterone enhanced LTP generation in the ventral 

hippocampus but impaired LTP formation in the dorsal hippocampus [110]. Excessive 

activation of GluN2B-containing NMDARs following amyloid-β-mediated impairment in 

glutamate uptake (priming event) has been linked to hippocampal LTP inhibition in 

preclinical studies of Alzheimer’s Disease [111, 112]. Many metaplastic effects of cocaine 

have also been reported, including a persistent enhancement of LTP formation in the ventral 

(but not dorsal) hippocampus [98, 113], effects that contribute to aberrant plasticity in 
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mesocorticolimbic circuitry that may underlie the durability of drug-associated memories 

and risk of relapse [114].

As discussed in the next section, therapies used in psychiatry have been found in 

preclinical studies to alter the threshold for plasticity induction and enhance antidepressant 

efficacy. Thus, metaplasticity mechanisms themselves may serve as druggable mechanisms 

for novel treatments. Accordingly, the field of psychiatry is primed for investigations 

aimed at i) leveraging the metaplastic mechanisms engaged by treatment modalities (e.g., 

pharmacotherapies, neuromodulation) to enhance antidepressant efficacy and/or reduce 

adverse drug effects and ii) designing novel therapeutics, i.e.,metaplastogens, which directly 

harness metaplasticity.

METAPLASTIC EFFECTS OF RAPID-ACTING ANTIDEPRESSANTS

There are clinical reports of deficits in excitatory neurotransmission and activity-dependent 

synaptic plasticity contributing to the pathophysiology of MDD (Table 1). For clinical 

and preclinical reviews of synaptic plasticity deficits in the context of depression see: 

[11, 115-117]. Thus, it follows that the discovery and development of metaplastogens 

that induce increased ability of circuits and synapses to respond with beneficial changes 

in synaptic strength may be an effective approach in improving depressive symptoms as 

well as to underlying pathophysiology. Here, we examine several putative pharmacological 

mechanisms of rapid-acting antidepressants including a discussion of the convergence 

of their downstream, antidepressant-relevant molecular effects that may be involved in 

therapeutic metaplastic mechanisms. We also discuss potential opportunities for leveraging 

metaplasticity to optimize existing antidepressant therapies, and to influence novel treatment 

discovery.

Conceptualization of NMDAR inhibitors as rapid-acting antidepressants

Ketamine, derived from phencyclidine (PCP), became a more widely used dissociative 

anesthetic than PCP due to its shorter half-life, improved therapeutic window, and reduction 

in adverse effects [118, 119]. Decades later ketamine was shown to induce rapid and 

sustained antidepressant effects in adults [13, 14] and antidepressant-like effects in rodents 

(e.g., [120]). Ketamine is now considered to be the prototypical pharmacological rapid-

acting antidepressant [10]. The initiating mechanism of ketamine’s rapid and sustained 

antidepressant effects has been presumed to be due to its activity-dependent, inhibitory 

profile at the NMDAR [119, 121]. Specifically, immediate pharmacological actions of 

ketamine result in the inhibition of NMDAR activity and NMDAR-dependent transmission, 

with the results of some studies suggesting preferential blockade of NMDAR subtypes 

[47, 122-124], although the reported selectivity of ketamine is debated and may be due 

to variations in glutamate concentration, Mg2+ concentration, and subcellular pH level 

between experimental systems [45]. Multiple NMDAR inhibition-dependent hypotheses 

have been proposed to explain the rapid and sustained antidepressant actions of ketamine. 

Some of the most prominent hypotheses converge on a mechanism that activates impaired 

circuits in MDD pathophysiology to ultimately enhance the strength of excitatory synapses 

in brain regions involved in reward, cognition, and mood by means of i) disinhibition 
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of glutamatergic transmission via selective inhibition of NMDARs on GABAergic 

interneurons, ii) inhibition of spontaneous synaptic NMDAR activity, iii) inhibition of 

NMDAR-dependent lateral habenula bursting activity, and iv) selective inhibition of 

extrasynaptic, GluN2B-containing NMDARs [121].

Prior environmental [125-127] or pharmacological [128] stimuli that decrease GluN2B-

containing NMDAR activity have been shown to subsequently stimulate metaplastic 

mechanisms in the visual cortex of developing, juvenile mice, increasing neuronal GluN2B 

while later decreasing GluN2A surface expression to reduce the GluN2A:GluN2B ratio 

and lowering the threshold for LTP formation [129, 130]. Outside of the context of 

developmental studies, a subanesthetic dose of ketamine has been shown to increase 

GluN2B protein levels and reduce the GluN2A:GluN2B ratio in the mPFC of rats 24 h 

after administration [131], suggesting that blockade of GluN2B-containing NMDARs with 

ketamine may induce a delayed shift in the threshold for alterations in synaptic efficacy 

towards one in which potentiation is more readily achieved, potentially through trafficking 

of NMDARs to synaptic sites. Selective blockade of GluN2B-containing NMDARs has been 

reported in some studies to be essential for the antidepressant-relevant effects of ketamine 

[132, 133]. For instance, GluN2B antagonist CP-101,606 induces acute and prolonged 

antidepressant-like effects [134], and ex vivo hippocampal LTP formation was enhanced up 

to 24 h after administration in rodents [135].

However, clinical trials with nonselective and GluN2B-selective NMDAR antagonists 

did not find robust, rapid, and/or persistent antidepressant effects similar to ketamine 

[23-34], raising questions about the essential role of NMDAR antagonism for the induction/

persistence of antidepressant mechanisms. Limitations of ketamine, such as anesthetic and 

dissociative/psychomimetic effects as well as misuse liability, have been associated with its 

inhibitory actions at the NMDAR [36, 37, 40, 46, 136]. These concerns are underscored 

by several other components of ketamine’s pharmacology and metabolism including i) 

(R)-ketamine exhibiting greater antidepressant-like efficacy in preclinical models than 

racemic ketamine or (S)-ketamine while being a less potent inhibitor of the NMDAR [46, 

137, 138], ii) high doses/concentrations of ketamine not inducing antidepressant-relevant 

behaviors, enhancing synaptic transmission, or altering the capacity for changes in synaptic 

efficacy [139-142], iii) evidence of ketamine-induced dissociation, which has been linked 

to NMDAR-dependent inhibition, not consistently being associated with antidepressant 

efficacy [143], and iv) ketamine metabolite (2R,6R)-HNK being sufficient for the induction 

of rapid and sustained antidepressant-like effects via a non-NMDAR-dependent mechanism 

[46, 47].

Pharmacological direct and indirect NMDAR activators

Emerging evidence suggests that the profile of ketamine’s antidepressant-relevant effects 

involves a role for NMDAR activation. This includes the finding that ketamine treatment 

enhances the capacity for canonical NMDAR activation-dependent synaptic potentiation. 

For instance, preclinical studies have found that ketamine application to hippocampal slices 

requires NMDAR activation to rapidly enhance synaptic transmission [142] and engages 

metaplastic mechanisms as evidenced by an enhanced ability to form LTP at the Schaffer 
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collateral-CA1 (SC-CA1) synapse after ketamine wash-out [141]. To our knowledge, 

Moskal, Burgdorf, and colleagues were the first to report persistently enhanced ex vivo 
LTP formation, which has been replicated by other research groups [135, 139, 144-146]. 

Augmented capacity to form LTP when recording in vivo at the hippocampal SC-CA1 

synapse [147] and the hippocampus-accumbens pathway [148] in Wistar-Kyoto rats, a rat 

line that inherently contains many of the neurological impairments presented in MDD 

[149], after ketamine administration has also been described. A sustained enhancement 

of ex vivo LTP formation at the SC-CA1 synapse after treatment with a subanesthetic 

dose of the stereoisomer (S)-ketamine has been found as well [150, 151]. Persisting 

metaplastic effects of ketamine in rodent subcortical structures are evidenced by reduced 

capacity for ex vivo LTP recorded from the nucleus accumbens core [152] and promotion 

of an AMPAR-dependent form of ex vivo LTD in dopaminergic neurons of the ventral 

tegmental area after treatment [153]. Further, hippocampal metaplasticity measured ex vivo, 

as evidenced by an enhanced capacity to generate LTP 24 h after ketamine administration, 

required NMDAR activation [139]. These findings are consistent with the hypothesis 

that rapid-acting antidepressants promote metaplastic changes [154] that lead to activity-

dependent alterations in synaptic efficacy that ameliorate MDD-relevant deficits in synaptic 

transmission [10].

The hypothesis that ketamine improves depression symptomology by enhancing excitatory 

transmission of depression-weakened synapses has led to the investigation and development 

of several classes of therapeutics that produce a ketamine-like enhancement in glutamatergic 

transmission via NMDAR inhibition-independent mechanism(s). These include direct and 

indirect NMDAR activators, an approach that is in line with the role of NMDARs in 

enhancing synaptic efficacy via canonical NMDAR-dependent LTP (Figure 2). For instance, 

indirect stimulation of the NMDAR glycine site via glycine transporter inhibition with 

sarcosine (N-methyl-glycine) treatment resulted in a significantly greater antidepressant 

effect than citalopram in subjects with MDD [155]. Direct NMDAR activation via positive 

allosteric modulation (PAM) facilitates long-lasting NMDAR-dependent metaplasticity in 

rodents as revealed by enhancement of ex vivo hippocampal LTP formation one week 

after administration of the NMDAR PAM NYX-2925 [156] and a persisting elevation 

in the ability to form in vivo auditory-evoked LTP as measured by EEG one hour after 

administration [157]. Accordingly, induction and maintenance of antidepressant effects 

via enhancement of NMDAR activity via PAM has shown potential as an approach to 

developing novel therapeutics [35]. For instance, administration of NMDAR PAM rapastinel 

promotes rapid and sustained antidepressant-like effects in rodents, which were associated 

with increased mature spine density in the primary apical dendrites of the dentate gyrus 

and layer V pyramidal cells in the mPFC as well as activity-dependent stimulation of 

dentate gyrus/PFC BDNF-TrkB-mTOR signaling without psychotomimetic/dissociative side 

effects [158-162]. Antidepressant-like effects of rapastinel also coincided with alterations 

in synaptic plasticity when administered to rodents including i) rapid enhancement of 

LTP and reduction of LTD at the SC-CA1 synapse following in vitro application to 

hippocampal slices [163], ii) an increase in the capacity to generate mPFC LTP recorded 

from pyramidal cells after bath application [158], and iii) persistent metaplasticity as 

revealed by enhanced ex vivo LTP at the SC-CA1 synapse up to one week after a single 

Brown and Gould Page 9

Mol Psychiatry. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administration [162]. However, after positive phase II results [164], rapastinel treatment 

failed to induce significantly greater antidepressant effects than placebo in phase III trials 

(ClinicalTrials.gov Identifiers: NCT02951988, NCT02943577, NCT02943564 [165]).

Another potent, orally bioavailable, NMDAR PAM that shares similar pharmacology 

to rapastinel, zelquistinel (AGN-751) [166], was well-tolerated in a phase II clinical 

trial for the treatment of MDD but, while improving depression symptomology, did not 

separate from placebo (ClinicalTrials.gov Identifier: NCT03586427) and is currently being 

assessed in a separate phase II trial (ClinicalTrials.gov Identifier: NCT03726658). LTP 

formation in the rodent mPFC following acute zelquistinel exposure was augmented, while 

dose-dependent and persistent metaplasticity in the hippocampus and mPFC of rats was 

observed as evidenced by sustained facilitation of LTP formation seven days after a single 

drug administration [166]. Interestingly, an inverted U-shaped curve in the capacity to 

form LTP ex vivo was observed in the hippocampus of mice 24 h after zelquistinel 

administration, presumably due to impairing NMDAR activity at higher doses. Thus, 

while canonical metaplasticity theories suggest a nonlinear, sliding scale conception of 

metaplastic mechanism activation [167], the inverted U profile of pharmacotherapies such 

as zelquistinel underscores one of many unique features of metaplasticity that should be 

carefully considered when assessing dose-dependent metaplastic effects [94].

Overall, preclinical studies of NMDAR PAMs that activate metaplastic mechanisms 

support the thesis that antidepressant treatment modalities that potentiate NMDAR activity 

promote persisting antidepressant-like effects via a downstream metaplastic mechanism that 

converges with that of ketamine. However, similar to non-ketamine NMDAR inhibitors, 

there have been notable challenges in translating promising NMDAR PAM preclinical 

findings into clinical results. These challenges may be the result of shortcomings in 

clinical study design such as drug administration protocol, placebo effect, and/or subject 

heterogeneity. Additionally, it has yet to be revealed which GluN subtype may be 

the optimal target for antidepressant PAM development as ketamine-like effects with 

nonselective GluN2 [166] and selective GluN2A PAMs [139] have been reported. Mixed 

findings with NMDAR PAMs underscore the necessity for additional inquiry into their 

detailed short-term and long-term antidepressant mechanism, and that investigation of 

metaplasticity-engaging pharmaceuticals that modify the activity of effectors downstream 

of the NMDAR may be a viable route for developing novel MDD therapeutics.

Converging druggable metaplasticity mechanisms of ketamine mimetics

Although acting through distinct induction mechanisms (i.e., PAM or putative antagonism), 

we have thus far highlighted how the fulcrum of metaplasticity within this review, the 

NMDAR, may be pharmacologically manipulated to activate metaplastic, antidepressant-

relevant mechanisms that converge around consistent molecular signaling cascades to 

persistently increase the strength of excitatory neurotransmission, presumably by engaging 

mediators of canonical NMDAR activation-dependent LTP (Figure 3). The activation 

of metaplastic mechanisms by alternative ketamine mimetics centers around stimulation 

of induction mechanisms that engage canonical NMDAR activation-dependent long-term 

synaptic plasticity including i) disinhibiting glutamatergic neuron activity, ii) increasing the 
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probability of glutamate release, iii) augmenting glutamatergic receptor activity, and iv) 

enhancing neurotrophic signaling. A number of strategies may be used to engage these 

metaplasticity induction sites, highlighting a substantial opportunity to employ selective 

pharmacotherapy and/or neuromodulatory approaches in the design of next-generation 

antidepressant metaplastogens to engage unexplored antidepressant mechanisms.

Evidence of sustained metaplasticity following administration of ketamine metabolite 

(2R,6R)-HNK has been reported where enhanced capacity for hippocampal [147] and 

amygdalar [168] LTP formation was observed 3.5 h and 24 h after (2R,6R)-HNK treatment, 

respectively. (2R,6R)-HNK has been found to initiate its rapid antidepressant-relevant effects 

through an NMDAR-independent mechanism and has completed phase I clinical trials 

(ClinicalTrials.gov Identifier: NCT04711005) [46, 47, 169-172]. In vivo (2R,6R)-HNK 

administration leads to ketamine-like, antidepressant-relevant synaptic effects in rodents in 

multiple brain regions including the prefrontal cortex [173], basolateral amygdala [168], 

hippocampus [46, 147], and ventrolateral periaqueductal gray [174, 175]. Specifically, acute 

(2R,6R)-HNK exposure rapidly enhances presynaptic-mediated synaptic transmission at the 

SC-CA1 synapse in hippocampal slices via increased probability of glutamate release as 

reflected by decreased paired-pulse facilitation in addition to elevated miniature excitatory 

postsynaptic current frequency, but not amplitude [170, 176]. Similar to parent compound 

ketamine, the sustained antidepressant-like effects of (2R,6R)-HNK also require AMPAR 

activity [46, 174] in addition to postsynaptic L-type voltage-gated Ca2+ channel-dependent 

enhancement of intracellular Ca2+ levels, which contribute to BDNF-TrkB-mTORC1-

dependent activity-[177]. However, the role of these proteins in persistently altering the 

threshold for changes in synaptic efficacy following (2R,6R)-HNK treatment has not been 

directly investigated.

A substantial number of reports have shown that antagonists of the mGluR2/3 induce 

rapid and sustained antidepressant-like effects in rodents [48, 178, 179], generating 

expectations for mGluR2/3 antagonists such as TS-161 in phase II clinical trials for MDD 

(ClinicalTrials.gov Identifier: NCT04821271). While the individual, sustained, ex vivo 
metaplastic effects of mGluR2/3 antagonists when administered to rodents at antidepressant-

relevant doses have not been reported, Pałucha-Poniewiera [151] found that administration 

of subthreshold doses of (R)-ketamine and a mGluR2/3 antagonist that, when combined, 

led to antidepressant-relevant effects including enhanced LTP formation in the PFC 72 h 

after drug administration. This result is in line with another study that found that combined 

administration of subthreshold doses of (2R,6R)-HNK and a mGluR2/3 antagonist elicited 

antidepressant-like behavioral responses [180]. As the mGluR2 acts as an autoreceptor 

on hippocampal/mPFC principal cells to directly regulate glutamatergic signaling whereas 

the mGluR3, which is primarily expressed on glial cells, indirectly reduces excitatory 

neurotransmission [48], the antidepressant effect of group II mGluRs is presumably due 

to an increase in the excitatory to inhibitory tone of brain regions implicated in the 

pathophysiology of MDD. The antidepressant-relevant effects of mGluR2/3 antagonists 

have been found to converge with those of ketamine and (2R,6R)-HNK [180], and 

mGluR2/3 agonists/PAMs block the antidepressant-relevant effects of ketamine [181-183]. 

Like ketamine, antidepressant-relevant effects of mGluR2/3 antagonists have been reported 

to require AMPAR [184-186], NMDAR [139], and BDNF-TrkB-dependent signaling [151, 
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184, 187, 188] while also stimulating mTORC1-dependent activity [179]. These data 

suggest that these proteins, and others associated with their activity, may be starting points 

for assessing the metaplastic, antidepressant-relevant mechanisms activated after mGluR2/3 

antagonist treatment.

With abundant evidence highlighting the convergence of molecular mechanisms underlying 

the persistent therapeutic effects of pharmacologically diverse, rapid-acting antidepressants, 

there is an opportunity to harness metaplastic mechanisms as druggable targets by 

combining multiple metaplasticity-inducing treatment modalities (i.e., pharmacotherapy 

and noninvasive neuromodulation) that converge on shared molecular targets to augment 

therapeutic efficacy and/or mitigate adverse responses inherent to each individual treatment 

modality (Figure 3). Similar to ketamine, the antidepressant effects of noninvasive, 

targeted neuromodulatory therapies such as transcranial magnetic stimulation (TMS) 

are NMDAR activation-dependent [189]. Non-targeted neuromodulatory approaches like 

electroconvulsive therapy (ECT) and the preclinical equivalent, electroconvulsive seizures 

(ECS), appear to also induce therapeutic effects via activity-dependent plasticity that 

involves NMDAR activation [190-192]. This is consistent with findings of subanesthetic 

ketamine administration occluding the potentiating effects of ECS in the rat hippocampus 

[190, 193, 194]. Further, the magnitude and/or duration of the antidepressant effects 

of pharmacological (i.e., ketamine) interventions have been shown to be augmented 

by evidence-based psychotherapy [195, 196] or repeated ketamine administration [16], 

indicating that antidepressant engagement of metaplastic mechanisms may prepare synapses 

for subsequent increases in activity-dependent synaptic efficacy. The same has also been 

proposed for noninvasive neuromodulatory interventions combined with psychotherapy 

[197]. For instance, in subjects with MDD, ketamine infusion 11 hours before ECT 

administration facilitated a significantly greater antidepressant effect compared to ECT 

alone, suggesting a metaplastic priming effect of ketamine [198]. A separate small double-

blind, placebo-controlled study detected a trend for a significant reduction in early remission 

of depression symptomology in MDD subjects who received ketamine and ECT on 

alternating days [199]. Reports have identified an apparent metaplastic, priming effect of 

adjunctive D-cycloserine at a dose that is proposed to induce partial agonist activity at the 

NMDAR glycine site on a form of TMS, intermittent theta burst stimulation (iTBS), which 

delivers recurrent pulses in the theta range (4-7 Hz) at a high frequency to produce an 

alternating electromagnetic field that activates cortical neurons. Specifically, D-cycloserine 

pretreatment primed the synaptic alterations induced by iTBS in the motor cortex in healthy 

controls [200]. Low-dose D-cycloserine has also been found to enhance the capacity for 

TMS-induced, motor-evoked synaptic plasticity without affecting pre-TMS basal motor 

excitability in healthy subjects [201]. After D-cycloserine treatment, synaptic plasticity in 

the motor cortex was normalized [202] and the antidepressant effect of iTBS in subjects 

with MDD was augmented [203]. Outside of activating NMDAR-mediated signaling, 

it is currently unclear what metaplastic mechanisms are engaged by approaches that 

combine pharmacotherapy and neuromodulation treatments. Thus, there is an opportunity 

for exploring metaplastic mechanisms engaged by both treatment modalities, an endeavor 

that may lead to the design of novel antidepressant treatment regimens.
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FUTURE DIRECTIONS

Evidence presented in this review suggests that ketamine, as well as pharmacologically 

diverse, rapid-acting antidepressants in development, engage metaplastic mechanisms that 

may, in part, contribute to the induction and persistence of their therapeutic benefits in 

the context of depression. Specifically, many such putative antidepressants converge on a 

signaling cascades that activates i) metaplastic mechanisms that lower the threshold for 

synaptic potentiation in healthy conditions and ii) ameliorative metaplastic mechanisms 

to improve impaired capacity for synaptic potentiation in the context of depression 

(e.g., clinical MDD, preclinical chronic stress animal models, etc.). We suggest that 

antidepressant-relevant metaplasticity may be a useful, robust tool that can be leveraged 

to increase the probability of discovering and developing successful antidepressants.

As the field of MDD research has transitioned to a period in which the predictive 

validity of commonly used behavioral paradigms of antidepressant efficacy is under intense 

scrutiny [204], robust, quantifiable, and reproducible metrics must fill this void. Assessment 

of antidepressant-induced metaplasticity may be a relevant endpoint. Further, there are 

numerous potential therapeutic benefits of metaplasticity as a druggable mechanism. As 

therapeutic metaplastic mechanisms are persistently active following elimination of the drug 

substance, patient burden is diminished by less frequent dosing. Sustained activation of 

therapeutic mechanisms in the absence of a molecule that may elicit adverse responses when 

present in the body (e.g., ketamine) may improve patient quality of life by reducing drug 

side-effects (Figure 1B). As such, determining if a particular MDD treatment modality (e.g., 

pharmacotherapy, neuromodulation, psychotherapy) induces a greater, or longer-lasting, 

shift in the capacity for a change in synaptic efficacy by subsequent stimuli could provide 

researchers/clinicians with an opportunity to improve antidepressant response or decrease 

patient burden.

Distinct pharmacotherapies proposed as novel treatments for depression converge to 

implicate molecular signaling cascades that result in increased strength of excitatory 

neurotransmission by engaging mediators of NMDAR activation-dependent LTP, notably 

AMPAR, NMDAR, BDNF-TrkB, and mTORC1 (Figure 3). While the necessity of such 

effectors in producing persistent antidepressant-like behavioral effects after ketamine 

treatment has been evaluated, only the NMDAR has been directly investigated as a 

necessary contributor to the antidepressant-relevant metaplastic mechanism(s) at the 

synaptic level [139], underscoring a knowledge gap in the mechanisms of antidepressant-

relevant metaplasticity. While the NMDAR appears involved in the activation of metaplastic 

mechanisms after ketamine treatment, more work is needed to determine if ketamine 

mimetics similarly activate NMDAR-mediated metaplasticity, and if other well-established 

initiators of metaplasticity (i.e., group I mGluRs [56]) alone or in combination with one 

another are involved in metaplastic effects.

There is also a paucity of studies that have characterized the temporal progression of 

metaplasticity detected following the administration of antidepressants. A major obstacle 

in these investigations will be disentangling the acute, rapid effects of antidepressants 

when the drug is still present in vivo compared to the sustained metaplastic effects 
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following elimination. Likewise, there has been insufficient investigation of the mechanisms 

underlying the expression/maintenance of metaplasticity after the induction of such effects. 

Further investigation into the mechanism(s) that drive the persistent shift in the capacity 

for changes in synaptic activity by prior treatment with rapid-acting antidepressants 

(e.g., ketamine) or other emerging neuropsychiatric therapeutics (e.g., psychedelics) 

is warranted [205, 206]. Intriguingly a study found that ketamine and psychedelics 

(e.g., 3,4-methylenedioxy methamphetamine, psilocybin, lysergic acid diethylamide, and 

ibogaine) converge on shared metaplastic actions to persistently augment the capacity for 

social reward learning, underscoring the potential of diverse psychedelics for engaging 

metaplasticity [206], potentially providing an explanation for priming antidepressant and 

other psychiatric actions that are augmented by psychotherapy [207].

Combining in vivo or ex vivo electrophysiological (e.g., LTP or LTD induction protocols) 

and behavioral measures of plasticity that rely on those same synapses [208, 209] 

provides researchers with tools to quantify the activation of metaplasticity mechanisms by 

prior stimuli [Additional behavioral protocols reviewed in 56]. Such investigations could 

reveal exciting opportunities for novel targets that could be engaged for ameliorating 

symptomology presented in psychiatric disorders. Utilizing a fine-tuned, personalized 

approach [210] that involves simultaneous administration of rapid-acting pharmacotherapies 

that activate metaplastic mechanisms along with circuit-selective neuromodulation in 

individuals with depression could be used to design treatment regimens for MDD. Indeed, 

the study of the metaplastic mechanisms engaged by antidepressants is in a nascent state, 

providing opportunities for exciting discoveries and clinical advancements.
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Figure 1. Translatable metaplasticity concepts.
(A) Distinctions between plasticity and metaplasticity. (Top) Standard synaptic plasticity 

induction results in a quantitatively greater excitatory postsynaptic potential (EPSP) in 

response to the same stimulus (small arrow) after plasticity induction. This alteration 

in synaptic efficacy results in enhanced excitatory synaptic transmission and structural 

plasticity as illustrated in the pyramidal cell. (Bottom) In contrast, metaplasticity involves 

a priming stimulus persistently altering the threshold for a change in synaptic efficacy 

without changing basal synaptic transmission or neuronal morphology. An example is shown 

where the priming stimulus lowers the threshold for synaptic potentiation, leading to the 

same plasticity induction event eliciting a quantitatively greater evoked EPSP response 

and augmented structural plasticity compared to the response elicited without the priming 
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stimulus. (B) Clinical relevance and advantages of targeting metaplastic mechanisms to 

promote sustained antidepressant effects. Following intravenous administration, ketamine 

is rapidly eliminated and side effects generally follow these pharmacokinetics. Acute 

antidepressant effects are typically observed after exposure and can extend for hours or 

days. Repeated ketamine administration elicits significantly greater antidepressant effects, 

and these effects typically persist longer than after a single administration [16, 20-22]. A 

single administration of ketamine leading to an enhanced antidepressant effect in response 

to the same treatment days later is consistent with the concept of metaplasticity where the 

first treatment lowers the threshold for persistent alterations in synaptic efficacy and neural 

morphology. Targeting metaplastic mechanism(s) to yield persistent antidepressant effects 

presents therapeutic benefits that may enhance patient compliance such as reduced dosing 

frequency and, thus, adverse responses because the necessity for the drug to be continuously 

present is eliminated. Created with Biorender.com
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Figure 2. Molecular mechanisms of NMDAR activation-dependent LTP.
Canonical NMDAR activation-dependent LTP induction is initiated by simultaneous 

AMPAR-mediated postsynaptic depolarization and glutamate binding to the NMDAR, 

facilitating NMDAR activation and Ca2+ influx after the release of an NMDAR 

Mg2+ block. LTP expression is instigated by Ca2+/calmodulin-dependent signaling 

that enables postsynaptic kinase activity (e.g., CaMKII, PKC) to promote enhanced 

synaptic transmission via numerous alterations including phosphorylation of glutamatergic 

receptors, trafficking of AMPARs to the postsynaptic membrane, and lateral diffusion 

of extrasynaptic AMPARs. Initiation of gene transcription is mediated by numerous 

signaling cascades (e.g., adenylyl cyclase-cAMP-PKA) and protein kinases (e.g., CaMKIV). 

LTP maintenance requires de novo protein synthesis either in the soma (e.g., CREB-

dependent gene transcription and subsequent translation of proteins such as c-fos, Arc, 

AMPAR, NMDAR; BDNF-TrkB-mTORC1 also contribute) or translation of transcripts 

localized to dendrites, yielding long-lasting alterations in synaptic efficacy. Abbreviations: 

AC, adenylyl cyclase; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor; ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; CaMKII, 
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Ca2+-calmodulin-dependent protein kinase II; CaMKII, Ca2+-calmodulin-dependent protein 

kinase IV; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-

binding protein; LTP, long-term potentiation; mTORC1, mechanistic target of rapamycin 

complex 1; NMDAR, N-methyl-D-aspartate receptor; PKA, protein kinase A; PKC, protein 

kinase C; TrkB, tropomyosin receptor kinase B. Created with Biorender.com
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Figure 3. Strategies for targeting metaplastic mechanisms.
Results from preclinical studies suggest that the antidepressant-like effects of ketamine 

coincide with sustained, beneficial metaplasticity in brain regions implicated in the 

pathophysiology of depression. Numerous strategies can be used in envisioning ketamine 

mimetics that may leverage metaplastic mechanisms (metaplastogens) in a manner that 

coincides with rapid and prolonged antidepressant effects. 1. Disinhibition of glutamatergic 
neuron activity: Ketamine may work as an antidepressant by disinhibiting glutamatergic 

neurons via preferential inhibition of NMDARs localized to interneurons [17, 121]. 

Sustained metaplasticity and long-lasting antidepressant effects are observed after ketamine 

treatment. Administration of a subanesthetic dose of ketamine is proposed to preferentially 

block NMDARs localized to interneurons to disinhibit principal cell activity. Reducing 

the tone of GABAergic activity via negative allosteric modulation (NAM) may also 

yield similar results (e.g., α5 GABA NAM MRK-016 [11, 211]). 2. Increase probability 
of glutamate release: Hepatic metabolism of ketamine produces norketamine and, 

subsequently, hydroxynorketamines. (2R,6R)-HNK has been shown to rapidly enhance 

glutamatergic transmission via increased probability of glutamate release, followed by 

Brown and Gould Page 31

Mol Psychiatry. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sustained metaplasticity and persisting antidepressant-like effects [3]. Inhibition of the 

glutamate autoreceptor mGluR2 has also been proposed to enhance the probability of 

glutamate release, augment glutamatergic transmission, facilitate sustained changes in the 

capacity for synaptic plasticity, and induce prolonged antidepressant-like effects [212]. 

3. Augmentation of glutamatergic receptor activity: Direct activation of NMDARs via 

positive allosteric modulation promotes enhanced glutamatergic transmission, alters the 

threshold for LTP formation, and results in enduring antidepressant-like effects. Evidence 

also suggests sustained metaplasticity and antidepressant effects detected after ketamine 

administration require NMDAR activation [139]. 4. Increase neurotrophic signaling: 

Ketamine and numerous metaplasticity-engaging putative ketamine mimetics converge 

around a mechanism that increases neurotrophic signaling (i.e., BDNF-TrkB-mTORC1), 

suggesting that targeting antidepressant-relevant metaplastic mechanisms to facilitate 

neurotrophic factor production may be a viable route for designing novel therapeutics. 

5. Enhance or prolong mechanisms underlying the expression or maintenance of 
potentiated synaptic efficacy: The metaplasticity observed after treatment with ketamine 

and putative ketamine mimetics alters the duration, direction, or magnitude of synaptic 

plasticity, suggesting that developing therapeutics that engage metaplastic mechanisms 

along a pathway that converges with canonical NMDAR activation-dependent LTP to 

modulate mediators of LTP maintenance is a route that may yield exciting, novel treatment 

modalities for depression. Abbreviations: AC, adenylyl cyclase; AMPAR, α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor; ATP, adenosine triphosphate; BDNF, 

brain-derived neurotrophic factor; CaMKII, Ca2+-calmodulin-dependent protein kinase 

II; CaMKII, Ca2+-calmodulin-dependent protein kinase IV; cAMP, cyclic adenosine 

monophosphate; CREB, cAMP response element-binding protein; GABA, γ-aminobutyric 

acid; GABAAR, GABAA receptor; HNK, (2R,6R)-hydroxynorketamine; KET, (R,S)-

ketamine; LTP, long-term potentiation; mGluR2, metabotropic glutamate receptor subtype 

2; mTORC1, mechanistic target of rapamycin complex 1; NMDAR, N-methyl-D-aspartate 

receptor; PKA, protein kinase A; PKC, protein kinase C; TrkB, tropomyosin receptor kinase 

B. Created with Biorender.com
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Table 1.
Examples of synaptic plasticity deficits associated with human depression.

Described are studies that compared measures of plasticity responses in individuals with major depressive 

disorder (MDD) compared to healthy controls (HC). After visual stimuli exposure, visually evoked responses 

are postsynaptic potentials recorded from the occipital region via electroencephalogram (EEG). Paired 

associative stimulation protocols involve ulnar nerve stimulation coupled with single-pulse transcranial 

magnetic stimulation (TMS) to the motor cortex to elicit a motor-evoked response assessed by peripheral 

motor-evoked potentials (MEPs). Theta burst stimulation (TBS) involves a shorter duration of TMS 

administration compared to non-TBS TMS due to the delivery of recurrent pulses in the theta range (4-7 Hz) at 

a high frequency to produce an alternating electromagnetic field that activates cortical neurons resulting in 

peripheral MEP responses. This table represents a subset of relevant studies and is not a complete listing of all 

available studies. DLPFC, dorsolateral prefrontal cortex; HC, healthy controls; LTD, long-term depression; 

LTP, long-term potentiation; TBS, theta burst stimulation.

Study Group studied Method Outcome

Normann [213] 40 MDD; 74 HC Visually-evoked EEG responses Impaired cortical synaptic transmission and 
LTP-like responses

Kuhn [214] 27 MDD; 27 HC Paired associative stimulation evoked 
MEPs

Impaired cortical LTP-like responses

Noda [215] 29 MDD; 28 HC Paired associative stimulation evoked 
MEPs

Impaired DLPFC LTP-like responses

Player [216] 23 MDD; 23 HC Paired associative stimulation evoked 
MEPs

Impaired cortical LTP-like responses

Yu [217] 31 MDD; 29 HC (all females) Continuous TBS-evoked MEPs Impaired cortical LTD-like activity
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