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Untargeted metabolomics reveal 
signatures of a healthy lifestyle
Wimal Pathmasiri 1,2,6, Blake R. Rushing 1,2,6, Susan McRitchie 2, Mansi Choudhari 2, Xiuxia Du 3, 
Alexsandr Smirnov 3, Matteo Pelleigrini 4, Michael J. Thompson 4, Camila A. Sakaguchi 5, 
David C. Nieman 5* & Susan J. Sumner 1,2*

This cross-sectional study investigated differences in the plasma metabolome in two groups of adults 
that were of similar age but varied markedly in body composition and dietary and physical activity 
patterns. Study participants included 52 adults in the lifestyle group (LIFE) (28 males, 24 females) 
and 52 in the control group (CON) (27 males, 25 females). The results using an extensive untargeted 
ultra high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) 
metabolomics analysis with 10,535 metabolite peaks identified 486 important metabolites (variable 
influence on projections scores of VIP ≥ 1) and 16 significantly enriched metabolic pathways that 
differentiated LIFE and CON groups. A novel metabolite signature of positive lifestyle habits emerged 
from this analysis highlighted by lower plasma levels of numerous bile acids, an amino acid profile 
characterized by higher histidine and lower glutamic acid, glutamine, β-alanine, phenylalanine, 
tyrosine, and proline, an elevated vitamin D status, higher levels of beneficial fatty acids and 
gut microbiome catabolism metabolites from plant substrates, and reduced levels of N-glycan 
degradation metabolites and environmental contaminants. This study established that the plasma 
metabolome is strongly associated with body composition and lifestyle habits. The robust lifestyle 
metabolite signature identified in this study is consistent with an improved life expectancy and a 
reduced risk for chronic disease.
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Advances in mass spectrometry and data computing capabilities have expanded the use of metabolomics in 
health- and disease-related research projects. Targeted and untargeted metabolomics can be used in the large-
scale study of the metabolome, defined as the collection of small molecules and their interactions, within a 
biological system. Targeted metabolomics typically involves a priori selection of metabolites and pathways for 
testing a hypothesis. Using untargeted methods, over 20,000 metabolites have been detected in humans and 
thousands of metabolites can be measured simultaneously in plasma, serum, urine, sweat, fecal, and other types 
of samples1. Metabolomics profiling has advanced scientific understanding of underlying metabolic pathways 
in health promotion and disease prevention, expanded appreciation for metabolic heterogeneity, and identified 
new biomarkers to use in tracking responses to medical treatments and lifestyle changes2.

Numerous studies indicate that adherence to recommended lifestyle habits such as participation in regular 
physical activity, consumption of high-quality diets, maintenance of healthy body weight, moderation of alcohol 
intake, and avoidance of tobacco use is associated with increased life expectancy and reduced risk of most chronic 
diseases3–5. The principal mechanisms explaining these relationships and the wide-ranging human responses 
are still poorly understood. Investigations have attempted to define unique metabolite signatures related to car-
diorespiratory fitness6–10, healthy dietary patterns11–16, the aging process17, and obesity18–23, but disparate study 
designs and methodologies and the emergent nature of this field of study have forestalled scientific consensus. 
Several studies have investigated the unique metabolomic profile associated with two or more combined healthy 
lifestyle behaviors24–27. Kaspy et al.26 systematically reviewed nine studies and concluded that limited evidence 
supported positive metabolite shifts with combined healthy lifestyle behaviors including elevations in phospho-
creatine and beneficial fatty acids and lower acylcarnitines and trimethylamine N-oxide (TMAO). Excessive 
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adiposity that typically develops from an energy imbalance due to physical inactivity and overeating has been 
linked to a strong metabolite signature including elevations in the nucleotide urate, amino acids such as gluta-
mate, kynurenate, alanine, tyrosine, and branched chain amino acids (BCAAs), lipids such as acylcarnitines, 
sphingomyelin, carnitine, some types of bile acids, and triglycerides, and carbohydrates such as glucose and 
mannose. Lower concentrations of some lipids such as cortisone, phospholipids and lysolipids, and high-density 
lipoprotein (HDL)-related fats, and xenobiotics such as cinnamoylglycine have also been related to obesity18–23.

Metabolomics is a systems biology approach ideally suited to revealing the complex interactions between 
lifestyle habits and underlying physiological mechanisms24–29. The aim of this study was to investigate differences 
in the plasma metabolome in two groups of adults that were distinctly different in body composition and dietary 
and physical activity patterns. Of the various multi-component lifestyle studies reviewed by Kaspy et al.26, none 
used a cross-sectional design comparing widely disparate groups of adults. The studies reviewed by Kaspy et al.26 
included three randomized controlled trials with obese adults, three nested case–control studies (two with cancer 
patients), and three single-arm trials (two with obese children). The authors of this systematic review were limited 
in their ability to provide definitive conclusions on lifestyle-related metabolite shifts due to the heterogeneity 
among the study populations, and differences in study designs and metabolomic approaches used for biomarker 
detection26. This cross-sectional study of two groups of male and female adults varying widely in adherence 
to lifestyle recommendations used untargeted UHPLC-HRMS with more than 10,000 signals to provide an 
in-depth analysis of the associated metabolite signature. Cross-sectional studies allow widely disparate groups 
to be compared providing important data that can be followed up in subsequent epidemiological cohort and 
randomized clinical trials. The range of analytes detected on the UHPLC-HRMS system included those related 
to host metabolism, the environment, medication use, and food and microbial metabolites.

Methods
Study participants
The proteomics data and information regarding the study participants and methods from this cross-sectional 
study have been published in a separate paper30. The reader is referred to this paper for complete details and a brief 
description will be provided in this paper. Male and female study participants ages 25–75 years were recruited 
and voluntarily signed the informed consent. Procedures were approved by the Appalachian State University 
Human Subjects Institutional Review Board (IRB), Federal Wide Assurance (FWA) number: FWA00027456. 
Notice of IRB approval by expedited review was granted by the IRB (#21-0054) on 10/16/202030. The research 
was performed in accordance with relevant guidelines and regulations, and informed consent was obtained from 
all study participants30.

Participants were not included if they were currently being treated for heart disease or cancer (excluding skin 
cancer), or medically complicated conditions (i.e., diabetes requiring insulin, uncontrolled high blood pressure). 
No restrictions were placed on diet, supplement usage, or medications30. Other inclusion criteria for the lifestyle 
group were similar to those used in previous lifestyle-metabolomics studies26: (1) Healthy, with no current his-
tory of chronic or infectious disease; (2) Not overweight or obese (body mass index less than 25 kg/m2); (3) 
High physical activity level (> 300 min per week, vigorous exercise); (4) Non-smoker for at least the previous 
three years; (5) Healthy dietary pattern (recommended intake of fruits, vegetables, whole grains, low-fat dairy 
products, healthy protein foods, and a low intake of salt, sugar, fats, and alcohol). Other inclusion criteria for the 
control group were as follows: (1) Healthy, with no current history of chronic or infectious disease; (2) Obese 
(body mass index greater than or equal to 30 kg/m2); (3) Sedentary or low physical activity level (< 150 min per 
week); (4) Unhealthy dietary pattern30.

Study design and methods
This study employed a cross-sectional design that compared metabolite profiles in adults adhering (n = 52) or 
not adhering (n = 52) to lifestyle recommendations. Questionnaires provided information about their lifestyle 
and physical activity patterns, mood states, estimated VO2max, nutrient intake, and medical history30.

Participants reported to the lab at the scheduled appointment time in an overnight fasted state (i.e., no food, 
supplements, or beverages other than water for at least the previous 8 h). After 10–15 min of seated rest, resting 
heart rate (RHR) and blood pressure were measured. A 35 ml blood sample was collected from an arm vein. 
Venous blood samples were collected in ethylenediaminetetraacetic acid (EDTA) containing blood collection 
tubes. Plasma aliquots were prepared from EDTA containing blood collection tubes and stored in a − 80 °C 
freezer until analysis for metabolomics. Participants were taken into the performance lab for measurements of 
height, weight, waist circumference, sagittal abdominal diameter, leg/back and hand grip dynamometer strength, 
and body fat (bioelectrical impedance or BIA)30.

Untargeted metabolomics data capture and preprocessing
Details of the sample preparation, data acquisition, data preprocessing and metabolite identification and 
annotation31–33 are provided in the Supplementary Methods Material. Briefly, untargeted metabolomics data of 
randomized plasma samples (interspersed with 10% blanks, quality control study pools (QCSP), and NIST SRM 
1950 plasma reference material) was acquired in positive mode on a Vanquish UHPLC system coupled with a Q 
Exactive™ HF-X Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (UHPLC-HRMS; Thermo Fisher Scientific, 
San Jose, CA). Raw files for all study samples, QCSP, blank, and NIST reference material runs were uploaded to 
Progenesis QI (Waters Corporation, Milford, MA) for alignment and peak picking. Data was normalized34,35 to 
a reference QCSP sample using the “normalize to all” function in Progenesis QI36. Peaks detected by UHPLC-
HRMS were identified or annotated using ADAP-KDB software37. The evidence basis for metabolite identifica-
tions and annotations31–33 to the in-house physical standards library (Ontology Level, OL), or Public Databases 
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(PD), are described in the Supplementary Methods Material. It should be noted that metabolomics platforms 
cannot always distinguish between isomers and that multiple peaks may match the same compound. Addition-
ally, one metabolic peak may match to multiple metabolites due to adduct formation or isobaric compounds.

Multivariate data analysis, and univariate statistics
Multivariate analysis was performed for the normalized UHPLC-HRMS data, using SIMCA 17.0 to reduce the 
dimensionality and to enable the visualization of the differentiation of the phenotypic groups (SIMCA 17, Sar-
torius Stedim Data Analytics, AB, Umeå, Sweden)38,39. Unsupervised multivariate analysis models were created 
using principal component analysis (PCA) and the scores plots were inspected to ensure that the QCSP samples 
were tightly clustered, and in the center of the study samples from which they were derived—a quality control 
method that is widely used in metabolomic studies40. Orthogonal partial least squares discriminate analysis 
(OPLS-DA) was used to determine the variable influence on projection (VIP), for the preprocessed UHPLC-
HRMS data, to define the signals deemed important for differentiating the phenotypic groups. VIP ≥ 1.0 with a 
jack-knife confidence interval that did not include 0 were selected as important. The VIP statistic summarizes the 
importance of the signal in differentiating the phenotypic groups39. All models used a sevenfold cross-validation 
to assess the predictive ability (Q2) of the model. Additional statistical analyses were conducted using SAS 
9.4 (SAS Institute Inc., Cary, NC), and included using a two-sided t-test with the Satterthwaite correction for 
unequal variances. Nominal p-values are reported for the comparison between lifestyle and the controls because 
this exploratory analysis was not powered for a specific hypothesis41–43. Metabolite peaks that met VIP ≥ 1 or 
p < 0.10 fold group differences ≥ │2.0│ were reported for the differentiation of the phenotypic groups in the 
metabolomics analysis. This discovery study did not use FDR correction because the study was not powered for a 
specific hypothesis41–43. This study determined linear combinations of metabolites that have variable importance 
to projection scores ≥ 1 that are important for determining differences between the lifestyle and control groups. 
P-values were reported in all cases. While some of these p-values may not be significant after FDR correction, 
these metabolites are still important to the signature that differentiates the lifestyle and control groups.

Lasso modeling
Lasso regression was used to consider another statistical model that reduces errors caused by overfitting. Group 
(LIFE, CON) discriminators based on the entire metabolomics dataset were constructed using penalized logis-
tic regression. This analysis was conducted using the R packages “glmnet” (cran.r-project.org/web/packages/
glmnet/)44,45 with the alpha parameter set to 1.0. This is equivalent to “Lasso” regression wherein the number of 
predictor variables in the categorization model is minimized. The normalized intensities for all metabolite peaks 
across 104 subjects were input into the algorithm with group status (LIFE, CON) as the binary category to be 
predicted. As it is well known that even penalized regression techniques will over-fit the training data when the 
number of predictor variables is much larger than the number of samples, a leave-one-out (LOO) protocol was 
used to get an estimate of how well a discriminator trained on this data might perform on new samples. The LOO 
approach consists of iterating over all N samples in the dataset. At each step one of the samples is withheld while 
a model is optimized over the other N-1 samples and a prediction is made for the sample that was held out. We 
computed receiver-operating characteristic (ROC) curves from the LIFE and CON group predictions obtained 
with a simple LASSO regression model. To compare ROC curves, we computed the area under the curve (AUC) 
and a p-value for obtaining such an AUC at random. These calculations were performed using the R package 
“pROC” (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​pROC/​index.​html).

Pathway enrichment and biological interpretation
Pathway enrichment analysis was conducted using the Mummichog algorithm46 in Functional Analysis module 
in Metaboanalyst 5.047–49. The 10,535 features (m/z) that remained after data preprocessing were entered together 
with the mass-to-charge ratio (m/z), retention time, positive mode, the p-value, and fold change between the 
comparison of lifestyle versus controls for all subjects. A p-value cut-off of 0.05 was used for the size of the 
permutation group that the algorithm used for selecting significant features for metabolite matching. A 3 ppm 
mass tolerance was used for mass accuracy for annotating peaks to metabolites and identifying candidate path-
ways. All possible metabolites that were matched by m/z were searched in the Homo sapiens (human) [MFN] 
pathway library. The experimental list of metabolites was compared to a null distribution of randomly generated 
m/z features from the reference library to determine pathway significance46. Significance was reported as uncor-
rected p-values. In addition to the pathway analysis using MetaboAnalyst, biochemical pathway interpretation 
was conducted with a classical approach of assessing the connection between analytes that met the criteria for 
being most important (VIP ≥ 1 and p < 0.05 for group fold differences ≥ │1.8│) between LIFE and CON groups. 
Some metabolites are represented in more than one metabolic pathway.

Results
Subject characteristics
This study employed a cross-sectional design and compared 52 subjects in the lifestyle group (LIFE) and 52 
in the control group (CON) (Table 1). The sex distribution was comparable between groups (LIFE, 28 males, 
24 females) and CON 27males,25females (Χ2 = 0.039, p = 0.844). Analyses were conducted for all study participants 
combined. Age, education level, and height did not differ significantly between LIFE and CON groups (Table 1). 
Several measures of body composition differed between LIFE and CON groups (Table 1). These included the 
body mass index (BMI), fat mass index (FMI), body fat percentage, and sagittal abdominal diameter (SAD). 
Estimated aerobic capacity (VO2max) and total physical activity calculated as MET-min/week differed between 
the LIFE and CON groups (p < 0.001) (Table 1). Fruit and vegetable intake was higher and red meat intake lower 
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in LIFE vs. CON (both p < 0.001). Strength was measured using leg/back and handgrip dynamometers and 
differed between groups after adjustment for body mass (p < 0.001) (Table 2). Diastolic blood pressure and the 
resting heart rate were significantly lower in LIFE vs. CON (p < 0.001) (Table 1).

Metabolomics comparisons and peak identification and annotation
Untargeted UHPLC-HRMS analysis was conducted on the preprocessed and normalized data with the 10,535 
metabolite peaks that remained after peak filtration. The initial scores plot of the PCA showed tight clustering 
of QCSP and NIST reference plasma samples (Supplementary Methods Material with Fig. S1). All metabolite 
peaks in the preprocessed dataset were used for metabolite identification and annotation using ADAP-KDB 
software and both experimental standards library and public databases. A total of 1539 metabolites were identi-
fied or annotated using the in-house physical standards library. An ontology level OL_1 (RT, exact mass, and 
MS/MS) was reported for 418 metabolite matches, an OL_2a (RT, exact mass) for 527 metabolite matches, and 
OL_2b (exact mass, MS/MS) for 594 matches using the in-house experimental standards library (Supplementary 
Material, Table S1). A total of 122,527 metabolite annotations were made by library matching signals to public 
databases by exact mass and experimental MS/MS (PDa; 7567 annotations), exact mass and isotopic pattern 
(102,482 annotations, PDc), and exact mass (12,478 annotations, PDd) (Supplementary Material, Table S2). 
Signals that did not match the in-house library or public databases were labeled as unknown metabolite peaks. 
Results of this untargeted metabolomics study matched signals to isobaric and isomeric compounds, and future 
studies would be needed to resolve multiple peak matches.

Multivariate and univariate statistics
The supervised OPLS-DA for plasma samples from the LIFE and CON groups (Fig. 1) showed strong model sta-
tistics for outcome (R2Y = 0.959) and prediction (Q2 = 0.523, sevenfold cross validation). Over 5300 signals met 
the criteria of VIP ≥ 1 or p < 0.10 or a fold change ≥ │2│ (Supplementary Material, Table S3). Over 3200 signals 
had p < 0.10, and over 2400 signals had p < 0.05 for comparison between LIFE and CON. Over 1200 signals had 
p < 0.01 for comparisons between LIFE and CON groups. A total of 486 important metabolite peaks (VIP ≥ 1) 
were matched to metabolites in the in-house physical standards library using ADAP-KDB software (Supple-
mentary Material, Table S4). The most important metabolite peaks library matched to metabolites (VIP ≥ 1 and 
p ≤ 0.05 or fold group differences ≥ │1.8│) are shown in the Table 2.

Lasso modeling
Receiver-operator-characteristic (ROC) curves from LOO and the single over-fit models are shown in Fig. 2. The 
area under the curve (AUC) for the single model was 1.0 (p-value 7.7e−19) and for the LOO models was 0.96 
(p-value 5.6e−16). The Lasso modeling approach resulted in the identification of 55 metabolite peaks with all 
in common with important metabolite peaks listed in Table S3. The summary can be found in Supplementary 
Table S5).

LOO cross validation (LOOCV) predictions using all metabolomics data points are summarized in Fig. 3 
for key lifestyle traits. Older age was strongly related to the metabolomics data with no differences between the 
LIFE and CON groups (r = 0.80, p = value = 5e−24). LIFE and CON group membership was strongly predicted 
using the plasma metabolomics data for three different body composition outcomes including BMI (r = 0.84, 
p-value = 3e−29), percent body fat (r = 0.80, p-value = 7e−24), and the sagittal abdominal diameter (SAD) 
(r = 0.82, p-value = 6e−27), and moderately predicted for the average number of daily servings of fruits and veg-
etables combined (r = 0.66, p-value = 3e−14), and the days per week for moderate-to-vigorous physical activity 
(MVPA) (r = 0.68, p-value = 4e−15).

Table 1.   Subject characteristics. Data expressed as mean ± standard deviation. *p < 0.001, group difference.

Variable Lifestyle (n = 52) (28M, 24F) Control (n = 52) (27M, 25F)

Age (yrs) 47.5 ± 12.2 51.1 ± 10.5

Education (yrs) 16.3 ± 3.4 15.2 ± 3.1

Weight (kg) 67.8 ± 11.8* 101.5 ± 15.5

Height (cm) 172 ± 9.0 171 ± 9.5

Waist circumference (cm) 82.5 ± 7.5* 112.2 ± 11.5

Sagittal abdominal diameter (SAD) (cm) 17.5 ± 2.13* 26.9 ± 3.4

BMI (body mass kg/height m2) 22.9 ± 2.6* 34.5 ± 4.0

Body fat (%) 22.6 ± 7.3* 40.8 ± 7.2

Fat mass index (fat mass kg/height m2) 5.32 ± 1.90* 14.2 ± 3.57

VO2max (ml kg−1 min−1) 37.7 ± 8.8* 20.3 ± 8.4

Physical activity (MET-min/week) 5463 ± 3723* 2319 ± 2614

Systolic blood pressure (sBP) (mm Hg) 115 ± 14.5 117 ± 14.5

Diastolic blood pressure (dBP) (mm Hg) 67.8 ± 10.0* 73.0 ± 10.5

Fruit and vegetable (servings/day) 5.1 ± 2.0* 2.9 ± 1.4

Red meat (servings/day) 0.45 ± 0.64* 1.21 ± 0.72
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Metabolite peaka Ontology level (OL) Metabolite VIP p-valueb Fold differencec

0.63_148.0602m/z

OL_1 3-Methylaspartate 2.6 1.30E−09 − 2.5

OL_1 Glutamic acid 2.6 1.30E−09 − 2.5

OL_1 N-Acetylserine 2.6 1.30E−09 − 2.5

OL_2a N-Methyl-d-aspartic acid 2.6 1.30E−09 − 2.5

OL_2a O-Acetylserine 2.6 1.30E−09 − 2.5

12.14_330.2553n OL_2b Docosapentaenoic acid 2.4 2.55E−07 − 6.1

13.06_373.2733m/z

OL_1 α-Muricholic acid 2.4 2.61E−07 − 2.6

OL_1 β-Muricholic acid 2.4 2.61E−07 − 2.6

OL_2b γ-Muricholic acid 2.4 2.61E−07 − 2.6

OL_2b 7-Ketochenodeoxycholate 2.4 2.61E−07 − 2.6

OL_2b Allocholic acid 2.4 2.61E−07 − 2.6

OL_2b Cholic acid 2.4 2.61E−07 − 2.6

OL_2b Ursocholic acid 2.4 2.61E−07 − 2.6

1.01_129.0787n OL_1 Pipecolic acid 2.2 2.14E−04 1.8

16.63_437.3015m/z OL_2a Diosgenin 2.1 2.09E−05 1.9

0.68_309.1050n OL_2b N-Acetylneuraminic acid 2.1 2.41E−06 − 2.0

17.26_568.4279n OL_2a Lutein 2.0 1.41E−05 2.9

11.74_430.2950m/z OL_2b Glycylcholic acid 2.0 2.35E−05 − 3.2

0.74_308.0903m/z OL_1 Reduced glutathione 1.9 3.66E−05 2.3

13.46_243.2100m/z OL_2b γ-Linolenic acid 1.9 5.88E−05 5.9

11.22_347.2213m/z
OL_1 Cortexolone 1.9 4.56E−05 − 1.9

OL_1 Corticosterone 1.9 4.56E−05 − 1.9

9.98_288.1587m/z OL_2b Dihydromorphine 1.8 1.63E−04 − 4.1

4.31_134.0599m/z OL_2a Acetaminophen 1.7 1.70E−02 − 1.9

16.16_432.3234n OL_2b 1,24,25-Trihydroxyvitamin D3 1.7 2.58E−03 − 1.8

4.70_144.0806m/z
OL_1 Tryptamine 1.7 7.73E−04 2.0

OL_2b 3-(2-Hydroxyethyl)indole 1.7 7.73E−04 2.0

15.68_430.3081n OL_2b 7α-hydroxy-3-oxo-4-cholestenoic acid 1.7 8.45E−04 6.7

5.31_228.0625m/z
OL_2b Indolelactic acid 1.6 1.78E−03 − 2.7

OL_2b trans-Cinnamoylglycine 1.6 1.78E−03 − 2.7

10.85_180.1015m/z
OL_2a Propham 1.6 1.15E−03 − 4.4

OL_2b Salsolinol 1.6 1.15E−03 − 4.4

0.58_188.1520n
OL_1 N,N,N-Trimethyllysine 1.6 2.57E−04 − 1.9

OL_2b Propamocarb free base 1.6 2.57E−04 − 1.9

1.48_190.0704m/z
OL_1 N-Acetylglutamate 1.6 5.15E−03 − 1.8

OL_2a 3-Dehydroshikimic acid 1.6 5.15E−03 − 1.8

4.83_268.1511m/z

OL_1 2-Methylbutyroylcarnitine 1.6 1.01E−02 − 1.8

OL_1 Isovaleryl-l-carnitine 1.6 1.01E−02 − 1.8

OL_1 Valeryl-l-carnitine 1.6 1.01E−02 − 1.8

7.79_206.0809m/z
OL_1 trans-Cinnamoylglycine 1.5 9.80E−04 2.5

OL_2a Dioxacarb 1.5 9.80E−04 2.5

16.78_328.2392n OL_2b Docosahexaenoic acid 1.5 2.52E−03 2.1

7.79_148.0523n OL_2b trans-Cinnamic acid 1.5 1.93E−03 2.6

14.13_392.2921n

OL_2b Sodium deoxycholate 1.5 1.20E−03 − 1.8

OL_2b Chenodeoxycholic acid 1.5 1.20E−03 − 1.8

OL_2b Murideoxycholic acid 1.5 1.20E−03 − 1.8

0.96_117.0428n OL_1 N-Acetylglycine 1.5 5.17E−04 1.8

0.83_277.1025m/z OL_2a Pseudouridine 1.5 8.86E−04 − 1.8

1.01_82.0651m/z

OL_2a 5-Aminopentanoate 1.4 8.73E−03 2.0

OL_2a Betaine 1.4 8.73E−03 2.0

OL_2a Nicotine 1.4 8.73E−03 2.0

9.25_150.0677n OL_1 Hydrocinnamic acid 1.4 7.82E−03 1.9

1.01_160.0602m/z
OL_2a Glucosaminate 1.4 4.96E−03 2.6

OL_2a 1-Methylnicotinamide 1.4 4.96E−03 2.6

11.48_266.1382m/z OL_2a Monocyclohexyl phthalate 1.4 1.54E−03 − 2.5

5.82_170.0210m/z OL_2a trans-4-Hydroxy-l-proline 1.6 1.71E−03 − 1.8

Continued
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Metabolite peaka Ontology level (OL) Metabolite VIP p-valueb Fold differencec

1.53_248.1484m/z
OL_1 Hydroxybutyrylcarnitine 1.4 6.57E−03 − 2.4

OL_2b Prometon 1.4 6.57E−03 − 2.4

11.37_334.2139n OL_2b Prostaglandin B2 1.4 5.06E−03 4.1

13.46_392.2921n

OL_1 Ursodeoxycholate 1.4 2.74E−03 − 2.3

OL_1 Murideoxycholic acid 1.4 2.74E−03 − 2.3

OL_2b Deoxycholic acid 1.4 2.74E−03 − 2.3

OL_2b Chenodeoxycholic acid 1.4 2.74E−03 − 2.3

13.46_339.2677m/z OL_2b Dehydrolithocholic acid 1.4 2.92E−03 − 2.8

8.72_416.3156m/z OL_2b Glycolithocholic acid 1.4 3.62E−03 − 2.0

5.31_179.0581n OL_1 Hippuric acid 1.4 5.55E−03 1.8

14.16_401.2658m/z OL_1 Nordeoxycholic acid 1.3 6.63E−03 − 1.8

7.86_260.0887m/z OL_2a 3-Hydroxycarbofuran 1.3 4.78E−03 − 2.1

0.74_365.1050m/z

OL_1 Lactose 1.3 6.49E−03 − 1.9

OL_1 Sucrose 1.3 6.49E−03 − 1.9

OL_1 Trehalose dihydrate 1.3 6.49E−03 − 1.9

OL_2a Palatinose 1.3 6.49E−03 − 1.9

17.15_316.2514m/z OL_2a Adrenic acid 1.3 9.31E−03 3.5

14.19_252.6229m/z OL_2a N-Acetyl leukotriene E4 1.3 3.34E−02 − 2.2

16.85_401.3408m/z
OL_1 7-Ketocholesterol 1.3 8.46E−03 − 2.2

OL_1 7α-Hydroxy-4-cholesten-3-one 1.3 8.46E−03 − 2.2

11.03_357.2032m/z OL_2b Prostaglandin B2 1.3 8.85E−03 2.3

0.74_216.1226m/z OL_2a Epinephrine 1.3 4.23E−02 1.9

7.00_219.0624m/z OL_2b 3,4-Dimethoxyphenylacetic acid 1.2 1.66E−02 3.8

8.55_233.0778m/z OL_1 3,4-Dimethoxyphenylpropanoic acid 1.2 1.85E−02 2.1

10.79_375.2138m/z OL_2b Prostaglandin E2 1.2 2.40E−02 2.1

2.45_160.0756m/z
OL_2b Indoleacetaldehyde 1.2 2.87E−02 2.1

OL_1 Serotonin 1.2 2.87E−02 2.1

7.33_173.1048n
OL_1 Hexanoyl glycine 1.2 6.64E−03 2.8

OL_2b N-Acetylleucine 1.2 6.64E−03 2.8

9.57_189.0784n
OL_2b IndolE−3-propionic acid 1.2 1.14E−02 − 2.3

OL_2a IndolE−3-methyl acetate 1.2 1.14E−02 − 2.3

15.73_433.3307m/z OL_2a Coprocholic acid 1.2 1.15E−02 − 2.2

8.55_151.0749m/z

OL_2a (3,4-Dimethoxyphenyl)methanol 1.2 1.96E−02 2.0

OL_2b 2-Phenylpropionate 1.2 1.96E−02 2.0

OL_2b 3-Phenylpropanoic acid 1.2 1.96E−02 2.0

1.01_147.0649m/z

OL_2a Fucose 1.2 2.52E−02 − 3.0

OL_2a Galactitol 1.2 2.52E−02 − 3.0

OL_2a Sorbitol 1.2 2.52E−02 − 3.0

2.45_160.0756m/z OL_2a Cotinine 1.2 2.87E−02 2.1

1.01_199.0211m/z
OL_1 Glucuronic acid-lactone 1.2 8.76E−03 − 3.1

OL_1 Ascorbic acid 1.2 8.76E−03 − 3.1

4.74_134.0598m/z OL_2b Norepinephrine 1.1 2.38E−02 − 2.3

12.17_331.1146m/z OL_2b Mono (5-carboxy-2-ethylpentyl) phthalate 1.1 1.58E−02 − 4.4

7.55_183.0647m/z

OL_2a 3,4-Dimethoxybenzoic acid 1.2 6.37E−02 1.9

OL_2a 2,4-Dimethoxybenzoic acid 1.2 6.37E−02 1.9

OL_2b 1,3-Dimethyluric acid 1.2 7.63E−02 − 1.8

5.56_146.0689n OL_2b Glutamine 1.1 1.12E−02 − 1.8

10.46_301.1314n

OL_2b 10-Hydroxymorphine 1.1 3.09E−02 − 2.0

OL_2b Fenoxycarb 1.1 3.09E−02 − 2.0

OL_2b Furalaxyl 1.1 3.09E−02 − 2.0

OL_2b Oxymorphone 1.1 3.09E−02 − 2.0

OL_2b MorphinE-N-oxide 1.1 3.09E−02 − 2.0

16.56_285.2204m/z
OL_1 13-cis-retinal 1.1 2.33E−02 2.7

OL_2b Eicosapentaenoic acid 1.1 2.33E−02 2.7

0.74_189.1229m/z OL_1 N-α-Acetyllysine 1.1 3.84E−02 − 1.9

13.72_495.3445m/z OL_2a 2,6-di-tert-butyl-4-hydroxy-4-methylcyclohexa-2,5-dien-
1-one 1.1 7.11E−02 4.4

Continued
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Pathway enrichment analysis
Pathway enrichment was conducted using all 10,535 peaks in the dataset (with mass-to-charge ratio (m/z), reten-
tion time, the p-value, and fold change information as input) for comparison of LIFE versus CON phenotypic 
groups. The plot of pathway enrichment factor vs. –log10 (p) is shown in Fig. 4, and pathways deemed significant 
(p < 0.05) calculated by MetaboAnalyst are numbered (P1 to P16) in the figure. The top 16 enriched pathways 
(ranked by significance (p-value < 0.05) are shown in Table 3, and the complete list of the pathways are shown in 
the Supplementary Table S6 for the comparison of LIFE and CON groups. Signals associated with these enriched 
pathways, that were statistically significant between LIFE and CON groups, and that were identified or annotated 
using our in-house physical standards library are described in Table S7.

Discussion
This cross-sectional study focused on the metabotype profile associated with a healthy lifestyle. The LIFE and 
CON groups were of similar age, education, and sex distribution, but differed significantly in body composition 
and exercise and dietary patterns. The proteomics dataset previously published from this cross-sectional study 
showed strong group differences for 39 proteins supporting a lower innate immune activation signature and 
greater lipoprotein metabolism and HDL remodeling in the LIFE group30. In this analysis, untargeted metabo-
lomics of more than 10,000 metabolite peaks revealed a distinct difference in the plasma metabolome between 

Metabolite peaka Ontology level (OL) Metabolite VIP p-valueb Fold differencec

9.79_183.0800m/z OL_2b 9-Hydroxyfluorene 1.0 3.47E−02 − 2.2

5.31_175.0363m/z OL_2a 4-hydroxyphenylacetic acid 1.0 3.44E−02 − 4.2

1.07_138.0524m/z OL_2a Proline 1.0 3.51E−02 − 3.7

5.56_491.1998m/z OL_2a Folinic acid 1.0 3.08E−02 − 2.0

Table 2.   Library matched metabolite peaks that most significantly differentiated LIFE (n = 52) and CON 
(n = 52) groups (VIP ≥ 1 and p < 0.05 for group fold differences ≥ │1.8│). The table is sorted by Variable 
Influence on Projection (VIP). See Supplementary Table S4 for additional important metabolite peaks with 
statistics. a Mass spectrometry metabolomics platforms cannot always distinguish between isomers, and 
multiple peaks may match the same compound. Additionally, one peak may match multiple metabolites due 
to adduct formation or isobaric compounds. For the complete list of metabolites annotations or identifications 
of metabolite peaks see Supplementary Tables S1 and S2. b t-test with Satterthwaite correction for unequal 
variances. c Positive fold difference indicates that the mean value for the LIFE group was greater than for the 
CON group.

Figure 1.   Scores plots of OPLS-DA of the metabolomics data obtained by UHPLC-HRMS analysis of plasma 
samples showing the differentiation of Lifestyle (LIFE) (blue, right-hand side) from Controls (CON) (green, left-
hand side), R2X = 0.175; R2Y = 0.959); Q2 = 0.523, sevenfold cross validation).
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the LIFE and CON groups. Multivariate LOO modeling confirmed that group status (LIFE vs. CON) was strongly 
predicted by the metabolite signature and exceeded the prediction model from the proteomics data30. Numerous 
metabolites were identified/annotated that most significantly differentiated LIFE and CON groups. An enriched 
pathway analysis using Mummichog indicated group differences for 16 metabolic pathways highlighted by con-
trasts in bile acid and amino acid metabolism.

The reduced plasma bile acid signature in the LIFE vs. CON group is a novel and important finding from this 
cross-sectional study. Plasma hydroxycholesterol, a cholesterol precursor in primary bile acid metabolism, and 
more than 10 primary and secondary bile acids were significantly lower in the LIFE versus CON groups. Other 
studies indicate that plasma bile acid concentrations vary widely between individuals and that this variance is due 
to lifestyle, gut microbial, and genetic factors50. Normally enterohepatic circulation of bile acids is very efficient 
and only a small proportion of bile acids escape into the systemic circulation50. Circulating bile acids at normal 
low concentrations have regulatory functions and exert signaling functions in peripheral tissues and organs 
through specific nuclear receptors including the farnesoid X receptor (FXR) and the Takeda G protein-coupled 
receptor 1 (TGR5)50,51. Emerging data indicate that individuals with obesity and various diseases including type 
2 diabetes mellitus have elevated plasma bile acid concentrations in the fasted state48,49. One study showed that 
even in young and relatively healthy adults, plasma bile acid levels were associated with cardiometabolic and 
inflammatory disease risk biomarkers52. A 14-week exercise and weight loss intervention study demonstrated 
that total fasting bile acids decreased by 30% accompanied by a 55% increase in serum levels of the rate-limiting 
enzyme cholesterol 7 alpha-hydroxylase (CYP7A1)53. Limited data suggest that aerobic capacity influences bile 
acid metabolism54 and that intake of dietary fiber and polyphenols from whole plant foods have a significant 
effect on the gut microbiome and bile acid metabolism and related signaling pathways55,56. Additional human 
systems biology-based studies using a variety of multiomics approaches will broaden current understandings 
regarding the specific and combined lifestyle relationships of body composition and dietary and exercise pat-
terns on bile acid metabolism50.

LIFE versus CON group differences were found for seven of 20 standard amino acids, with higher histidine 
and lower glutamic acid, glutamine, β-alanine, phenylalanine, tyrosine, and proline. This LIFE-related amino 
acid signature was spread across seven different metabolic pathways including histidine, lysine, pyrimidine, 
amino sugars, β-alanine, tyrosine, and butanoate metabolism. Some aspects of this LIFE versus obese-CON-
related amino acid signature have been reported by others, but the literature is far from consistent18,26. There is 
agreement that amino acid metabolism is extensively altered in various disease states and influenced by body 

Figure 2.   Receiver-operator-characteristic (ROC) curves for LIFE and CON group discriminators trained on 
the entire metabolomics dataset. The blue curve is derived from category scores obtained from a single model 
optimized on all 104 samples, while the red curve depicts category scores obtained for each of 104 samples using 
104 separate models optimized on 103 samples (leave-one-out cross-validation, LOO-CV). The area under the 
curves (AUC) for the single model and LOO models were 1.0 and 0.96, respectively, with p values of 7.7e−19 
and 5.6e−16.
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composition and lifestyle habits57. In a cross-sectional study with obese and non-obese women serum amino 
acids including histidine, arginine, threonine, glycine, lysine, and serine were found to be significantly lower in 
obese women as compared to non-obese controls, similar to our results58. In our study, the most important LIFE 
versus CON contrast was for glutamic acid, an acidic, non-essential amino acid that is involved in numerous 
metabolic pathways. The plasma concentration of glutamic acid levels is inversely related to visceral adipose 
tissue and may be influenced by obesity-induced changes in the gut microbiota59. Pathway enrichment for LIFE 
versus CON identified the histidine metabolic pathway as most affected with higher levels of histidine, 4-imi-
dazoleacetic acid, and l-formiminoglutamic acid and lower levels of glutamic acid in the LIFE group. Histidine 
is an essential amino acid and has been positively associated with insulin sensitivity, obesity, liver and kidney 
disease, and heart failure, and inversely related to inflammation and oxidative stress58,60. The gut microbiome 
appears to play a key role in regulating diet histidine bioavailability61. Plasma levels of branched chain amino 
acids (BCAAs) did not differ between LIFE and CON groups in contrast to other studies that have noted elevated 
plasma BCAA levels in obese groups18,26. The literature is mixed, however, regarding plasma BCAA levels and 
associations with adiposity, longevity, sarcopenia, and diabetes62.

5-hydroxylysine was increased and other lysine metabolites were decreased in LIFE versus CON groups. 
Limited data indicate that obesity may be related to enhanced lysine degradation via the saccharopine pathway63. 
Lysine is subjected to diverse enzyme-catalyzed post-translational modifications (PTMs), including methylation, 
acetylation, crotonylation, ubiquitination, and SUMOylation. Acetyllysine (or acetylated lysine) is an acetyl-
derivative of the amino acid lysine. In proteins, the acetylation of lysine residues is an important mechanism 
of epigenetics. Free trimethyllysine (TML) is involved in the carnitine biosynthesis pathway, where it acts as 
the first intermediate in a series of four enzymatic reactions to generate l-carnitine64. TML is an important 
post-translationally modified amino acid with functions in carnitine biosynthesis and regulation of key epi-
genetic processes. The dataset from this cross-sectional study support lower levels of lysine degradation in the 
LIFE group, and the clinical significance of this finding remains to be determined. In contrast, pipecolic acid, 
an l-alpha amino acid metabolite product of lysine microbiome catabolism and a marker of dry bean intake65 
was elevated in the LIFE group with a high VIP value of 2. There is increasing evidence that pipecolic acid is an 
important regulator of immunity in both plants and humans66.

Metabolites from the pyrimidine metabolism pathway including uracil, uridine, thymine, and 5-methylcy-
tosine were higher in LIFE versus CON groups, with lower levels of glutamine, cytidine, cytosine, and pseudou-
ridine. Uridine is an uracil nucleoside that is involved in a variety of biological functions including RNA and 

Figure 3.   Leave-one-out cross validation (LOOCV) predictions using all metabolomics data for selected 
traits. Older age was strongly related to the metabolomics data with no differences between the LIFE and CON 
groups (r = 0.80, p = value = 5e−24). LIFE and CON group membership was strongly predicted using the plasma 
metabolomics data for three different body composition outcomes including BMI (r = 0.84, p-value = 3e−29), 
percent body fat (r = 0.80, p-value = 7e−24), and the sagittal abdominal diameter (SAD) (r = 0.82, 
p-value = 6e−27), and moderately predicted for the average number of daily servings of fruits and vegetables 
combined (r = 0.66, p-value = 3e−14), and the days per week for moderate-to-vigorous physical activity (MVPA) 
(r = 0.68, p-value = 4e−15).
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DNA biosynthesis, glucose and lipid metabolism, glycogen deposition, insulin sensitivity, energy homeostasis, 
protein and lipid glycosylation, extracellular matrix biosynthesis, and detoxification of xenobiotics67. Limited 
human data indicate that plasma uridine levels are inversely related to obesity68. In mice, uridine supplementation 
attenuates HFD-induced obesity and NAFLD69. A high uridine to pseudouridine ratio (as shown in the LIFE 
group) has been linked to a reduced risk for stroke70. Uridine decreases oxidative stress and inflammation in vitro 
and was linked to lower levels of aging indicators in mice71. Thus, alterations in plasma metabolites related to the 
pyrimidine pathway may serve as important and novel biomarkers of lifestyle habits and reduced disease risk.

Lifestyle habits had a positive influence on vitamin D3 (cholecalciferol) metabolism with higher plasma 
calcifediol (25(OH)D3) and calcitriol (1,25(OH)2D3) and lower 1,24,25-trihydroxyvitamin D3 (a 1,25(OH)2D3 
catabolism metabolite) in the LIFE versus CON groups. A poor vitamin D status has been linked to obesity and 
numerous clinical conditions including the metabolic syndrome, type 2 diabetes mellitus, systemic inflammation, 
autoimmune disorders, and neurodegenerative diseases70–75. Underlying mechanisms for low vitamin D status 
in obese populations are unclear but may be related in part to reduced outdoor physical activity and volumetric 
dilution due to greater volumes of adipose tissue73.

The N-glycan degradation pathway analysis indicated reduced plasma levels in the LIFE group for mannose, 
galactose, N-acetylglucosamine, N-acetylneuraminic acid, and fucose. N-glycans (oligosaccharide-protein mol-
ecules) are basic components of cell membranes and secreted proteins and help regulate multiple physiologi-
cal processes. In humans, N-glycosylation involves collections of mannose, galactose, fucose, and sialic acids 
including N-acetylneuraminic acid and N-acetylglucosamine. Sialic acids are acidic sugars typically located at the 
terminal positions of glycoproteins76,77. The amino sugars N-acetyl-d-mannosamine and N-acetyl-d-glucosamine 
(lower plasma levels in the LIFE group) are essential precursors of sialic acids. Plasma N-glycans and sialic acid 
levels are rather stable in healthy individuals over time but can be altered due to physiological, pathological, or 
lifestyle changes76,77. For example, elevated plasma levels of N-acetylneuraminic acid and N-acetylglucosamine 
have emerged as potential metabolic markers for inflammation, coronary artery disease progression, and a vari-
ety of other diseases78,79. Elevated plasma mannose has been reported in obese adults and is now considered a 
biomarker for future risk of several chronic diseases18,80,81. Increased l-fucose in serum and urine is a potential 
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Figure 4.   The enriched metabolic pathways for differentiating LIFE and CON groups using the Functional 
Analysis module in MetaboAnalyst. Top pathways significant (p < 0.05) in the analysis are annotated. A full 
list of enriched pathways is available in Supplementary Information Table S7. P1. Bile acid biosynthesis; P2. 
Histidine metabolism; P3. Lysine metabolism; P4. Heparan sulfate degradation; P5. Phytanic acid peroxisomal 
oxidation; P6. Glycosphingolipid metabolism; P7. Pyrimidine metabolism; P8. Chondroitin sulfate degradation; 
P9. N-Glycan degradation; P10. Aminosugars metabolism; P11. Beta-alanine metabolism; P12. Vitamin D3 
(cholecalciferol) metabolism; P13. Glycosphingolipid biosynthesis—ganglioseries; P14. Glycosphingolipid 
biosynthesis—globoseries; P15. Butanoate metabolism; P16. Tyrosine metabolism. P4, P10, and P13 are not 
visible due to overlap.
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biomarker for cancer, diabetes, cardiovascular disease, cirrhosis, alcoholic liver disease and gastric ulcers82,83. The 
markedly lower plasma levels of N-glycan degradation metabolites in the LIFE group supports the interpretation 
of reduced chronic disease risk due to positive lifestyle habits. N-acetylglucosamine when polymerized with 
glucuronic acid forms heparin sulfate and is distributed throughout connective, neural, and epithelial tissues. 
Lower levels of plasma N-acetylglucosamine support the pathway analysis finding of a lowered degradation of 
heparan sulfate in the LIFE group84.

Due to limitations in the curation of metabolites in the library of the Mummichog analysis modules, metabo-
lites including those related to gut microbiome catabolism of food substrates and environmental contaminants 
were not included in the pathway analysis. Several gut microbiome metabolites reflecting a higher intake of 
plant-based foods and enhanced gut microbiome alpha diversity were elevated in the LIFE versus CON group 
including hippuric acid, cinnamoylglycine, cinnamic acids, 3,4-dimethoxyphenylacetic acid, 3-phenylpropanoic 
acid, and 2-phenylpropionate. An elevated gut microbial metabolite signature in adults with higher lifestyle 
scores has been reported previously85. Citric acid cycle metabolites generated from the butanoate metabolism 
pathway differed between LIFE and CON groups, with higher levels of succinic acid. The butanoate metabolism 
pathway involves short chain fatty acids (SCFA) produced by bacterial fermentation of undigested carbohydrates 
(including dietary fiber) and proteins. SCFAs are precursors for numerous metabolites including succinic acid 
that helps regulate cellular nutrient metabolism and white adipose tissue deposition, muscle fiber remodeling 
during recovery from exercise, and immune system function86. Plasma levels of two disaccharides, lactose and 
sucrose, are indicators of a leaky gut syndrome and were lower in the LIFE versus CON group.

Plasma levels of numerous environmental contaminants were lower in the LIFE versus CON groups including 
propham (a potato herbicide), fenoxycarb (carbamate-based insecticide metabolite), monocyclohexyl phthalate 
and (5-Carboxy-2-ethylpentyl)phthalate (plasticizer metabolites), prometon (an herbicide), 3-hydroxycarbofuran 
(a pesticide carbofuran metabolite), furalaxyl and propamocarb free base (fungicides), and 9-hydroxyfluorene 
(insecticide and algaecide). Two other cross-sectional studies showed lower levels of blood persistent organochlo-
rine pesticides (POPs) in lean or physically active compared to obese or sedentary adults87,88. Dietary, lifestyle, 
and environmental exposures are still being investigated, but some of the environmental contaminants identified 
in this study tend to accumulate in the fatty tissues of commonly consumed livestock. Thus, a higher intake of 
red meat fat in the CON group may have increased the body-exposure burden of environmental contaminants89.

Pathway enrichment identified LIFE versus CON differences in the glycosphingolipid biosynthesis and 
metabolism pathway, with higher levels of the key metabolite phosphorylcholine. Glycosphingolipids (GSLs) 
are a specialized class of membrane lipids that support various cellular functions. Phosphorylcholine (PC) is the 
hydrophilic polar head group of some phospholipids and is a component of the platelet-activating factor and the 
phospholipids phosphatidylcholine and sphingomyelin90. Non-pathogenic antibodies against PC are naturally 
occurring and present in healthy adults. About 5–10% of circulating immunoglobulin M (IgM) consists of IgM 
anti-PC. IgM anti-PC is negatively associated with several chronic inflammatory conditions, including athero-
sclerosis, CVD, rheumatic diseases and chronic kidney disease (CKD)90.

Other metabolites of importance that were elevated in the LIFE group included beneficial fatty acids such as 
γ-linolenic acid, docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA). Lower levels of beneficial fatty 
acids have been reported in obese populations18. The reduced form of glutathione was significantly elevated in the 

Table 3.   The top 16 pathways (p ≤ 0.05) enriched and ranked in the Mummichog pathway analysis in 
MetaboAnalyst. a Pathway total indicates the overall number of metabolites that are included in a specific 
pathway. b Hits.total indicates the number of measured signals that are matched (m/z error < 3 ppm) with the 
metabolites included in the pathway. c Hits.sig indicates the number of matched signals that were significantly 
changed between phenotypic groups. d FET is the right-tail p-value determined by the Fisher Exact Test for 
pathway enrichment.

Pathway name Pathway totala Hits.totalb cHits.sigc FETd

Bile acid biosynthesis 82 50 42 0.000

Histidine metabolism 33 12 11 0.003

Lysine metabolism 52 15 15 0.005

Heparan sulfate degradation 34 3 3 0.006

Phytanic acid peroxisomal oxidation 34 5 5 0.006

Glycosphingolipid metabolism 67 15 13 0.009

Pyrimidine metabolism 70 19 16 0.011

Chondroitin sulfate degradation 37 3 3 0.015

N-Glycan Degradation 16 6 6 0.020

Aminosugars metabolism 69 8 8 0.025

Beta-Alanine metabolism 20 8 8 0.025

Vitamin D3 (cholecalciferol) metabolism 16 13 10 0.033

Glycosphingolipid biosynthesis—ganglioseries 62 4 4 0.034

Glycosphingolipid biosynthesis—globoseries 16 2 2 0.034

Butanoate metabolism 34 17 14 0.044

Tyrosine metabolism 160 63 48 0.047
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LIFE group and is an indicator of reduced oxidative stress91. Tryptamine, 2-hydroxyethyl)indole, and serotonin 
are gut microbial catabolites of tryptophan and were elevated in the LIFE group. These metabolites play roles in 
the gut-brain axis, immune surveillance, and inflammation regulation92. Two other gut microbial catabolites of 
tryptophan were decreased in the LIFE group including indole-3-methyl acetate and indole-3-propionic acid. 
Plasma betaine and lutein levels were higher in the LIFE group. Betaine is a methyl donor, regulates osmotic 
pressure, has positive effects on intestinal and kidney health, and exerts anti-inflammatory and anti-oxidative 
effects93. Lutein is a common carotenoid in plant foods. Several metabolites related to pain relief medications 
were elevated in the CON group, with higher levels of acetaminophen higher in the LIFE group. Plasma nicotine 
and cotinine were higher in the LIFE group and may indicate a higher prevalence of vaping.

Conclusions
The plasma metabolome reflects the collective influence of multiple lifestyle habits, genotype, clinical stressors, 
the gut microbiota, and other factors94. This cross-sectional study investigated differences in the plasma metabo-
lome in two groups of adults that varied widely in body composition and dietary and physical activity patterns. 
The results using an extensive untargeted UPLC-HRMS analysis with more than 10,000 metabolite peaks identi-
fied/annotated numerous metabolites and 16 metabolic pathways that differentiated LIFE and CON groups. A 
novel metabolite signature of positive lifestyle habits emerged from this analysis highlighted by lower plasma 
levels of numerous bile acids and an amino acid profile consistent with a reduced risk for chronic disease. This 
analysis also supported an elevated vitamin D status in the LIFE group, higher levels of beneficial fatty acids 
and gut microbiome catabolism metabolites from plant substrates, and reduced levels of N-glycan degradation 
metabolites and environmental contaminants. The LOOCV analysis supported the strong effect that body com-
position had on the plasma metabolome, with moderate effects of MVPA and fruit and vegetable intake. We 
propose that low-cost anthropometrics measurements could be combined with important metabolites from this 
analysis as precision nutrition indicators of a healthy versus unhealthy lifestyle. These metabolites could include 
lower plasma levels of glutamic acid, total bile acids, N-acetylneuraminic acid, and mannose, and higher levels of 
histidine, pipecolic acid, L-glutathione (reduced), succinic acid, γ-linolenic, DHA, EPA, hippuric acid, calcitriol, 
phosphorylcholine, uridine, 5-hydroxylysine, betaine, and lutein.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. The normalized and raw metabolomics datasets generated during the current study are 
available at the NIH Common Fund’s National Metabolomics Data Repository (NMDR), https://​www.​metab​
olomi​cswor​kbench.​org (Project ID: PR001932). The metabolomics data package is embargoed to the public 
for a year to accommodate publishing results. During the embargo period, anyone with this link can access the 
data: http://​dev.​metab​olomi​cswor​kbench.​org:​22222/​data/​DRCCM​etada​ta.​php?​Mode=​Study​&​Study​ID=​ST003​
110&​Access=​TreQ7​245.
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