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SCG5 and MITF may be novel 
markers of copper metabolism 
immunorelevance in Alzheimer’s 
disease
Xianbo Zhuang 1, Yitong Xia 2, Yingli Liu 1, Tingting Guo 1, Zhangyong Xia 1,3,5, 
Zheng Wang 4* & Guifeng Zhang 1*

The slow-developing neurological disorder Alzheimer’s disease (AD) has no recognized etiology. 
A bioinformatics investigation verified copper metabolism indicators for AD development. GEO 
contributed AD-related datasets GSE1297 and GSE5281. Differential expression analysis and WGCNA 
confirmed biomarker candidate genes. Each immune cell type in AD and control samples was scored 
using single sample gene set enrichment analysis. Receiver Operating Characteristic (ROC) analysis, 
short Time-series Expression Miner (STEM) grouping, and expression analysis between control and 
AD samples discovered copper metabolism indicators that impacted AD progression. We test clinical 
samples and cellular function to ensure study correctness. Biomarker-targeting miRNAs and lncRNAs 
were predicted by starBase. Trust website anticipated biomarker-targeting transcription factors. In the 
end, Cytoscape constructed the TF/miRNA-mRNA and lncRNA-miRNA networks. The DGIdb database 
predicted biomarker-targeted drugs. We identified 57 differentially expressed copper metabolism-
related genes (DE-CMRGs). Next, fourteen copper metabolism indicators impacting AD progression 
were identified: CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, 
SPHK1, MITF, BRCA1, and CD38. A TF/miRNA-mRNA regulation network was then established 
with two miRNAs (hsa-miR-34a-5p and 34c-5p), six TFs (NFKB1, RELA, MYC, HIF1A, JUN, and SP1), 
and four biomarkers. The DGIdb database contained 171 drugs targeting ten copper metabolism-
relevant biomarkers (BRCA1, MITF, NFKBIA, CD38, CCK2, HPRT1, SPHK1, LDHA, SCG5, and SYT1). 
Copper metabolism biomarkers CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, 
NFKBIA, SPHK1, MITF, BRCA1, and CD38 alter AD progression, laying the groundwork for disease 
pathophysiology and novel AD diagnostic and treatment.

Alzheimer’s disease (AD), a prevalent and highly debilitating form of dementia among the elderly population, 
constitutes approximately 50–70% of all cases of dementia in this age group. Its impact extends to the physical 
and mental well-being of approximately 40–50 million individuals  globally1,2. The prevalence of AD is increasing 
due to the global phenomenon of population  aging3. Projections indicate that the number of individuals affected 
by AD will triple by the year  20502. This anticipated rise in AD cases poses significant challenges and burdens 
for both the global public health system and the socio-economic landscape.

The precise origin of AD has yet to be fully understood, and it primarily manifests as a degenerative condition 
affecting the central nervous  system4. This disease is characterized by a gradual decline in cognitive function and 
behavioral abilities. The primary pathological characteristics of this condition encompass the accumulation of 
amyloid-β plaques and the atypical phosphorylation of Tau proteins, resulting in the formation of neurofibrillary 
tangles (NFT)5. Currently, there is no known cure for AD; however, a combination of therapeutic interventions 
exists to mitigate symptoms and decelerate the advancement of the illness. Hence, the identification of biomarkers 
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associated with the progression of AD holds great importance in enhancing our comprehension of the disease’s 
molecular mechanisms and facilitating the development of novel therapeutic targets.

Copper, being the most prevalent alkaline excess metal essential for human physiological functions, plays a 
crucial role in numerous physiological processes such as antioxidant defense and neurotransmitter  synthesis6–8. 
Hence, the investigation into the correlation between dysregulation of copper homeostasis and AD is increas-
ingly gaining attention in academic research. Copper levels, both bound and free, are higher in the brains of 
AD patients compared to healthy  controls9,10. Copper ions at low concentrations bind to tyrosine residues at the 
N-terminal end of the A peptide chain, causing oxidative modification that promotes plaque deposition and 
oxidative  neurotoxicity11, thereby inducing A aggregation. Copper channels with synaptic proteins and neuro-
transmitter receptors form myelin sheaths and regulate synaptic  activity12,13. The maintenance of normal copper 
metabolism is thus essential for the avoidance of AD pathology. Less is known about the role of genes involved 
in copper metabolism in the development of AD.

Hence, this study employed an integrated bioinformatics approach utilizing public database data to ascertain 
significant copper metabolism-related genes, referred to as biomarkers, in the advancement of AD. RT-PCR 
was conducted on peripheral blood samples obtained from patients diagnosed with AD in order to confirm the 
expression of specific genes. The experimental findings provided support for the initial bioinformatics screen-
ing conducted.

Results
Differentially expressed CMRGs (DE-CMRGs) associated with AD
Using |log2FC|≥ 0.5 and adjusted p-value ≤ 0.05, we identified 833 DEGs (AD vs. control) from the GSE1297 
dataset, with 571 highly expressed and 262 lowly expressed genes in AD (Fig. 1A-B, Supplementary Table 3). 
Differentially expressed genes (DEGs) were crossed with 2073 CMRGs to create 106 DE-CMRGs (Fig. 1C, 
Supplementary Table 4). Next, WGCNA added 106 DE-CMRGs. Figure 1D shows that sample clustering was 
unnecessary. Ten was the best soft threshold  (R2 = 0.85) to maximize scale-free gene interactions (Fig. 1E). Next, 
dynamic tree cutting and module merging produced 7 modules (Fig. 1F). AD correlations were calculated for 
each module. The brown module had the highest positive correlation with AD (r = 0.51, p-value = 0.003), and the 
blue module had the highest negative correlation (r = − 0.56, p-value = 0.001) (Fig. 1G). Thus, 30 brown module 
genes and 27 blue module genes were essential module genes, or DE-CMRGs associated with AD (Supplementary 
Table 4). We calculated gene expression profiles in the brown and blue modules in AD samples (incipient, mod-
erate, and severe). Figure 1H shows AD expression trends in box plots based on expression profiles. According 
to Weighted Gene Co-expression Network Analysis (WGCNA) (Fig. 1H), the blue module’s gene expression 
decreased and the brown module’s increased with AD.

The function of DE-CMRGs associated with AD
Functional enrichment analysis was executed to probe further the part of the DE-CMRGs related to AD. As 
displayed in Supplementary Table 5, 922 GO items (819 BP items, 28 CC items, and 75 MF items) and 20 KEGG 
pathways were derived based on 30 genes in the brown module. The top 8 items under each classification were 
shown in bar graphs (Fig. 2A-B). We observed that the genes above were mainly linked to reactive oxygen 
metabolism-related, immune-related biological processes, neuron apoptotic processes, phospholipase D signal-
ing pathways, neurotrophin signaling pathways, calcium signaling pathways, and neuroactive ligand-receptor 
interaction. Meanwhile, 539 GO items (432 BP items, 46 CC items, and 61 MF items) and 23 KEGG pathways 
were enriched based on 27 genes in the blue module (Supplementary Table 6). The top 8 items under each 
classification were showcased in bar graphs (Fig. 2C-D). We noted that the genes above were mainly linked to 
neurotransmitter transport-related, axon development-related biological processes, synaptic vesicle cycle, HIF-1 
signaling pathway, mTOR signaling pathway, and GABAergic synapse.

The immune cells associated with AD
Since multiple immune-related biological processes were connected with DE-CMRGs related to AD, we next 
applied single sample gene set enrichment analysis (ssGSEA) to explore the immune cells that differ between AD 
and standard samples. The correlation between 22 types of immune cells was presented in the network (Fig. 2E). 
As shown in Fig. 2F, the scores of cytotoxic cells, NK CD56 cells, and Tem were elevated in AD, while the B cells 
were superior in the control. The score of each immune cell type in different grades of AD samples (incipient, 
moderate, and severe) was displayed in a bubble diagram (Fig. 2G).

The biomarkers identified from DE-CMRGs associated with AD
To probe the linkage among the genes in the brown and blue modules, a PPI network containing 37 genes was 
generated (Fig. 3A). The expression of these 37 genes in control and different grades of AD samples (incipient, 
moderate, and severe) were shown in a heatmap (Fig. 3B). To identify genes with potential diagnostic value fur-
ther, we calculated the Area Under the ROC curve (AUC) values of the receiver operating characteristic (ROC) 
curves for these 37 genes in the GSE1297 dataset and the external independent dataset GSE5281. As shown in 
Fig. 3C, 25 genes with AUC more significant than 0.7 in both datasets were identified. Among the 25 genes, the 
expression of F10, MUC1, NEFL, and FGF13 was not significantly different between AD and control samples 
in the GSE5281 dataset (Fig. 3D-E). Hence, we calculated the correlation between the remaining 21 genes and 
immune cells. As illustrated in Fig. 3F, NFKBIA was highly correlated with Tem, CCK was positively associated 
with B cells, and TP53 was positively associated with Cytotoxic cells.

Next, we utilized STEM to cluster the above 21 genes to explore their changes during disease progression. As 
exhibited in Fig. 4A, the 21 genes were clustered into two clusters, with 14 genes in cluster 1 tending to decrease as 
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Figure 1.  DE-CMRGs associated with AD (A) Volcano plot of differential genes, red indicates up-regulation in 
AD, blue indicates down-regulation. (B) Differential gene heat map, red indicates high expression, blue indicates 
low expression. (C) Intersection of copper metabolism genes with screened differential genes. (D) Sample 
clustering diagram, where each branch represents a sample and the vertical coordinate is the height of the 
hierarchical clustering. (E) Soft threshold analysis showed that gene associations were most consistent with the 
scale-free distribution when β = 10. (F) Clustering dendrogram of genes, dissimilarity based on the topological 
overlap, and assigned merged module colors. (G) Heat map of the relationship between gene modules and 
traits using AD and normal as phenotypes. The darker the color, the higher the correlation, red is a positive 
correlation, and blue is a negative correlation. (H) Expression of brown module and blue module genes in 
different clinical samples.
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the disease progressed and seven genes in cluster 9 tending to increase as the disease progressed. The expression 
of the genes in these two clusters in control and different grades of AD samples was presented in the heatmap and 
box plots (Fig. 4B). We found significant differences in the expression of 14 genes between severe AD samples and 
control samples in which the expression of CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, 
and GOT1 gradually decreased with increasing AD degree, and the presentation of NFKBIA, SPHK1, MITF, 

Figure 2.  The function of DE-CMRGs associated with AD (A) GO enrichment analysis of brown module 
genes. (B) KEGG enrichment analysis of the brown module gene. (C) GO enrichment analysis of blue module 
genes. (D) KEGG enrichment analysis of the blue module gene. (E) The network displayed the correlation 
among 22 different types of immune cells. Bubble sizes represent scores, colors represent different cells. (F) 
Violin plot of the percentage of immune cells in the AD and normal groups. (G) Changes in immune cell 
infiltration during the AD disease process.
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BRCA1, and CD38 gradually increased with increasing AD degree (Fig. 4B, Fig. 5). We defined these 14 genes 
as biomarkers associated with copper metabolism that impacted AD progression.

Results of in vivo validation
Consistent patterns were observed in the expression of these genes in the cerebrospinal fluid of both AD patients 
and healthy controls. Specifically, CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, and GOT1 
exhibited low expression levels in AD patients, whereas NFKBIA, SPHK1, MITF, BRCA1, and CD38 showed 
high levels of expression in AD patients (Fig. 6).

Results of in vitro experimental validation
Overexpression of SCG5 enhanced the proliferation and migration of HT22 cells, as well as improved the cell 
viability of HT22 (Fig. 7). In contrast, the overexpression of MITF had a negative impact on the proliferation 
and migration of HT22 cells, and it also reduced the viability of HT22 cells (Fig. 8).

The regulatory network for Biomarkers
Two biomarker-associated miRNAs were mined by prediction from five databases in Starbase, namely hsa-miR-
34a-5p and hsa-miR-34c-5p. In addition, six biomarker-associated TFs were predicted through the trust website. 
Thus, a TF/miRNA-mRNA regulatory network containing 12 nodes (2 miRNAs, 6 TFs, four biomarkers) and 11 
edges was established (Fig. 9). In this network, hsa-miR-34a-5p and hsa-miR-34c-5p regulated SYT1. NFKB1 
and RELA regulated NFKBIA and CD38. MYC regulated CD38 and LDHA. In addition, HIF1A, JUN, and SP1 
modulated LDHA. Then, we predicted lncRNAs targeting hsa-miR-34a-5p and hsa-miR-34c-5p by Starbase. The 
lncRNAs targeting SYT1 were also expected, and the overlapping of the two predictions was acquired, resulting 
in 125 lncRNAs. Thus, the lncRNA-miRNA-mRNA network containing 128 nodes (125 lncRNAs, two miRNAs, 
and one mRNA) and 377 edges was created (Fig. 10, Supplementary Table 7).

The drug-gene network for biomarkers
To initially explore potential drugs targeting the 14 copper metabolism-relevant biomarkers, we predicted 171 
drugs targeting ten biomarkers through the DGIdb database (Supplementary Table 8). As exhibited in the drug-
gene network, 97 drugs targeted BRCA1, 53 drugs targeted MITF, nine drugs targeted NFKBIA, three drugs 

Figure 3.  The biomarkers identified from DE-CMRGs associated with AD (A) PPI network for brown and 
blue modules. (B) A heatmap showed these 37 genes’ expression in control and early, moderate, and severe 
AD samples. (C) AUC values of ROC curves for these 37 genes in GSE1297 and GSE5281. (D) Differential 
expression of 25 genes in GSE1297 between AD and healthy controls. (E) Differential expression of 25 genes in 
GSE5281 between AD and healthy controls. (F) Heatmap of the correlation between 21 genes and immune cells.
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targeted CD38, two drugs targeted HPRT1, two drugs targeted SPHK1, and one drug each targeted LDHA, 
SCG5, and SYT1 (Fig. 11).

Materials and methods
Gene and datasets collection
GSE1297 and GSE5281 were used to mine AD datasets from the NCBI-GEO database. The GSE1297 dataset 
includes microarray expression data from 22 AD hippocampi (HIP) samples and nine healthy  controls14. The 
GSE5281 dataset includes microarray expression data from 10 AD patient HIP samples and 13 control samples 
from healthy  people15. Supplementary Table 1–2 showed clinical data for two datasets. Using the keyword ‘copper 
metabolism’, Genecards yielded 2073 copper metabolism-related genes (CMRGs).

Figure 4.  STEM to cluster the above 21 genes (A) STEM temporal clustering results, where the black line 
represents the overall trend, the red line represents individual genes, the upper left corner represents the number 
of clusters, the lower left corner represents the P-value, and the colored clusters represent significantly clustered 
genes. (B) The STEM clusters’ expression of important genes that differed significantly between controls and 
severe AD patients yielded 14 final genes.
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Differential expression analysis
Relying on the threshold value as p-value ≤ 0.05 and |log2FoldChange (FC)|≥ 0.5, we first determined the DEGs 
between AD and control samples through ‘limma’ package (version 3.48.3)16,17. The DE-CMRGs in AD were 
acquired by overlapping the DEGs and CMRGs.

Weighted gene co-expression network analysis (WGCNA)
We filtered AD-associated DE-CMRGs by WGCNA. A co-expression network was created using the R pack-
age ‘WGCNA’ (1.70–3)18. WGCNA used AD and control samples as trait data to find AD genes. Outliers were 
removed using sample clustering. To achieve scale-free distribution, a soft-thresholding power was calculated 
for the co-expression network. The dynamic tree-cutting algorithm was used to create modules with 1 gene 
each. We set MEDissThres to 0.2 to merge similar modules. The correlation between ultimate modules and traits 
(AD and control samples) was examined. Critical modules were those with the highest positive and negative 
AD correlations.

Functional annotation analysis
The R package ‘clusterProfiler’ (version 4.0.2)19 was used for GO and KEGG enrichment  analysis20–22. The GO was 
divided into cellular components (CC), molecular functions (MF), and biological processes (BP). The threshold 
was p < 0.05.

Immune cell infiltration analysis
The fraction of 24 type immune cells in each AD and control sample from the GSE1297 dataset were calculated 
based on the ssGSEA algorithm (GSVA package, version 1.40.1)23 and 24 immune cell gene set. The correlation 
between different immune cells was computed by the Pearson method.

Short time-series expression miner (STEM) clustering
The STEM software was employed for gene clustering based on the expression pattern of each gene at each time 
 point24. The gene sets that showed an increasing or decreasing trend over time (p-value < 0.001 was defaulted as 
significant in STEM) were searched for according to the software default parameters, and these gene sets were 
considered clusters of genes that changed notably with AD development.

Vivo verification
This study included a total of five patients diagnosed with Alzheimer’s disease and five healthy persons selected 
from Liaocheng Hospital of Shandong First Medical University. The study (NO.2023039) was authorized by the 
Ethics Committee of Liaocheng Hospital of Shandong First Medical University. The subjects or their legal guard-
ians provided informed consent. The peripheral blood specimens were subjected to RNA extraction using Trizol 
reagent (R0016, Beyotime, China). The RNA was converted into complementary DNA (cDNA) using a com-
mercially available reverse transcription kit (11150ES, Yeasen, China) and analyzed using real-time quantitative 
PCR with a SYBR premixed ELISA. The SYBR premixed Ex Taq kit (AG11718, AG, China) and specific primers 
were utilized for real-time quantitative PCR detection, as outlined in Table 1. The reference gene employed was 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). A statistical analysis was judged significant if the P value 

Figure 5.  Expression of 14 genes in different disease stages of AD With increasing AD degree, CCK, 
ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, and GOT1 decreased and NFKBIA, SPHK1, MITF, 
BRCA1, and CD38 increased.
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was less than 0.05. All methodologies were executed in adherence to the applicable guidelines and regulations., 
Clinical information on these participants is provided in Table 2. 

Cell culture and transfection
The human HT22 cells were acquired from iCell Bioscience, located in Shanghai, China. HT22 cells were culti-
vated in DMEM media (Gibico, USA) supplemented with 10% FBS (Gibico, USA). The overexpression vectors 
for SCG5 and MITF, as well as the empty control vectors, were acquired from Shanghai Genechem Co., Ltd. 

Figure 6.  Cerebrospinal fluid PCR expression of 14 genes in AD patients and healthy controls Highly expressed 
in AD are, CD38(N), MITF(M), SPHK1(L), BRCA1(F), NFKBIA (G). Lowly expressed in AD are, ATP6V1E1 
(A), SYT1 (B), LDHA (C), CCK (D), PAM (E), HPRT1 (H), SCG5 (I), ATP6AV1D (J), GOT1 (K).
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Lentiviral packaging was carried out using the GM easyTM kit from Genomeditech, Shanghai. HT22 cells were 
infected with lentivirus and then screened using puromycin-containing medium for subsequent cellular func-
tion experiments.

Effect of SCG5/MITF on HT22 cells
The cell proliferation capacity was assessed using the cell counting-8 (CCK8) assay. HT22 cells were divided 
into groups and seeded into 96-well plates, which were then placed in a cell culture incubator set at 37 degrees 
Celsius. After 24, 48, and 72 h of incubation, the absorbance of each well was measured by treating the cells with 

Figure 7.  Effects of SCG5 on the HT22 cell line (A) SCG5 gene expression was significantly higher in the SCG5 
gene over-expression group (oe-SCG5) than in the Over-expression negative control group (oe-NC). (B) THE 
CCK8 assay showed that the OD value at 450 nm was higher in the oe-SCG5 group than in the oe-NC group. 
(C) The migration ability of the oe-SCG5 group was higher than that of the oe-NC group in the Wound Healing 
experiment. (D) Staining of live and dead cells showed that the cell viability of the oe-SCG5 group was higher 
than that of the oe-NC group.
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CCK-8 solution for a duration of 2 h. The migratory ability of HT22 cells was assessed using a cell scratch assay, 
as reported in a previous  study25. Additionally, the vitality of HT22 cells was evaluated by staining to determine 
the impact of biomarker. A Live/Dead Cell kit (manufactured by YEASEN, China) was used. The cell viability of 
the HT22 cell line was evaluated using a Live/Dead Cell kit from YEASEN, China. The fluorescent microscope 
used to capture the images was from OLYMPUS, Japan.

Development of TF/miRNA-mRNA and lncRNA-miRNA-mRNA regulatory network
The Starbase was deployed to predict the target miRNAs of critical genes. Then the Starbase was employed 
to predict lncRNAs targeting the miRNAs and essential genes. The trust website (https:// www. grnpe dia. org/ 
trrust/) was then utilized to predict the transcription factors (TFs) regulating critical gene expression. The final 

Figure 8.  Effect of MITF on the HT22 cell line (A) MITF gene expression was significantly higher in the MITF 
gene overexpression group (oe-MITF) than in the Over-expression negative control group (the oe-NC). (B) 
THE CCK8 assay showed that the OD value at 450 nm in the oe-MITF group was lower than that in the oe-NC 
group. (C) The migration ability of the oe-MITF group was lower than that of the oe-NC group in the Wound 
Healing experiment. (D) Staining of live and dead cells showed that the cell viability of the oe-MITF group was 
lower than that of the oe-NC group.

https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/
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TF/miRNA-mRNA network and lncRNA-miRNA-mRNA network were constructed using Cytoscape software 
(version 3.8.2)26.

Development of gene-drug network
The drug-Gene Interaction database (DGIdb) predicted the drugs that targeted the essential genes. Cytoscape 
(version 3.8.2) was used to generate the final gene-drug network diagram.

Figure 9.  The regulatory network for biomarkers Constructing upstream regulation of final genes based on 
miRNA-mRNAs and TF-mRNAs.

Figure 10.  ceRNA regulatory network The lncRNA-miRNA-mRNA co-construction of the ceRNA regulatory 
network.
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Figure 11.  The drug-gene network for biomarkers Through the DGIdb database, 171 medications were aimed 
at 10 biomarkers.

Table 1.  Primers used for RT-PCR in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

GAPDH TGC ACC ACC AAC TGC TTA GC GGC ATG GAC TGT GGT CAT GAG 

CCK AGC TCC TTC TGG ACG AAT GTC TGT AGT CCC GGT CAC TTA TCC 

ATP6V1E1 AAC ATA GAG AAA GGT CGG CTTG GAC TTT GAG TCT CGC TTG ATTCA 

SYT1 GTG AGC GAG AGT CAC CAT GAG CCC ACG GTG GCA ATG GAA T

LDHA ATG GCA ACT CTA AAG GAT CAGC CCA ACC CCA ACA ACT GTA ATCT 

PAM TAC CAC CAG ACC CGT AGT TCC GTT TAG GTG TAA CCC CAG GCA 

HPRT1 CCT GGC GTC GTG ATT AGT GAT AGA CGT TCA GTC CTG TCC ATAA 

SCG5 GGG TCC TTT TGG CAA CAT CC CCC CTG ATC CTC ACT AAA GTCC 

ATP6V1D AGC AGG TGT TAC TTT GCC AGT AGT TCC ACC AGT AGT TCC ACT 

GOT1 ATG GCA CCT CCG TCA GTC T AGT CAT CCG TGC GAT ATG CTC 

NFKBIA CTC CGA GAC TTT CGA GGA AATAC GCC ATT GTA GTT GGT AGC CTTCA 

SPHK1 GCT CTG GTG GTC ATG TCT GG CAC AGC AAT AGC GTG CAG T

MITF CAG TCC GAA TCG GGG ATC G TGC TCT TCA GCG GTT GAC TTT 

BRCA1 GAA ACC GTG CCA AAA GAC TTC CCA AGG TTA GAG AGT TGG ACAC 

CD38 AGA CTG CCA AAG TGT ATG GGA GCA AGG TAC GGT CTG AGT TCC 

Table 2.  General clinical characteristics of the participants.

Samples gender age Sample type

AD M 65 peripheral blood

AD M 64 peripheral blood

AD F 58 peripheral blood

AD F 59 peripheral blood

AD M 63 peripheral blood

control F 59 peripheral blood

control M 58 peripheral blood

control M 62 peripheral blood

control F 63 peripheral blood

control F 63 peripheral blood
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Statistical analysis
The statistical investigation was performed utilizing the R programming language and SSPS.25 software. The Pro-
tein–Protein Interaction (PPI) network was built on STRING (https:// string- db. org)27 with combined_score > 0.4 
and enhanced by Cytoscape (version 3.8.2). The pROC  package28 calculated each gene’s ROC curve AUC. Data 
from different groups was compared using the Wilcoxon or student’s t-test. Unless otherwise stated, p-values 
below 0.05 were significant.

Ethics statement
This study was reviewed and approved by the Institutional Ethics Committee of Liaocheng Hospital, Shandong 
First Medical University (NO.2023039).

Discussion
The clinical significance of identifying genes associated with copper metabolism in AD lies in its potential for 
early intervention in AD. There has been a growing focus on the mechanisms implicated in copper metabolism 
and homeostasis in the development of AD. In the present investigation, a thorough bioinformatics analysis 
was performed to ascertain copper metabolism-related biomarkers that are linked to the progression of AD.

The results of functional enrichment analysis revealed that differentially expressed candidate genes associ-
ated with AD exhibited a notable pattern of increased expression as the disease progressed. These genes were 
primarily involved in biological processes related to reactive oxygen species metabolism, immune response, and 
neuronal apoptosis. The generation of reactive oxygen species (ROS) has the potential to induce impairment 
in mitochondrial function and diminish the effectiveness of antioxidant defense mechanisms. Consequently, 
these processes can have an impact on neuronal activity and contribute to cognitive dysfunction, which has been 
strongly associated with the progression of  AD29. Neuroinflammation is a characteristic pathological manifesta-
tion observed in AD, and the interplay between the central nervous system and the peripheral immune system 
has been linked to the initiation and progression of  AD30. The activation of Aβ has been observed to stimulate the 
intrinsic apoptotic pathway within mitochondria, resulting in the induction of neuronal apoptosis in both brain 
and neuronal  cultures31. Thus, it is postulated that the aforementioned genes might potentially play a role in the 
advancement of diseases via the biological mechanisms elucidated earlier. The downregulation of AD-associated 
DE-CMRGs, which are primarily linked to neurotransmitter transport-related biological processes, the synaptic 
vesicle cycle, and GABAergic synapse, is commonly observed during the progression of the disease. The dysregu-
lation of the aforementioned biological processes is intricately linked to the initiation and advancement of  AD32.

We found 14 copper metabolism-related biomarkers associated with AD progression, including CCK, 
ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, and GOT1, which decreased with disease severity 
and may inhibit AD progression. NFKBIA, SPHK1, MITF, BRCA1, and CD38 expression increased with disease 
severity, which may promote AD progression. CCK (cholecystokinin), a neuropeptide highly expressed in the 
cerebral cortex, is essential for learning and memory and involved in  neurodegeneration33. Our findings support 
previous research that CCK levels protect against  AD34. CCK is also important for AD hippocampal cognition, 
according to Liu et al.35. SYT1 (synaptotagmin 1) is involved in  neurotransmission36, and its C2B domain’s bind-
ing affinity to lipids is significantly affected by  Cu2+37 and also affects lipid  binding38. SYT1 is essential for the 
release of neurotransmitters from hippocampal neurons. Studies conducted on mice have shown that decreases 
in SYT1 result in impairments in the perception of importance and memory, which worsen the progression of 
Alzheimer’s  disease36. Increased expression of LDHA (lactate dehydrogenase A) in lactate production leads to 
resistance to Aβ and other  neurotoxins39. In a mouse model of AD, lactate deficiency damages  neurons40. LDHA 
may protect against AD progression, as shown by our findings. For amidated neuropeptide synthesis, PAM 
(peptidylglycine alpha-amidating monooxygenase) is a highly conserved copper-dependent  enzyme41. Wand 
et al. found reduced PAM in Alzheimer’s type dementia (DAT) patients’ cerebrospinal  fluid42. Only the temporal 
pole showed reduced PAM activity in AD patients compared to  controls42.

NFKBIA (NFKB inhibitor alpha), linked to immunity and inflammation, is elevated in  AD43,44 and may 
contribute to AD development by inhibiting the NF-κB signaling  pathway45. SPHK1 (sphingosine kinase 1) has 
been implicated in AD  pathogenesis46. Takasugi et al. found that SPHK1 inhibitors reduced Aβ  production47, 
while Ceccom et al. found that reduced SPHK1 expression in neurons was linked to decreased brain tissue in 
AD  patients47. Ceccom et al. found that decreased SPHK1 expression in neurons was linked to Aβ deposition in 
AD patients’ brain  tissue46,48. We found that SPHK1 expression was higher in HIP tissues of human AD patients 
than controls and increased with disease severity. This contradictory result suggests that SPHK1’s role may be 
cell- and tissue-specific and needs further study.

The BRCA1 (BRCA1 DNA repair associated) gene, which is involved in DNA repair, has been found to be 
linked to neuronal cell death in  AD49. Additionally, there is evidence suggesting that BRCA1 may play a role in 
regulating the re-entry of neuronal cells into the cell cycle in  AD50. The intricate involvement of CD38 in the 
processes of neurodegeneration and neuroinflammation has been elucidated in a study by Blacher et al.51. Notably, 
their findings demonstrate that CD38 deficiency in a mouse model leads to a reduction in AD  pathology52. These 
results align with our own research, indicating that CD38 serves as a contributing factor in the development 
and advancement of AD.

In line with prior  research53, the current study observed a decrease in HPRT1 and GOT1 levels in patients 
with AD. The potential processes behind this observation are discussed in another  study54. The absence of HPRT1 
leads to changes in mitochondrial energy metabolism in the  brain55. Inhibiting GOT1 reduces mitochondrial 
metabolism and induces a catabolic state. The expression of ATP6V1E1 and ATP6V1D is decreased in Alzhei-
mer’s disease, and their function may be linked to abnormal lysosomal  activity56,57. Currently, the involvement 
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of SCG5 and MITF in AD remains unreported. This study is the first to identify them as potential biomarkers 
for AD progression. To confirm this, we conducted PCR experiments using clinical samples.

We have developed upstream regulatory networks, including TF/miRNA-mRNA and lncRNA-miRNA-mRNA 
networks, to explore the relationship between identified biomarkers and disease progression. These networks 
serve as a foundation for future investigations into the underlying mechanisms of these genes in AD.

CAPSAICIN, a SCG5-targeting compound, was tested in mice and rats to reduce stress-induced AD-like 
pathology and cognitive  impairments58. Findings suggest CAPSAICIN may be a promising AD treatment. The 
authors’  study59 found that inhibiting DIOSCIN on NFKBIA reduces neurotoxicity from Aβ1-42 oligomers, 
reducing neuronal damage and mortality in Alzheimer’s disease patients. DIOSCIN may reduce Alzheimer’s 
symptoms. A study found that it regulates RAGE/NOX4-mediated oxidative stress and inflammation  pathways60. 
Tanshinone IIA sulfonate, targeting BRCA1, improves cognitive function by modulating Aβ transport in trans-
genic mouse models of  AD61,62. It also reduces scopolamine-induced cognitive dysfunction by improving the 
cholinergic  system63. It has been established that RESVERATROL exhibits a specific affinity towards BRCA1 and 
possesses antioxidant and anti-inflammatory properties. Furthermore, this compound exhibits neuroprotective 
properties, potentially reducing Aβ toxicity and  aggregation64. Song et al. found that targeting CALYCOSIN to 
BRCA1 may improve cognitive function in transgenic Alzheimer’s mouse models. This improvement comes from 
protein kinase C activation. In a mouse model, early intrathecal infusion of BRCA1-targeted EVEROLIMUS 
restores cognitive function and mood in AD mice. BRCA1-targeted APIGENIN has neuroprotective, anti-amy-
loidogenic, and neurotrophic effects in a mouse model of AD, according to a peer-reviewed  study65. EMODIN 
targeting BRCA1 can activate the protein kinase C signaling pathway to reduce  AD66. A recent study found that 
EMODIN can delay amyloid-β peptide 1–42 aggregation and enhance cognitive function in transgenic mice 
with  AD67. Chen et al.68 found that ONONIN, which targets the BRCA1 gene, protected rats with aluminum 
chloride-induced AD. Thus, the proposed therapeutic agents have promising AD treatment and prevention.

The present study is subject to certain limitations. This study employs a retrospective analysis of data from 
public sources, supplemented by clinical samples and cellular function investigations to enhance the credibility 
and substantiation of our analysis. Nevertheless, this investigation encompassed a limited quantity of clinical 
samples, necessitating comprehensive clinical trials in order to subsequently validate the findings. In conclusion, 
we have identified for the first time copper metabolism-related biomarkers associated with AD disease progres-
sion, providing a basis for further understanding of the molecular mechanisms of the disease, as well as targets 
for clinical treatment and prevention of the disease.

Data availability
The datasets utilized in this investigation are accessible through online repositories. The repository/repositories’ 
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