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Abstract
Objectives: Visual inspection with acetic acid (VIA) is a low-cost approach for 
cervical cancer screening used in most low- and middle-income countries (LMICs) 
but, similar to other visual tests, is subjective and requires sustained training and 
quality assurance. We developed, trained, and validated an artificial-intelligence-
based “Automated Visual Evaluation” (AVE) tool that can be adapted to run on 
smartphones to assess smartphone-captured images of the cervix and identify 
precancerous lesions, helping augment VIA performance.
Design: Prospective study.
Setting: Eight public health facilities in Zambia.
Participants: A total of 8204 women aged 25–55.
Interventions: Cervical images captured on commonly used low-cost smart-
phone models were matched with key clinical information including human 
immunodeficiency virus (HIV) and human papillomavirus (HPV) status, plus 
histopathology analysis (where applicable), to develop and train an AVE algo-
rithm and evaluate its performance for use as a primary screen and triage test for 
women who are HPV positive.
Main Outcome Measures: Area under the receiver operating curve (AUC); sen-
sitivity; specificity.
Results: As a general population screening tool for cervical precancerous lesions, 
AVE identified cases of cervical precancerous and cancerous (CIN2+) lesions 
with high performance (AUC = 0.91, 95% confidence interval [CI] = 0.89–0.93), 
which translates to a sensitivity of 85% (95% CI = 81%–90%) and specificity of 86% 
(95% CI = 84%–88%) based on maximizing the Youden's index. This represents a 
considerable improvement over naked eye VIA, which as per a meta-analysis by 
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1   |   BACKGROUND

Each year, cervical cancer kills more than 300,000 
women, with most deaths occurring in low- and middle-
income countries (LMIC) where the prevention and 
therapeutic infrastructure is extremely limited.1,2 When 
screenings are conducted, Visual Inspection with Acetic 
Acid (VIA) is the most commonly used screening tool 
for the detection of precancerous lesions; however, it is a 
relatively inaccurate method with significant heteroge-
neity of performance across providers, with sensitivity 
ranging from 22% to 91% and specificity ranging from 
47% to 99% in published studies.3 Widespread use of 
VIA is largely due to its low cost, immediate results, and 
the perceived simplicity with which it can be adminis-
tered, even in rural areas. It also facilitates same-visit 
treatment of precancerous lesions. For these reasons, it 
has been integrated into many national cervical cancer 
screening efforts.

The 2021 World Health Organization (WHO) cervical 
cancer screening and treatment guideline recommends 
the use of human papillomavirus (HPV) DNA testing as a 
primary screening method where feasible. With a negative 
predictive value close to 100%,4 a negative HPV DNA test 
result offers considerable assurance that a woman will not 
soon develop precancerous lesions, lengthening the in-
tervals for when women need to return for re-screening. 
Women can also collect their own samples through a 
vaginal swab, avoiding the need for a pelvic exam with a 
speculum. However, HPV tests are not currently afford-
able for widespread use in most low-income countries, 

and practical point-of-care HPV testing solutions are 
not yet available, posing major barriers to scale-up and 
sustainability.

VIA can be used by providers to determine whether 
women who test HPV positive from both the general pop-
ulation and those living with HIV should be treated and/or 
what type of treatment is appropriate. Thus, whether for 
screening or for determining appropriate action following 
a different screening test, visual evaluation will remain a 
fundamental component of national screening and treat-
ment programs in LMICs for the foreseeable future, espe-
cially as local governments and their global public health 
partners work to scale up secondary prevention services 
to accelerate the elimination of cervical cancer as a public 
health problem. Still, for visual evaluation to achieve its 
intended impact at sustained scale, innovation is needed 
to improve accuracy and reliability.

A proposed screening method termed Automated 
Visual Evaluation (AVE), which uses a machine learning 
algorithm to analyze an image of the cervix and provides 
a result indicating whether precancerous lesions are likely 
present or absent, has the potential to fill this gap. To use 
AVE as described here, a provider takes a picture of the 
cervix using a standard smartphone, runs the algorithm on 
the mobile phone processor, and then receives a “positive” 
or “negative” result in less than 1 min. AVE is intended as 
a decision-making aid to assist providers conducting VIA.

Results published in 2019 of an AVE algorithm 
trained and tested on data from a longitudinal study 
in Costa Rica demonstrated the proof of principle for 
AVE5 with an area under the curve (AUC) of 0.91, which 

the World Health Organization (WHO) has a sensitivity of 66% and specificity of 
87%. For women living with HIV, the AUC of AVE was 0.91 (95% CI = 0.88–0.93), 
and among those testing positive for high-risk HPV types, the AUC was 0.87 (95% 
CI = 0.83–0.91).
Conclusions: These results demonstrate the feasibility of utilizing AVE on im-
ages captured using a commonly available smartphone by nurses in a screening 
program, and support our ongoing efforts for moving to more broadly evaluate 
AVE for its clinical sensitivity, specificity, feasibility, and acceptability across a 
wider range of settings. Limitations of this study include potential inflation of 
performance estimates due to verification bias (as biopsies were only obtained 
from participants with visible aceto-white cervical lesions) and due to this being 
an internal validation (the test data, while independent from that used to develop 
the algorithm was drawn from the same study).
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translated into an estimated sensitivity of 97.7% and 
specificity of 84% in identifying precancerous lesions 
and cancer (cervical intraepithelial neoplasia grade 2 
or greater; “CIN2+”) among women aged 25–49 years 
old. The accuracy of the AVE algorithm proved supe-
rior to clinical opinion or conventional cytology; how-
ever, generalizability of the Guanacaste study is limited 
by the relative homogeneity of the dataset. All women 
tested were from Costa Rica, which has a significantly 
lower HIV prevalence than other LMICs, particularly in 
Africa. Further, the Guanacaste analysis was performed 
using high-quality images of standard angle, light, and 
focus, captured by a small team of highly trained nurses 
using a cerviscope—a fixed-focus, ring-lit film camera 
that has since been discontinued. To be used at scale, an 
AVE algorithm would need to work on a more manage-
able and affordable device, and on images captured by 
health workers with a range of experience and training 
levels.

This article describes the results of our effort to adapt 
AVE for use on a commercially available and affordable 
smartphone, with the machine learning training, valida-
tion, and testing of AVE using smartphone images col-
lected by providers from women in Zambia. An approach 
combining AVE and HPV genotyping, based on a subset of 
the data from this same study, was previously published.6

2   |   MATERIALS AND METHODS

2.1  |  Clinical methods

Our study was nested within Zambia's public sector cer-
vical cancer prevention service platform. Zambia was 
chosen as the site for this study based on the presence of 
sophisticated clinical and patient management infrastruc-
ture—the product of a 15-year investment by the Zambia 
Ministry of Health (MOH), local partners, and external 
donors, including the US President's Emergency Plan for 
AIDS Relief (PEPFAR). Details on this infrastructure, 
including the use of “digital cervicography” (DC) as an 

adjunct to VIA (DC-VIA), which has shown improvement 
in sensitivity over VIA alone7 and allowed task-shifting 
from gynecologists to nurses and clinical officers,8 are pro-
vided in Supplement S1.

The study was designed to collect at least 750 
histopathology-confirmed patient images of precancer. 
While it is difficult to estimate how much data is needed 
to train and validate a machine learning algorithm, this 
was estimated to both be a sufficient target for this pur-
pose based on prior work5 as well as an obtainable target 
based on clinic throughput. Because precancerous lesions 
are relatively rare, nesting the study in nurse-led clinics 
in which same-day “screen-treat” services included elec-
trical excision procedures (loop electrosurgical excision 
procedure (LEEP)/large loop excision of the transforma-
tion zone (LLETZ)) allowed us to meet the target number 
of CIN2+ images. In the study, more than 8000 women 
were prospectively recruited from among a population of 
women receiving routine care from one of eight public 
health facilities, seven in Lusaka and one in Kitwe, during 
the period of October 2019 through December 2021. The 
women were eligible to participate if they were aged 
25–55 years (age range recommended for cervical cancer 
screening by the MOH) and able to understand and will-
ing to sign a written informed consent form. Women were 
excluded if they were pregnant or had a history of hyster-
ectomy, trachelectomy, or treatment of cervical precancer 
or cancer. Women were enrolled consecutively at each site.

The patient workflow is depicted in Figure  1. After 
eligibility and consent were confirmed, study partic-
ipants were offered HIV and HPV testing. Following 
HPV sample collection using the COPAN FLOQSwab, 
cervical cancer screening was performed using DC-
VIA in accordance with guidelines established for the 
government-operated “screen and treat” clinics. For DC-
VIA, the cervix was lavaged with a cotton swab soaked 
in 5% acetic acid by nurse-providers. After a waiting 
period of 2–3 min, an image of the cervix was obtained 
using a digital camera, then magnified to (1) identify the 
transformation zone (TZ) type, (2) determine the pres-
ence and characteristics of aceto-white lesions, and (3) 

F I G U R E  1   Participant workflow.
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decide the appropriate form of management. The digital 
camera cervical image was then shown to and discussed 
with the participant along with the recommended man-
agement plan.

For this study, with a goal to train the AVE algorithm 
only and not for informing clinical care decisions, addi-
tional images of the cervix (typically three images per 
participant) were obtained with a smartphone in quick 
succession after the digital camera image was captured. 
Two smartphone models, the Samsung Galaxy J8 and 
Samsung Galaxy A21s, readily accessible and affordable in 
Zambia at the time of data collection, were used to collect 
these images. A commercially available smartphone app- 
Box.​com—was used to capture and store the images on the 
smartphones. Typically, only one model of smartphone 
was used for each participant, but some participants had 
images captured by providers using both models during 
the transition period while switching phone models. 
When lesions were identified, participants were treated 
in line with the Zambia MOH cervical cancer screening 
guidelines, as summarized in Figure 1. Specifically:

1.	 Participants whose transformation zones (TZ) and any 
aceto-white lesions, if present, were purely ectocervical 
(TZ type l), occupied less than three-fourth of the 
transformation zone, and without features of invasive 
cancer, were offered ablative therapy using thermal 
ablation, performed using the Liger handheld cordless 
coagulator.9

2.	 Participants whose transformation zones extended into 
the endocervical canal (TZ type ll/lll) or whose lesions 
occupied more than three-fourth of the transformation 
zone, were offered LEEP/LLETZ.10

3.	 For participants whose lesions were suspicious for can-
cer, a punch biopsy was performed, and participants 
were referred to the Gynecological Oncology Unit at 
UTH-WNH.

As an additional study procedure, a punch biopsy was 
performed prior to ablation on all women with aceto-
white lesions and eligible for ablative therapy.

For our study reference, we leveraged cervical histopa-
thology to confirm the presence of cervical precancerous 
lesions. Biopsy samples were taken from all women who 
screened positive on DC-VIA. Histopathologic analysis was 
performed on all tissue (punch biopsy and LEEP/LLETZ) 
specimens, with results reported as normal, benign lesion, 
CIN1, CIN2, CIN3, micro-invasive cancer, or invasive can-
cer. Study participants found to have invasive cancer on 
histopathology were referred to the Gynecologic Oncology 
Unit of University Teaching Hospitals (UTHs)—Women 
and Newborn Hospital in Lusaka for appropriate staging 
and treatment. For all study participants, screening (and 

treatment, if applicable) was followed up with routine 
screening services in the same government-operated clin-
ics, per the routine standard of care.

HPV testing was performed with the Beckton Dickinson 
(BD) Viper LT system, using the BD Onclarity™ HPV 
Assay as per manufacturer's specifications and standard-
ized performance instructions. The BD Onclarity™ HPV 
Assay is an automated laboratory test that detects DNA 
(deoxyribonucleic acid) from 14 high risk HPV types that 
are associated with cervical cancer. The test specifically 
identifies HPV types 16, 18, 31, 45, 51, and 52 while con-
currently detecting types 33/58, 35/39/68, and 56/59/66. 
For the purpose of this analysis, the results were classified 
as being high-risk positive or negative. The assay was per-
formed at the Women's and Newborn Hospital/University 
of North Carolina HPV Laboratory located on the campus 
of UTH.

The study protocol was reviewed and approved by 
the University of Zambia Biomedical Research Ethics 
Committee, Zambian National Health Research Agency, 
and the University of North Carolina Institutional Review 
Board, in addition to scientific and programmatic reviews 
by various committees at funding agencies. All study par-
ticipants provided written informed consent. Women who 
declined or were unable to provide written informed con-
sent were offered screening and treatment for precancer-
ous lesions in line with the standard of care in Zambia. 
This study was designed to collect data for training an AVE 
algorithm as well as evaluating the performance of the al-
gorithm; as diagnostic accuracy is evaluated, this study 
is being reported in accordance with the Standards for 
Reporting Diagnostic accuracy studies (STARD) checklist 
(STARD supplement checklist).11

2.2  |  Machine learning methods

Machine learning leverages the abilities of computers to 
analyze large datasets and draw conclusions from pat-
terns. To train an AVE algorithm to recognize cervical 
precancer cases accurately, thousands of images repre-
senting control status or histopathology-confirmed case 
status were presented to the algorithm. To diagnose cer-
vical precancer and cancer, histopathology is considered 
the gold standard test. The inputs to train our AVE model 
included the set of cervical images and the ground truth 
label for each image. The ground truth label was a binary 
input—case versus control—with case representing CIN2, 
CIN3, or cancer (“CIN2+”) and control representing im-
ages that had a histopathology result less severe than 
CIN2 (“< CIN2”) or images that were negative on DC-VIA 
(and therefore represent participants who did not receive 
a biopsy).

http://box.com
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Smartphone images were labeled with the study ID 
(and no other identifiers) and uploaded directly from the 
smartphones to our study's machine learning team via 
the Box.​com App. Linked, de-identified participant data 
with key demographic and clinical details (age, HIV sta-
tus, DC-VIA result, HPV test result, histopathology result 
if applicable) were shared electronically with the machine 
learning team via Excel files.

Our study objective was to train, validate, and test an al-
gorithm with high discrimination between cases and con-
trols. This paper details the AVE algorithm developed and 
tested using images from the Samsung A21s smartphone 
model. As detailed in Figure 2, participants were excluded 
if they (1) did not have a good quality A21s smartphone 
image, defined as an in-focus image of the cervix based on 
manual annotation following previously published guide-
lines,12 or (2) had screened positive but did not have a 
histology result. This resulted in 13,484 A21s images, rep-
resenting 5188 participants. These A21s images comprise 
the data set used for the training and evaluation of AVE 
algorithm reported here. The Samsung J8 images were 
used in preliminary development as described later in this 
section and in the supplementary.

In line with standard machine learning procedures, 
images were divided into a training set (65% of images), 
validation set (10% of images) and test set (25% of images) 

randomly. This division was done at the participant level, 
such that if a participant had more than one image in the 
database all such images were put into the same set (train-
ing, validation, or test) to prevent data leakage.

The machine learning methods used in this study 
match the methods previously reported in Hu et  al.,12 
which showed that the AVE cervical precancerous lesion 
detection algorithm can be refactored to run on the limited 
computing power of a smartphone with minimal impact 
on performance using the RetinaNet framework.13 A key 
difference between the two studies is that the work pre-
sented here is based on smartphone images whereas the 
prior Hu et al.12 work was based on digitized cervigram 
images. Other differences include our study rescaling the 
images to a width of 900 pixels and height of 1200 pixels 
(with most images maintaining the original aspect ratio) 
and selecting a learning rate of 2e-5.

Another significant difference involved our experi-
menting with different subsets of cases and controls used 
for training the AVE algorithm. Each image is linked 
to the corresponding HPV test result, VIA result, and 
(where applicable) histology result. Based on these test 
results, participants can be divided into several distinct 
categories. For our study, participants were divided into 
the categories shown in Table  1. For example, a study 
participant with an HPV negative and VIA negative 

F I G U R E  2   Participants and training/
test splits.

Total enrolled participants

(N=8204)

Participants with either A21s
or J8 images that are good

quality (N=7396)

Participants with usable A21s
Images with known severity

(N=5188, 13484 Images)

Participants with no images
(N=272)

Participants with mismatched
images (N=27)

Participants with images on a
different device (N=201)

Participants with images that do
not meet image quality criteria

(N=308)

Participants with only J8
images (N=2138)

< CIN2 Controls
(N=4360, 11262

images)

CIN2+ Cases (N=828,
2222 images)

Participants with A21s images
(N=5258, 13677 images)

Participants with unknown
severity (VIA+, no histology,

N=70)

HPV-, VIA- Clean
Controls (N= 2276, 5878

images)

Training Set (N=1975;
1442 controls, 533

cases)

Validation Set (N=312;
233 controls, 79 cases)

Test Set (N=1362; 1146
controls, 216 cases)

http://box.com
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result was labeled as “Category 1a” and a study partici-
pant with histology CIN3 was labeled as “Category 3b.” 
While the overall target of our AVE model is to separate 
all CIN2+ subjects from all <CIN2 subjects, this finer 
categorization allows training models using specific cat-
egories, as described below. It also allowed us to estimate 
performance in different settings such as general popula-
tion screening or HPV triage. It is possible that this finer 
categorization might enable training multiclass (rather 
than binary) models, and even finer subcategorization, 
for example through stratification of study participants 
by HPV genotype, is possible, but our current study did 
not explore these.

During initial model development, we trained binary 
models on the Samsung J8 images splitting the con-
trols and cases in several different ways, as described in 
Supplement S2. Each model used a different definition of 
case versus control during the training and validation pro-
cess. Importantly, while not all categories of images were 
used in the training and validation sets, all categories were 
used in the test set to assess each model's ability to dis-
tinguish CIN2+ from <CIN2 across a full range of poten-
tial disease states. The categorization split producing the 
model that performed best (defined as the highest AUC) 
on a Samsung J8 test set was that in which training con-
trols were limited to HPV− and DC-VIA− images (cate-
gory 1a) and the training cases included all CIN2+ images 
(categories 3 and 4). This same split across categories was 
then used to train models with Samsung A21s images.

To explore device portability of the AVE models (how 
well a model trained on data from one device performs on 
data from another device), we evaluated the performance 
of models trained with J8 data only, A21s data only, and 
combinations of varying amounts of J8 and A21s data on 
the test sets from each smartphone. This work is described 
in detail in Supplement S3.

2.3  |  Analysis

We analyzed results on Samsung A21s images to support 
subsequent AVE validation studies on that device.

The primary measure of diagnostic accuracy is the 
Receiver Operating Characteristic (ROC) curve and its 
summary statistic, area under the curve (AUC).

AVE's sensitivity is defined as:

AVE's specificity is defined as:

*Reference negative is defined as EITHER histopathology 
result of no precancer/cancer (i.e., <CIN2) OR DC-VIA-
negative screening result. This consists of the entirety of cat-
egories 1 and 2 from Table 1.

Study participants with a DC-VIA-positive result, but 
lacking a histopathology result, were not included in the 
AVE test set and performance analysis. Participants with-
out an HPV result or VIA result were included in the AVE 
test set and performance analysis when a histopathology 
result was available.

AVE is intended as a primary screening tool or as a tri-
age test for women who are HPV-positive. Our training 
and testing data from Zambia were enriched with data 
from patients that underwent LEEP/LLETZ based on an 
initial screen. This was designed to help our study team 
collect a sufficient absolute number of images of CIN2+ 
to train the AVE algorithm. However, it also resulted in an 
image set with higher severity relative to a typical screen-
ing setting. In response, we “rebalanced” our test set to 
enable an accurate measure of AVE's performance in a 
primary screening or HPV+ triage setting that would be 
most typical for the geographies where AVE is intended to 
be used. See Supplement S4 for a description of this rebal-
ancing process.

We also analyzed the results of AVE to validate differ-
ent use cases; specifically, the use of AVE as a triage test for 
women who are HPV positive and the use of AVE among 

Number of histopathology CIN2 + participants identified as AVE positive

Number of histopathology CIN2 + participants

Number of reference negative∗ participants identified as AVE negative

Number of reference negative∗ participants

T A B L E  1   Participant categorizations.

1 Normal

1a [HPV−, VIA−]

1b [HPV−, VIA+, histology normal]

2 Low risk

2a Low risk due to HPV only

2a.1 [HPV+, VIA−]

2a.2 [HPV+, VIA+, histology 
normal]

2b Low risk due to histology only: [HPV−, CIN1]

2c Low risk due to HPV and histology: [HPV+, 
CIN1]

3 Precancer

3a CIN2

3a.1 CIN2, HPV+

3a.2 CIN2, HPV−

3b CIN3

3b.1 CIN3, HPV+

3b.2 CIN3, HPV−

4 Cancer
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WLWH. Tables 2 and 3 show the number of participants 
and images in the test sets for each of these use cases.

3   |   RESULTS

3.1  |  Clinical results

Of the 8204 women aged 25–55 who were screened with 
HPV testing and DC-VIA, 4390 (54%) were HIV positive; 
3388 (44%) were positive for HPV; and 3149 (38%) were 
positive on DC-VIA. 28.8% of participants were under 
30 years old, 36.6% were between 30 and 39, 27.6% were 
between 40 and 49, and 7.1% were above 49 years old. Of 
the participants who were DC-VIA-positive, 1024 (33%) 
women were treated with thermal ablation and 1807 (57%) 
were treated with excision. (A further 318 women (10%) 
were suspicious for cancer at the time of screening and 
referred to Gynecologic Oncology Unit at UTH-Women 
and Newborn Hospital for further evaluation and cancer 
treatment, as required.) Of the 3121 women who under-
went histopathology analysis, 817 (26%) were negative; 
566 (18%) had CIN1; 1337 (43%) had CIN2/3; 345 (11%) 
were found to have invasive cervical cancer; and 56 (2%) 
had unsatisfactory or invalid histopathology results.

3.2  |  Machine learning results

We evaluated the accuracy of the AVE algorithms trained and 
tested using Samsung J8 images with various categorization 
splits (as described in the methods section and Supplement 
S2), for the detection of CIN2+ using Area Under the 
Receiver Operating Characteristic Curve (AUC). The AUCs 

of the relevant J8 algorithms are shown in Supplement S2 
and based on this, the final model utilizing A21s images was 
trained on a split with A21s case images consisting of all 
CIN2+ categories, but A21s control images were limited to 
participants testing negative on DC-VIA and HPV test.

At the image level, the AUC of the model trained on 
A21s images when tested on the A21s test set was 0.91 (95% 
CI = 0.90–0.92). To get participant-level predictions, we 
chose the image with a predicted confidence score closest to 
zero (if the image was detected as normal cervix) or one (if 
the image was detected as precancerous cervix) for each par-
ticipant. In other words, we chose the image with the “max-
imum confidence.” We applied this method to the test set 
predictions, achieving a participant-level AUC of 0.91 (95% 
CI = 0.89–0.92). This method represents a scenario in which 
up to three images are captured from each subject and used 
in evaluation. We also explored the consistency of the out-
put for each image. For participants in the test set with at 
least two suitable images, there was agreement of the pre-
cancer classification for all images for 88% of participants.

We then adapted the test set results to the general popula-
tion setting, described in more detail in Supplement S4. This 
resulted in a participant-level AUC of 0.91 (95% CI = 0.89–
0.93), with the threshold based on maximizing Youden's 
index resulting in sensitivity of 85% (95% CI = 81%–90%) and 
specificity of 86% (95% CI = 84%–88%). We also evaluated per-
formance among women testing positive for high-risk HPV, 
achieving an AUC of 0.87 (95% CI = 0.83–0.91), and among 
WLWH, achieving an AUC of 0.91 (95% CI = 0.88–0.93). The 
ROC curves for general population screening, HPV triage, 
and among WLWH settings are shown in Figure 3.

The results of the device portability experiments are 
presented in Supplement  S3. Briefly, the model trained 
with only A21s data that produces an AUC of 0.91 on the 
A21s test set produces an AUC of 0.79 on a J8 test set, and 
a model trained with only J8 data produces an AUC of 
0.83 on the A21s test set. Adding training data for the de-
vice under test (“primary device”) improves the AUC, as 
expected, and less data from the primary device is needed 
if accompanied by data from a secondary device than if 
limited to only data from the primary device. For exam-
ple, when evaluating A21s as the primary device, the same 
AUC (0.87) is achieved with 790 A21s training images as 
with 1041 J8 images plus 197 A21s training images.

4   |   DISCUSSION

In this work, we developed AVE, an AI-based algo-
rithm that can be adapted for running on a smartphone 
that can detect CIN2+ precancerous lesions on images 
of the cervix captured with low cost, commonly avail-
able smartphones. The study demonstrated that the 

T A B L E  2   Participants and image count of the AVE test set by 
HPV status.

HPV status
Number of 
participants

Numbers of 
images

HPV negative 715 1825

HPV positive 516 1292

HPV unknown 131 344

T A B L E  3   Participants and image count of the AVE test set by 
HIV Status.

HIV status
Number of 
participants

Number of 
images

HIV negative 607 1480

HIV positive 733 1932

HIV unknown 22 49
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performance of AVE for primary cervical cancer screen-
ing was high as a primary screening method for all 
women (AUC = 0.91, 95% CI = 0.89–0.93) and WLWH 

(AUC = 0.91, 95% CI = 0.88–0.93) and was also high 
when used as a triage when women screening positive 
for high-risk HPV (AUC = 0.87, 95% CI = 0.83–0.91). 
These results underscore AVE's potential as a highly ac-
curate, accessible tool for screening precancerous cer-
vical lesions and the technology's broader potential to 
help accelerate the Global Strategy to Eliminate Cervical 
Cancer as a Public Health Problem.14

AVE-assisted VIA holds promise as an effective pri-
mary screening tool within geographies where HPV test-
ing is not yet available to all women in need of screening. 
With a sensitivity of 85% (CI = 81%–90%) and specificity 
of 86% (CI = 84%–88%) at a threshold that maximizes the 
Youden's index, the AVE algorithm represents a consider-
able improvement in sensitivity over VIA alone that has 
been reported to have a sensitivity of 66% (95% CI: 61%–
71%) in WHO's meta-analysis, with “extreme heterogene-
ity” in reported results across studies (22%–91%).3 If the 
use is further clinically validated, the use of AVE-assisted 
VIA as a primary screening test may enable women to be 
screened and treated for precancerous lesions by a more 
reliable and objective test in a single visit, a critical element 
of woman-centered care that increases the likelihood that 
women in need of treatment can access it. AVE-assisted 
VIA can also be used as a triage test for women who are 
HPV-positive in countries that use a “screen-triage-treat” 
approach with HPV screening as the primary test.

This study, focused on data collected from experienced 
clinicians in Zambia, was an important first step to develop 
the algorithm from a clinical environment representing the 
proposed use case. It is important to highlight that the re-
sults presented are from internal validation, i.e. the reported 
results are based on testing the algorithm on a holdout test 
set drawn from the same study population as the training 
data. External validation of the AVE algorithm, i.e. testing 
on data from a different study populations and settings, is 
needed to fully understand the generalization performance 
of the algorithm. Prior work has shown that performance 
typically drops in external validation.15 While we do not 
have data to suggest that cervical appearance varies based 
on women's ethnicity, race, or geography of origin, previ-
ous research has shown that the prevalence of underlying 
conditions with the potential to affect cervical appearance 
– such as female genital schistosomiasis and chronic cer-
vicitis – can vary by setting. Clinic environments, such as 
variations in lighting, exam room set-up, quality of acetic 
acid, and provider skill, may also vary by setting and could 
potentially affect algorithm performance.

An additional limitation is the likelihood of verifica-
tion bias since histopathological results are only available 
from women who screened positive by DC-VIA, thus all 
women who screened negative on DC-VIA are assumed 
to be negative for CIN2+ for this work. Although DC-VIA 

F I G U R E  3   ROC curves of A21s AVE model for participant 
level of (A) general population screening AUC = 0.91; (B) HPV+ 
triage population screening AUC = 0.87 and (C) population 
screening for WLWH AUC = 0.91.
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has shown higher sensitivity than VIA alone,7 the possi-
bility of incomplete disease ascertainment cannot be elim-
inated. This limitation means the sensitivity estimates 
reported here are likely inflated.16 In a follow-up study 
in which all HPV-positive women are referred to histo-
pathology (unpublished, analysis is ongoing) there is ev-
idence of decreased AVE sensitivity due to VIA-negative, 
histopathology-confirmed precancers.

Future versions of AVE with additional optimizations 
are also under development. This work presents the re-
sults of an object detection model that is configured to 
produce a binary output: positive or negative for cervical 
precancer/cancer, a result more suitable for frontline pro-
viders. Other algorithm approaches (such as multiclass, 
Bayesian, or evidential models) exist and may be bene-
ficial, potentially combined with an additional test like 
HPV testing, to better stratify individuals by risk level.6,15 
In addition, it may be feasible, for example, to develop an 
additional algorithm that can determine eligibility for ab-
lative vs. excisional treatment, based on the anatomy of 
the cervical transformation zone and the position and size 
of any lesions. An algorithm to assess image quality could 
eliminate the manual review of images to filter those that 
do not contain an in-focus cervix.

Device portability of AVE algorithms is still an unsolved 
problem as both our results and prior work6,15 suggest 
that training data from a new device is needed to optimize 
performance on that device. This is particularly challeng-
ing for smartphones which have relatively short lifespans. 
Ongoing efforts are underway to explore the feasibility of 
porting an algorithm to a new smartphone and whether 
the required number of training images per device de-
creases as additional device types are included in training. 
Alternatively, a dedicated medical device with fixed imag-
ing hardware and longer production cycle could help ame-
liorate this problem, provided it remains affordable.

While further development and validation is needed to 
address the limitations described above (some of which are 
being evaluated in a larger follow up study, the results of 
which are undergoing analysis), AVE holds enormous poten-
tial for improving the accuracy and consistency of visual in-
spection for precancerous cervical lesions. It could help shape 
a paradigm shift in the effort to screen and treat women be-
fore cervical cancer develops, particularly in LMICs.
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