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Previous diffusion MRI studies have reported mixed findings on white matter microstructure alterations in obsessive-compulsive
disorder (OCD), likely due to variation in demographic and clinical characteristics, scanning methods, and underpowered samples.
The OCD global study was created across five international sites to overcome these challenges by harmonizing data collection to
identify consistent brain signatures of OCD that are reproducible and generalizable. Single-shell diffusion measures (e.g., fractional
anisotropy), multi-shell Neurite Orientation Dispersion and Density Imaging (NODDI) and fixel-based measures, were extracted from
skeletonized white matter tracts in 260 medication-free adults with OCD and 252 healthy controls. We additionally performed
structural connectome analysis. We compared cases with controls and cases with early (<18) versus late (18+) OCD onset using
mixed-model and Bayesian multilevel analysis. Compared with healthy controls, adult OCD individuals showed higher fiber density
in the sagittal stratum (B[SE]= 0.10[0.05], P= 0.04) and credible evidence for higher fiber density in several other tracts. When
comparing early (n= 145) and late-onset (n= 114) cases, converging evidence showed lower integrity of the posterior thalamic
radiation —particularly radial diffusivity (B[SE]= 0.28[0.12], P= 0.03)—and lower global efficiency of the structural connectome
(B[SE]= 15.3[6.6], P= 0.03) in late-onset cases. Post-hoc analyses indicated divergent direction of effects of the two OCD groups
compared to healthy controls. Age of OCD onset differentially affects the integrity of thalamo-parietal/occipital tracts and the
efficiency of the structural brain network. These results lend further support for the role of the thalamus and its afferent fibers and
visual attentional processes in the pathophysiology of OCD.
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INTRODUCTION
Previous diffusion-weighted imaging (dMRI) studies observed
alterations in the white matter microstructure and global
structural connectivity of individuals with an obsessive-
compulsive disorder (OCD), a debilitating psychiatric disorder
characterized by repetitive thoughts (obsessions) and behaviors
(compulsions) that affects approximately 2% of the world
population [1]. The largest study to date from the OCD
workgroup of Enhancing Neuro Imaging Genetics Through
Meta-Analysis (ENIGMA) reported lower integrity of white matter
fiber bundles, such as the corpus callosum (CC), uncinate fascicle

(uncF), sagittal stratum (SagS) and posterior thalamic radiation
(PTR) in adults with OCD relative to healthy controls (HC) [2].
Other case-control differences were observed in the cingulum
bundle [3–6], and superior longitudinal fascicle (SLF) [4, 7–10].
Previous studies also showed alterations in the global organiza-
tion of the structural network in OCD compared with HC [11–13].
Together, these studies support the hypothesis that OCD is
associated with alterations in brain structures beyond the
cortico-striatal-thalamo-cortical (CSTC) circuits that are classically
associated with OCD [1]. Nevertheless, there is considerable
heterogeneity in the findings across studies, which is likely due
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to differences between samples in demographic and clinical
characteristics (e.g., age of onset and medication history),
differences in the acquisition parameters and quality of the
dMRI scans, and underpowered samples. Indeed, the ENIGMA
OCD meta-analysis by Piras et al. (2021) showed that only case-
control differences in the SagS and PTR showed low variance
between sites and were robust against leave-one-site-out cross-
validation, while meta-regression showed that a younger age of
onset, longer illness duration and being medicated (approxi-
mately 40% of the total sample) were all associated with lower
fractional anisotropy (FA) in the SagS. This indicates that clinical
and medication status explains at least some of the observed
differences. Still, the lack of harmonization of clinical measures
across sites and differences in acquisition parameters, prevent
more fine-grained analyses.
To overcome some of these limitations, we conducted the OCD

Global study that used harmonized prospective methods for
clinical phenotyping, neurocognitive testing and neuroimaging to
collect data from a large group of medication-free adults with
OCD and HC across five international sites [14]. As described in our
previous neuroimaging methods paper [15], we employed state-
of-the-art neuroimaging sequences that were available across
different vendors while still feasible on a clinical MRI scanner
(sequences available on request). Image quality was continuously
monitored by acquiring phantom scans and each human
acquisition was quantitatively and qualitatively inspected for
artifacts (CV, NdJ).
In this manuscript, we describe the results of our pre-registered

dMRI analyses (osf.io/m97kp [16]), where we investigated case-
control differences in the microstructure of specific white matter
tracts and characteristics of the structural brain network and how
these measures are influenced by clinical characteristics (i.e., age
of onset, symptom severity, illness duration and medication
history). To identify robust brain signatures of OCD that are not
influenced by current medication status and are reproducible and
generalizable across different countries and (diverse) cultures, we
employed (1) several dMRI methods (i.e., classical tensor-based
measures, Neurite Orientation Dispersion and Density imaging
(NODDI), fixel-based and connectome analysis), (2) several
statistical approaches (tract-wise null hypothesis significance
testing (NHST) and Bayesian hypothesis testing (BHT) and
whole-brain voxel/fixel analysis), and (3) two different site
correction procedures (ComBat [17], and random intercept for
site). We hypothesized that relative to HC, medication-free adults
with OCD would show lower microstructural integrity of OCD-
related white matter tracts and a less optimal topology of the
structural brain network. Within the OCD group, we expected
inverse associations between severity or illness duration, and tract
integrity or network topology.

MATERIALS AND METHODS
Participants
The OCD Global Study recruited medication-free (at least six weeks) adults
with OCD, and age, sex and education-matched HC across five research
sites in Brazil, India, the Netherlands, South Africa, and the U.S.A [14].
Participants had to be between 18-50 years. OCD had to be the primary
diagnosis established using the Structured Clinical Interview for DSM-5
(SCID) with at least a Yale-Brown Obsessive-Compulsive scale (YBOCS)
score ≥16. Exclusion criteria included any current psychotropics or
cognitive behavior therapy use within the previous six weeks and an
IQ < 80. Other exclusion criteria are detailed in the supplements. All
participants provided written informed consent according to the Declara-
tion of Helsinki and the study was approved by the five local Medical
Ethical Committees. Of the 524 eligible participants (268 individuals with
OCD; 256 healthy controls), dMRI data was excluded from 12 participants
leaving 260 OCD cases and 252 HC for analysis (see flowchart in
supplementary Fig. 1).

Clinical measures
A full list of administered measures is provided in the supplements and
in a previous study [14]. For the current study, we utilized the YBOCS as a
measure for overall OCD symptom severity and the dimensional YBOCS
(DY-BOCS) to rate the severity of distinct symptom dimensions of OCD.
OCD participants were divided into an early-onset (<18 years) and late-
onset (≥18 years) group based on the youngest age at which symptoms
of OCD first interfered with activities, became time-consuming (>1 h a
day) or caused significant distress. Age of onset was also used as a
continuous measure (see data analysis). Duration of illness, medication
history and years of education were also recorded. Interrater reliability of
the clinical measures across the sites, particularly of the (D)Y-BOCS, was
excellent [18].

Image acquisition and processing
Each of the five sites acquired harmonized multi-shell dMRI, blip-up/blip-
down scans with opposite phase-encoding directions to correct for
susceptibility-induced distortions and 3D T1-weighted structural images.
See the supplementary material for the acquisition parameters and
preprocessing steps. See our previous work for details on the harmoniza-
tion of the MRI protocol [15]. Raw data will be uploaded to the NIMH Data
Archive. Scans were excluded in case of >3 volumes per shell with motion
artifacts. Volumes (<2) had to be excluded from three subjects but these
scans were kept in the analysis.

Tensor and NODDI measures
We calculated tensor-based FA, mean diffusivity (MD), axial diffusivity (AD)
and radial diffusivity (RD) maps from the b= 1000 s/mm2 shell of the
preprocessed dMRI [19], and used DTI-TK to register the dMRI scans to a
common space [20]. We calculated the tensor-based measures for the
b= 1000 s/mm2 shell only for higher comparability with previous studies
and because the diffusion tensor model does not account for non-
Gaussian diffusion at higher b-values [21]. We investigated OCD-related
alterations in white matter microstructure of several tracts of interest (TOI)
that were chosen based on the previous ENIGMA-OCD study [2] and other
previous dMRI studies showing case-control differences [3–10, 22–24]:
SagS, PTR, genu, body and splenium of the CC, dorsal (along cingulate
gyrus) and ventral (along parahippocampal gyrus) cingulum, SLF and
uncinate fascicle derived from the JHU-ICBM-DTI-81 atlas [25]. Additionally,
we used Neurite Orientation Dispersion and Density imaging (NODDI) and
the NODDI-Watson model in the CUDA Diffusion Modelling Toolbox [26] to
calculate neurite density (ND) and orientation dispersion (OD) maps. These
maps were warped to the same DTI-TK template as the tensor maps. We
extracted the median value from each TOI for further analyses. Bilateral
tracts were averaged.

Fixel measures
A fixel (i.e., fiber population within a voxel) analysis calculates fiber bundle-
specific measures such as the fiber density (FD), fiber cross-section (FC) and
fiber density and cross-section (FDC) [27] to overcome the problem of
crossing fibers [28]. Details of the pipeline are presented in the
supplementary material.

Tractography and network analysis
We performed multi-shell anatomically-constrained (probabilistic) tracto-
graphy with 50 million seeds from the gray/white matter boundary to
construct a tractogram for each participant in MRtrix3 and applied SIFT2 to
improve the accuracy of the reconstructed fibers and reduce false positive
connections [29, 30]. The resulting tractogram was converted to a
weighted structural connectivity matrix with 300 cortical areas derived
from the Schaefer 300P7N atlas and 14 individually segmented subcortical
areas with FreeSurfer 7.1.1. Four nodes (i.e., left/right Limbic_OFC_3 and
Limbic_TempPole_1) were removed from the matrix as a high percentage
of participants did not have any streamlines originating from them. This
resulted in a 310 × 310 connectivity matrix per participant. We
subsequently calculated network measures that describe different proper-
ties of the network organization on the global level: global efficiency,
modularity, small-worldness, and rich club coefficient (see supplements for
details). On the nodal level, we calculated the betweenness centrality and
local efficiency for subcortical nodes that are highly implicated in the
pathophysiology of OCD: amygdala, pallidum, hippocampus, thalamus and
putamen.
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Statistical analysis
Analyses were pre-registered with the Open Science Framework (osf.io/
m97kp). We employed two different statistical approaches: null hypothesis
significance testing (NHST) and Bayesian hypothesis testing (BHT). Within
the framework of NHST, we performed two sets of models for all dMRI
analyses where we corrected for site using either ComBat [17], or added
site as a random intercept. We performed multivariate mixed model
analyses in R (v4.1.3; R CORE team, lme4 and lmerTest packages) with the
four diffusivity measures and two NODDI measures in each TOI as
dependent variables and diagnosis, age of onset (early vs late onset) or
prior exposure to selective serotonin reuptake or serotonin-norepinephrine
reuptake inhibitors (SSRI/SNRI) as independent variable. We checked for
equal variance between groups. All six tensor/NODDI measures were Z-
transformed, and the MD, RD and OD values were inverted to ensure that
higher values signified better microstructural integrity. We added age, sex
and educational level as nuisance covariates in separate adjusted models.
Fixel-based and connectome measures were analyzed using univariate
mixed models using the three fixel measures per TOI or global or nodal
measures as dependent variables and diagnosis, age of onset or SSRI/SNRI
medication history as independent variable (age, sex and educational level
as nuisance covariates in separate models). Intracranial volume (ICV) was
added as a covariate for the FC and FDC measures [27].
Tensor/NODDI, fixel and connectome measures were additionally

linearly associated with age of onset, symptom severity (YBOCS) and
duration of illness in OCD cases using mixed model analysis, with age, sex
and education as covariates in adjusted models. To account for the large
proportion of zero scores on sub-dimensions of the D-YBOCS (i.e. zero-
inflated) [31], we added a binary regressor per sub-dimension score that
indicated whether a participant scored >0 on a given sub-dimension
(conform Harisson et al. [32].). Sub-dimension scores (Harm, Sexual/
Religious, Symmetry/Ordening, Contamination and Collecting/Hoarding)
and binary regressors were added simultaneously to the model (along with
age, sex and education). For all these analyses alpha was set to P < 0.05
(two-sided) and we corrected for multiple comparisons across the different
TOIs or nodes using the False Discovery Rate (FDR; q < 0.05), except for the
association with D-YBOCS dimensions where we corrected for multiple
comparisons using a D/AP-Sidak correction that takes into account the
mutual correlation between outcome measures [33]. For the tensor/
NODDI, fixel and global and nodal network analyses, the adjusted P-value
was set at Padj= 0.0009, Padj= 0.001, Padj= 0.01 and Padj= 0.005,
respectively. We previously calculated that our sample size (at P < 0.05
and 80% power) is sufficient to detect effect size differences of Cohen’s
d= 0.25 and correlations of size r= 0.12 [14].
BHT was applied to the ComBat corrected tensor/NODDI and fixel

measures using the Region-Based Analysis Program through Bayesian
Multilevel Modeling (RBA, v1.0.10) tool to consider all measures across
all tracts and incorporate this shared information into one statistical
model [34]. Rather than a P-value, BHT produces posterior distributions.
The distance of the median of the posterior density from a zero-effect line
represents the magnitude (and direction) of the effect, whereas the area
under the curve of the distribution to the right or left of the zero line (i.e.
posterior probability or P+ ), represents the credibility (or uncertainty) of
there being an effect. Although inferences should be based on the entire
posterior distribution, we classified the credibility of there being an effect
as moderate (P+ between [1-]0.05 and [1-]0.10), strong (P+ between [1-]
0.01 and [1-]0.05), and very strong (P+ < 0.01 or >0.99). Effects with a P+
of <0.10 or >0.90 are reported in the main text.
Lastly, we performed exploratory whole-brain skeletonized voxel-wise

(randomise) and fixel-wise analyses (cfestats) on the tensor/NODDI and
fixel-based measures, respectively. We adjusted for age, sex and years of
education (and ICV were appropriate) and limited the analyses to the
voxels/fixels within the skeletonized JHU-ICBM-DTI-81 atlas and used
permuted (10,000) threshold-free cluster enhancement (TFCE) and family-
wise error (FWE) correction (P < 0.05).

RESULTS
Demographics, clinical information and image quality
Demographic and clinical information is provided in Table 1.
Groups were well matched on age and sex, but not years of
education (t(510)= 3.53, P < 0.001) or estimated IQ (t(510)= 2.21,
P= 0.03). The late-onset OCD group was on average older (mean
age 31.2 vs 28.2 years, t(257) =−3.07, P= 0.002), had a shorter
illness duration (t(255.9)= 8.5, P < 0.001) and lower estimated IQ

t(257) =−3.18, P= 0.002) compared with the early onset group,
but there were no differences in sex distribution, OCD symptom
severity, sub-dimension scores, previous medication use or
(lifetime) comorbidities (supplementary Table 2). Individuals with
OCD with or without prior SSRI/SNRI history showed a significant
difference in YBOCS score, prior use of other treatments and
comorbidities; particularly comorbid depression, panic disorder
and generalized anxiety disorder and hoarding symptoms were
more prevalent in the group with exposure to SSRI/SNRI
(Supplementary Table 2). Image quality was similar across all
groups (Supplementary Table 3).

Tensor and NODDI measures
None of the tracts of interest showed a case-control difference,
neither when adjusting for the site using ComBat (Table 2) nor
when adjusting for a site with a random intercept (Supplementary
Table 4). These results were also confirmed by the Bayesian
multilevel analyses (see Fig. 1A) showing little credibility for an
effect of diagnosis. When comparing cases with an early or late
onset of OCD, the ComBat adjusted data showed that late-onset
cases exhibit lower overall white matter microstructural integrity
in the PTR (B[SE]= 0.20[0.08], P= 0.012), driven by a lower FA
(B[SE]= 0.29[0.12], P= 0.02), higher RD (B[SE]= 0.28[0.12],
P= 0.025), higher MD (B[SE]= 0.25[0.12], P= 0.048), and lower
ND (B[SE]= 0.29[0.12], P= 0.02) and in the SLF a higher MD
(B[SE]= 0.28[0.12], P= 0.03; see Table 3). These results were no
longer significant after adjusting for covariates or correcting for
multiple comparisons. Conversely, before adjusting for covariates
we observed higher overall microstructural integrity in late-onset
cases in the ventral cingulum (B[SE]=−0.16[0.08], P= 0.04),
driven by a lower RD (B[SE]=−0.34[0.12], P= 0.005), which was
still significant after adjusting for covariates (B[SE]=−0.32[0.12],
P= 0.008). The models adjusted for site (rather than with Combat)
showed very similar results for the PTR and SLF with the
differences in the PTR surviving FDR correction, but conversely,
no differences were observed in the ventral cingulum (Supple-
mentary Table 5). In support of the mixed model analysis, the
Bayesian multilevel analysis showed moderate (P+ < 0.1) credible
evidence for the difference in microstructural integrity in the PTR
(ND, FA, RD, MD), SLF (MD) but not ventral cingulum (see Fig. 1B).
Comparing OCD individuals with and without prior use of SSRI/
SNRI showed that medication-naïve cases had a lower AD in the
body of the corpus callosum using ComBat and after adjusting for
covariates B[SE]= 0.25[0.12], P= 0.04; see supplementary Table 6).
When adjusting for the site in the mixed model analysis,
medication-naïve OCD cases showed a lower ND across multiple
tracts (Supplementary Table 7). Bayesian results are shown in
supplementary Fig. 2, indicating lower microstructural integrity in
medication-naïve OCD cases across multiple tracts but none with
P+ values > 0.9.
Consistent with the tract-based analyses, analyses of the

skeletonized white matter voxels within the entire JHU-ICBM-
DTI-81 atlas (with randomise) showed widespread lower ND in late
onset (compared with early onset) cases involving amongst others
the corpus callosum, SLF, coronal radiation, PTR and SagS, but
predominantly on the right side (TFCE, PFWE < 0.05; See supple-
mentary Fig. 3). There were no case-control differences nor
between cases with and without a history of SSRI/SNRI use.
Associations with clinical measures are reported in supplemen-

tary tables 8–11. After adjusting for age, sex and educational level
and multiple comparisons, we observed a positive association
between duration of illness and ND in the uncinate fascicle
(B[SE]= 0.018[0.01], PFDR= 0.03). There were no significant asso-
ciations with the subscales of the D-YBOCS.

White matter fiber density and cross-section
After adjusting for covariates, FD in the SagS (B[SE]= 0.12[0.05],
P= 0.02) was higher in individuals with OCD compared with HC,
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but no comparison survived the FDR correction, neither when
correcting for site using ComBat (supplementary Table 12) nor
within the mixed model analysis (supplementary Table 13). The
Bayesian multilevel analysis showed moderate to very high
credibility for a higher FD in OCD compared with HC in all tracts
but the ventral cingulum bundle and PTR (see Fig. 2A). Neither the
mixed-model nor Bayesian multilevel analysis showed evidence
for differences between early onset and late onset OCD
(supplementary Tables 14–15; Fig. 2B). Comparing OCD cases
with and without a prior exposure to SSRI/SNRI showed a lower FD
(B[SE]=−0.27[0.12], P= 0.03; supplementary Tables 16–17) in the
uncinate fascicle in medication-naïve OCD cases, but these results
did not survive FDR correction and credibility for these findings
was relatively low (see supplementary Fig. 4). The whole atlas-
based fixel analysis also showed no differences between cases and
controls, OCD cases with different ages of onset or SSRI/SNRI
exposure and there were no linear associations with age of onset,
illness duration or severity (supplementary Tables 18–20). After
multiple comparison corrections, there were also no significant
associations with the subscales of the D-YBOCS (supplementary
Table 21)

Structural Connectome
There were no case-control connectome differences on either
the global or nodal level (Supplementary Table 22; Fig. 3). After
adjusting for covariates, global efficiency was lower in late onset
(compared with early onset) OCD (B[SE]= 14.8[6.7], P= 0.03;
Supplementary Table 23; Fig. 3). There were no differences in
the other global measures, no differences in OCD cases

with or without prior SSRI/SNRI exposure (supplementary
table 24), no associations with clinical variables (supplementary
table 25–27) and none of the comparisons on the nodal
measures survived multiple comparison correction. Modelling
site as a random effect gave the same results (supplementary
table 28–30).

Post-hoc analysis
To better understand the observed differences between the early
and late onset of OCD we additionally compared the tensor/
NODDI, fixel, and global connectome measures of both OCD onset
groups to HC. For the tensor/NODDI and fixel measures we used
the Bayesian multilevel analysis to combine all ComBat corrected
measures across the tracts into one model to limit the number of
additional analyses, while we used ANCOVA’s for the four global
connectome measures. All analyses were adjusted for age, sex and
education. Analysis of the tensor/NODDI measures showed
differential direction of effect of the two OCD groups relative to
HC, with early onset OCD cases primarily showing higher
microstructural integrity relative to HC; predominantly in the
PTR, SLF and SagS, while late-onset OCD cases generally showed
lower microstructural integrity relative to HC (supplementary
Fig. 5). Fiber density and cross-section were generally higher in
both OCD groups compared with HC, with slightly higher
credibility for the early onset group (supplementary Fig. 6).
Although global efficiency was higher in the early onset group
and lower in the late-onset group relative to HC, neither
comparison reached statistical significance (early onset vs. healthy
control: P= 0.10, late onset vs. HC: P= 0.21).

Table 1. Demographic and clinical characteristics.

OCD (N= 260) HC (n= 252) Statistics

Sex (N (%))

Male 117 (45.0%) 105 (41.7%) χ2(1)= 0.58, P= 0.45

Female 143 (55.0%) 147 (58.3%)

Age (years) 29.6 (8.0) 30.0 (8.2) t(510)= 0.61, P= 0.54

Education (years) 15.2 (2.8) 16.0 (2.5) t(510)= 3.52, P < 0.001

Estimated IQ 104.7 (12.4) 107.1 (12.3) t(509)= 2.21, P= 0.03

YBOCS 24.8 (4.9) 0.12 (0.68) t(510)= −78.7, P < 0.001

Duration of illnessa 12.3 (8.6)

Age of onset (years) 17.3 (7.1) –

OCD onset (N (%))a

Child onset 145 (55.8%) –

Adult onset 114 (43.8%) –

Medication naïve (%)

SSRI 58.5% 99.2%

SNRI 95.4% 100%

Benzodiazepines 90.4% 99.6%

Antipsychotics 91.9% 99.6%

Mood stabilizers 97.3% 100%

CBT naïve 75.8 100%

DYBOCS

Harm & Aggression 5.3 (4.7) 0.0 (0.4)

Sexual & Religious 4.5 (4.9) 0.0 (0.0)

Symmetry & Ordering 5.7 (4.4) 0.0 (0.2)

Contamination 6.3 (5.0) 0.0 (0.2)

Collecting & Hoarding 1.3 (2.7) 0.0 (0.0)

Data are presented as mean (SD) unless otherwise indicated. a = duration of illness/age of onset missing for 1 individual with OCD. YBOCS Yale-Brown
Obsessive-compulsive Scale, SSRI selective serotonin reuptake inhibitor, SNRI serotonin-noradrenaline reuptake inhibitor, CBT Cognitive behavioral therapy.
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DISCUSSION
The main finding of this dMRI study of the OCD global study
involving a large group of medication-free adults with OCD and
HC from five different international sites was that, relative to early-
onset OCD cases, late-onset OCD cases show a lower capacity to
integrate information across the network (i.e., lower efficiency)
and lower integrity of associative white matter tracts, particularly
the PTR. Voxel-based analysis of the skeletonized atlas showed
even more widespread right lateralized reductions in ND in late-
onset OCD. There were no case-control differences in micro-
structure or network topology, except for a higher fiber density of
the SagS in OCD individuals that did not survive multiple
comparison corrections but did show high credibility in the
Bayesian analysis. We also observed differences between indivi-
duals with OCD and with and without a history of SSRI/SNRI use
although between-group differences in comorbidities likely
confound these results and all participants were free from current
SSRI/SNRI medication.
The PTR—which includes the optic radiation—consists of

reciprocal axons between the posterior thalamic regions and the
parietal and occipital regions. Its integrity has previously been
associated with better cognitive control and the ability to suppress
interfering information in children [35]. In the ENIGMA-OCD

study [2], it was FA in the PTR that showed the highest effect size
in the case-control comparisons (Cohen’s d=−0.26). While we did
not observe a case-control difference when considering all
individuals with OCD together, our post-hoc Bayesian analyses
showed differential directions of the effect of the early and late
OCD onset groups relative to HC. Late-onset OCD cases exhibited
lower microstructural integrity of PTR (particularly FA, MD, ND and
RD) whereas early-onset OCD cases show higher microstructural
integrity relative to HC. We saw similar patterns for the SLF. Piras
and colleagues, unfortunately, did not report any age of onset
group comparisons, but they did not observe any linear
associations with age of onset. In Piras et al.‘s study, mean OCD
onset was 19.1 ± 8.4 years, while in our study, it was 17.3 ± 7.1
years for the overall sample and 23.4 ± 5.6 years for late-onset
OCD cases. Severity and age at study participation were
comparable between our late-onset OCD cases and the complete
ENIGMA-OCD sample. The individuals with OCD in the ENIGMA-
OCD study may resemble our late-onset cases more closely, but
without additional detailed clinical information, this remains
speculative. In the absence of differences in OCD symptom
severity, sex distribution, medication history or psychiatric
comorbidities between our early and late OCD onset cases, our
results suggest that – at least for the microstructure of the

Fig. 1 Bayesian posterior distribution plots of the differences in white matter microstructure between (a) OCD patients and healthy
controls and (b) early and late onset OCD patients. The posterior distribution communicates the credibility of an effect. Posterior
probabilities of a positive effect (P+ ) are shown next to each distribution and color coded. P+ values ≥ 0.90 (moderate to very high credibility
for a positive effect) or ≤0.10 (moderate to very high credibility for a negative effect) are presented in bold. The meaning of the direction of
effects are shown next to the red zero-effect line. Values on the X-axis represent (inverted) Z-scores (i.e., the unit to which the tensor/NODDI
measures were converted; see methods section). A There was no credible evidence for differences between OCD patients and healthy controls
(all 0.10 < P+ < 0.90). B P+ values were ≤ 0.10 for several tensor/NODDI measures of the posterior thalamic radiation and superior longitudinal
fascicle, signifying moderate to high credibility for a higher value in early onset OCD patients. abbreviations: AD: axial diffusivity, FA: fractional
anisotropy, MD mean diffusivity, ND neurite density, OD orientation dispersion, RD radial diffusivity, NODDI Neurite orientation dispersion and
density imaging. Plots were produced using the Region-Based Analysis program through Bayesian Multilevel Modeling implemented in AFNI
(Chen et al. 2019).
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PTR—individuals with either early or late OCD onset represent
distinct groups with different underlying neurobiology. Axonal
myelination and synaptic pruning continue throughout adoles-
cence and young adulthood and follow a complex spatial and
temporal pattern across neurodevelopment [36, 37]. Disruption of
these processes at a specific time might, therefore, differentially
affect the normal development of the PTR and other white matter
fiber bundles. Whether it is developmental dysregulation that
leads to OCD, or the onset of OCD that disrupts the normal
process is unknown. Interestingly, a recent UK Biobank study
showed that highly stressful life events during either childhood or
adulthood had differential effects on the brain and cognition,
including the microstructural integrity of the PTR [38], which may
give credence to the latter direction of events.
The PTR connects different cortical regions with the thalamus, a

brain structure that has been repeatedly implicated in the
pathophysiology of OCD, particularly in morphometric studies. A
previous ENIGMA-OCD study showed that the thalamus is larger in
pediatric OCD cases and smaller in late OCD cases, relative to their
respective matched HC [39]. OCD cases with a late onset also had
a smaller thalamus, while individuals with early onset OCD
showed no differences. Together these studies may suggest that
the emergence of OCD at different lifespan periods has a
differential effect on circuitry that involves the thalamus and
surrounding white matter fiber bundles, but the mechanism and
clinical ramifications are still unclear. Analyses of potential
morphometric differences in the OCD global sample are ongoing

(osf.io/bvywf). The PTR also contains afferents to the visual cortices
and therefore these findings lend support to the growing body of
literature that implicates visual (attentional) processes in the
pathophysiology of OCD [40–42].
Our Bayesian (but not multiple comparisons corrected NHST)

analyses showed credible evidence for higher fiber density in
the SagS and several other tracts in OCD compared with HC. The
OCD-related higher fiber density seems at odds with the
previously reported lower FA in the SagS [2]. To the best of
our knowledge, no previous study has performed fixel-based
analyses in OCD. However, a recent study in a large sample of
typically developing youth showed associations between the
severity of symptom dimensions of OCD (e.g., repetition/
checking) and fixel measures in the splenium of the corpus
callosum, while associations with FA were found in spatially
distinct brain regions [41]. The authors argued that FA and fixel
measures may represent different features of the white matter
and showed low correlations between tract-specific FA and fixel
measures. Indeed, we also observed low correlations between
the tensor/NODDI-based measures and fixel measures (Supple-
mentary Fig. 7). The low consistency between tensor-based (e.g.,
FA) and fixel measures may be especially true for white matter
areas that are rich in kissing or crossing fibers as tensor-based
measures provide an average across the entire voxel, whereas in
fixel-based analysis, measures are calculated for specific fiber
bundles within a voxel [27, 43]. The SagS is not one bundle but a
complex crossroads of different associational fibers. Two recent

Fig. 2 Bayesian posterior distribution plots on fixel-based measures between (a) OCD patients and healthy controls and (b) early and late
onset OCD patients. A The posterior distributions showed credible evidence for a higher FD (and to a lesser extent FDC) in individuals
with OCD compared with healthy controls in the majority of the tracts. There was no credible evidence for a difference in FC. B Credibility for a
difference in fixel-based measures between early and late onset OCD patients was low. Posterior probabilities of a positive effect (P+) are
shown next to each distribution and color-coded. P+ values ≥ 0.90 (moderate to very high credibility for a positive effect) or ≤0.10 (moderate
to very high credibility for a negative effect) are presented in bold. FDC fiber density and cross-section, FD fiber density, FC fiber cross-section.
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independent dissection studies show that it consists of the
inferior-fronto-occipital fascicle, the inferior and middle long-
itudinal fascicle, optic radiation, the PTR and anterior commis-
sure, which in some areas of the SagS cross each other [44, 45].
The previously observed lower FA in OCD by Piras and
colleagues [2] may therefore be due to a lower directionality
of the dominant diffusion direction caused by a higher incidence
of crossing fibers. Crossing fibers similarly affects MD and other
tensor measures [46]. Unfortunately, our current fixel-based
analyses cannot disentangle which specific fiber population (e.g.
inferior longitudinal fascicle, optic radiation, etc.) showed a
higher fiber density as this would require a different approach
with individualized tract segmentation (e.g. using TractSeg [47])
which was beyond the scope of this paper.
Compared with early onset cases, individuals with late onset

OCD also exhibited a lower global efficiency, indicative of a
reduced ability of the brain network to integrate information from
different regions. As the capacity to integrate information relies on
the integrity of long-range associative fibers, this finding aligns
with our results on the PTR and the widespread lower ND in right
hemispheric white matter. We did not observe any topological
differences when comparing all OCD cases with HC, although our
post-hoc analyses suggested that relative to HC, the early onset
and late onset OCD group exhibited a higher and lower global
efficiency, respectively, albeit not statistically significant. Previous
case-control studies on the structural connectome have shown
similar [11, 48], higher [13], and lower [12] global efficiency in OCD
cases compared with HC. These discrepancies across studies have
previously been suggested to be due to differences in age of
onset (ranging from 14-25 years across these studies) [13], but no
associations with age of onset have previously been reported. The
current study suggests that, similar to the observed changes in
microstructure, that age of onset impacts the global topology of
the structural connectome. Nevertheless, additional validation is
necessary to confirm these findings.
This study has a number of strengths. Firstly, the diverse and

large sample size, second only to the study of the ENIGMA OCD
consortium, and the use of deep phenotyping, inclusion of
medication-free individuals, harmonized acquisition protocols,
and the use of multi-shell dMRI (none of which the ENIGMA
OCD consortium could do due to the use of legacy data).
Secondly, the multi-shell dMRI allowed us to use several dMRI
methods to approach the data from different angles and two

statistical approaches to make inferences. To this day, NHST is the
prevailing statistical method of choice and reporting those
outcomes makes our results more comparable with previous
literature. Nevertheless, this framework has repeatedly been
criticized in neuroscientific research (and beyond) for over-
emphasizing and misinterpreting the p-values, the ‘pass’/’fail’
dichotomization that comes with it and its contribution to
publication bias and the replication crisis [34, 49, 50]. In the
context of neuroimaging, Bayesian Multilevel Modeling has
several advantages over NHST: rather than fitting separate models
for each region of interest under the assumption of indepen-
dence, the BHT framework builds one integrative model across all
regions that embraces their interrelations - a more rational
strategy given that they are derived from the same brain – that
also eliminates the need to perform multiple comparison
corrections [34, 51]. Furthermore, this framework is more
respectful of the continuous nature of biological measures, better
controls magnitude and sign errors, and stimulates full reporting
of the results thereby improving transparency and reproducibility
[50, 51]. The use of integrative models (both the multivariate
mixed and multilevel Bayesian models) also prevents the isolated
interpretation of tensor-based measures that by themselves do
not reliably capture the underlying biophysics of the white matter
microstructure [52].
A number of limitations also deserve mentioning. Although the

results were consistent overall, the use of multiple different
(complementary) approaches also increased the risk of contrasting
findings: there were some differences in the outcomes between
the NHST and BHT analyses and between the two different site
correction procedures. This seems mainly due to the need to
perform multiple comparison corrections under the NHST frame-
work and the pass/fail dichotomization in reporting as all reported
results showed similar signs and magnitudes and with the
exception of the SSRI/SNRI analyses, the confidence intervals of
the ComBat and random intercept mixed models were similar.
Cases and controls showed significant differences in years of
education and IQ but with a mean difference of less than 1 year of
education and 2.5 IQ points. Although statistically significant,
these differences are likely too small to be of clinical relevance.
Similarly, the difference in age (3 years) and IQ (4 points) between
early and late-onset OCD cases had negligible influence on the
reported results and all models were adjusted for inter-individual
differences in age, sex and education level. Adjusting the models

Fig. 3 Raincloud plots of global connectome measures of healthy controls, early and late onset OCD patients. Early onset OCD patients
showed a significantly higher global efficiency compared with late onset patients. abbreviations: HC healthy controls, LOCD Late onset OCD,
EOCD early onset OCD.
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for IQ rather than education level had little influence on the results
(data not shown).
In conclusion, the results of this OCD global study reveal a

notable reduction in microstructural integrity of the white matter
in late-onset OCD cases, particularly in thalamo-parietal/occipital
tracts, concomitant with reduced efficiency of the structural
connectome. These results lend further support for the role of the
thalamus and afferent fibers and visual attentional processes in
the pathophysiology of OCD.

DATA AVAILABILITY
Raw imaging and clinical data will be made available in the NIMH Data Archive.
Processing scripts are available from the author’s github page: github.com/
chrisvriend/dwi-prep4tract, github.com/chrisvriend/dwi-dtitk, github.com/chrisv-
riend/dwi-fba
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