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A B S T R A C T   

This study analyzed spatiotemporal variation and long-term trends in water quality indicators and 
trophic state conditions in an Asian temperate reservoir, Juam Reservoir (JR), and developed 
models that forecast algal chlorophyll (CHL-a) over a period of 30 years, 1993–2022. The analysis 
revealed that there were longitudinal gradients in water quality indicators along the reservoir, 
with notable influences from tributaries and seasonal variations in nutrient regimes and sus-
pended solids. The empirical model showed phosphorus was found to be the key determinant of 
algal biomass, while suspended solids played a significant role in regulating water transparency. 
The trophic state indices indicated varying levels of trophic status, ranging from mesotrophic to 
eutrophic. Eutrophic states were particularly observed in zones after the summer monsoons, 
indicating a heightened risk of algal blooms, which were more prevalent in flood years. The 
analysis of trophic state index deviation suggested that phosphorus availability strongly in-
fluences the reservoir trophic status, with several episodes of non-algal turbidity at each site 
during Mon. Increases in non-algal turbidity were more prevalent during the monsoon in flood 
years. This study also highlighted overall long-term trends in certain water quality parameters, 
albeit with indications of shifting pollution sources towards non-biodegradable organic matter. 
According to the machine learning tests, a random forest (RF) model strongly predicted CHL-a 
(R2 

= 0.72, p < 0.01), except for algal biomass peaks (>60 μg/L), compared to all other 
models. Overall, our research suggests that CHL-a and trophic variation are primarily regulated 
by the monsoon intensity and predicted well by the machine learning RF model.   

1. Introduction 

Reservoirs are crucial freshwater sources because they serve multiple functions, including drinking water supply, hydropower 
generation, flood control, and recreational activities [1]. However, human activities such as industrialization, urbanization, and 
intensive agriculture in catchment areas have led to disturbances impacting the water quality of lentic ecosystems like lakes and 
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reservoirs [2]. Among the challenges these systems face, nutrient enrichment stands out, resulting in eutrophication and diminished 
water quality [3]. Both anthropogenic discharges and internal processes contribute to this issue, fostering excessive algal growth [4,5]. 
Hence, monitoring water quality in artificial reservoirs becomes imperative to comprehend nutrient dynamics and accurately predict 
algal biomass. 

Eutrophication management primarily relies on empirical models that establish the relationship between nutrients (nitrogen and 
phosphorus (P)) and algal chlorophyll (CHL-a) levels [6,7]. While some models focus on individual lentic systems [8–10], others 
encompass broader datasets covering numerous lakes at national and regional levels [7,11,12]. The positive relation between nutrients 
and CHL-a underscores the significance of P-loading, mainly associated with anthropogenic pollution sources, to mitigate excessive 
algal biomass and manage eutrophication [4,6,13]. However, empirical relationships between P and CHL-a can vary due to 
geographical location, land use, reservoir morphology, and climatic region [14–18], as well as local moderating factors such as light 
availability, grazing pressure, water temperature (WT), and water transparency [19–23]. 

Trophic state classification is fundamental for assessing reservoir health and eutrophication impact on water quality. Various 
concentration criteria and trophic state indices are employed for this purpose at regional and global scales [24,25]. The Trophic State 
Index (TSI) by Carlson [24] stands out as one of the widely used methods, utilizing parameters like total P (TP), CHL-a, and Secchi 
depth (SD) to categorize reservoirs into oligotrophic, mesotrophic, eutrophic, and hypereutrophic states. These classifications are 
pivotal for developing predictive eutrophication models to curb algal blooms and identify causative factors. Also, a two-dimensional 
graphical approach based on the trophic state index deviation (TSID) can provide important insight into the spatial and seasonal 
changes in nutrient levels, light availability, and zooplankton grazing that potentially influence algal growth seasonally and spatially 
[19]. 

In regions experiencing seasonal monsoons, rainfall intensity significantly influences water quality and algal growth, primarily 
through variations in inflow rates and hydraulic retention time (HRT) [8,26,27]. South Korea experiences summer monsoons, mainly 
from July to August [14]. It encounters substantial changes in nutrient levels, suspended solids (SS), light availability, and algal CHL-a 
in reservoirs due to pollutant-rich runoff and sediment resuspension [11,28,29]. These seasonal fluctuations, including rapid flushing 
and dilution, can alter algal growth, challenging the predictive accuracy of statistical models [23,26,30]. 

The complexity of environmental factors can diminish the predictive accuracy of algal biomass models for individual systems based 
on a single factor, such as key nutrients [30,31]. Machine-learning approaches are increasingly used to predict algal growth in lentic 
systems because they can provide insights into the importance of input variables and their interactions for predicting algal CHL-a [30, 
32,33]. Random forest (RF), support vector machine (SVM), and artificial neural network (ANN) models have been applied to predict 
CHL-a levels, blue-green algal blooms, and water transparency in lacustrine systems globally [32–36]. However, each machine 
learning algorithm has its own advantages and disadvantages. Therefore, selecting the most effective algorithm or combination of 

Fig. 1. Location of Juam Reservoir and the study sites, including lacustrine (Lz), transition (Tz), and riverine (Rz) zones, with land cover and land 
use patterns. 
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algorithms for predicting algal biomass in lentic systems may be challenging. Huang et al. [37] predicted algal CHL-a from envi-
ronmental factors in Chinese lentic systems using RF and a generalized linear model. They found TP was the main factor influencing 
CHL-a. Meanwhile, Mamun et al. [30] utilized multiple linear regression (MLR), SVM, and ANN to predict algal CHL-a and SD in a 
monsoon-region reservoir and found that SVM performed better than MLR and ANN. 

The Juam Reservoir (JR), located within a monsoonal climate region, is a pivotal water resource catering to various societal needs, 
including water supply, irrigation, and recreational activities. Despite the absence of substantial water quality problems, previous 
research endeavors have shed light on the hydrological conditions, water quality dynamics, and nutrient loading patterns within the 
reservoir’s watershed. Han et al. [38] identified phosphorus as a critical factor driving eutrophication in JR, while Yi et al. [39] 
assessed hazardous sub-watersheds contributing to non-point source pollution, providing valuable insights for targeted management 
strategies. The study of [40] comprehensively monitored water quantity and quality in an upstream tributary of JR, highlighting the 
significant influence of land use practices on nutrient loading. Furthermore, Chung et al. [41] elucidated the relationship between 
harmful cyanobacteria and environmental factors in JR, underscoring the impact of runoff-induced phosphorus inputs on algal 
biomass dynamics during rainfall events. 

This study, based on 30 years of monthly data for JR, comprehensively analyzed the longitudinal-seasonal dynamics of physico-
chemical indicators of water quality, CHL-a, and trophic state conditions to identify critical factors determining algal biomass and 
water transparency with the help of multivariate analysis and empirical linear models. We also compared the differences in water 
quality indicators, TSI, and TSID between drought and flood year regimes, depending on the intensity of the summer monsoon. 
Furthermore, we assessed overall long-term trends of water physicochemical indicators and CHL-a using the Mann-Kendall test and 
innovative trend analysis and tested the machine learning technique for long-term CHL-a and SD prediction models. Overall, this study 
would provide important insights into the factors influencing water quality and CHL-a dynamics in the JR and help future decision- 
making for sustainable water supplies and ecological health. 

2. Materials and methods 

2.1. Study system 

The JR is an artificial lake that was initiated in 1992 through the construction of a multi-purpose dam on the Seomjin River in South 
Korea (Fig. 1). It is a warm monomictic reservoir that is about 40 km long and has a surface area of 33 square kilometers, with an 
average depth of 14 m, maximum depth of 47 m, and basin area of 1010 square kilometers. It is a critical freshwater source for the 
region, serving the water needs of Gwangju, Naju, and Mokpo cities by supplying 25 million cubic meters of drinking water daily [32]. 
The reservoir catchment area mainly consists of forested mountains (70.5 %), with agriculture (13.2 %) and built-up areas (1.5 %) as 
the primary land uses (Fig. 1). Non-point pollution sources are key managing issues for JR due to high nutrient loadings released from 
agricultural lands during summer monsoons [38,39]. In this study, we used long-term data from three study sites representing the 
longitudinal zones of the reservoir: Rz (riverine zone), Tz (transition zone), and Lz (lacustrine zone) (Fig. 1). 

2.2. Data sources and water quality analysis 

The physicochemical data used in this study were obtained from the Korean Water Environment Information System (https:// 
water.nier.go.kr/), managed by the Korea Ministry of Environment (MOE). The analysis of the monsoon season was conducted by 
taking samples during three distinct periods - the premonsoon period (Pre), which spans from May to June; the monsoon period (Mon), 
which occurs during July and August; and the postmonsoon period (Post), which lasts from September to October. Thirteen physi-
cochemical variables were studied: WT, electrical conductivity (EC), SS, biological oxygen demand (BOD), chemical oxygen demand 
(COD), total organic carbon (TOC), total nitrogen (TN), ammonium-nitrogen (NH4–N), nitrate-nitrogen (NO3–N), TP, phosphate- 
phosphorus (PO4–P), algal CHL-a, and SD. The study period was 1993–2022, and monthly data were collected from the water sur-
face layer (at 0.5 m depth) at each site. Monthly data on water level and precipitation were obtained from the Water Information Portal 
(https://www.water.or.kr), managed by the Korea Water Resources Corporation (K-water). 

WT and EC were measured on-site using a YSI Sonde 6600 multi-parameter sensor (Environmental Monitoring Systems, Yellow 
Springs, OH, USA). SD was measured on-site using a standard 20-cm Secchi disk as water transparency indicator. Determination of the 
levels of organic matter (BOD, COD, and TOC), SS, nutrients, and CHL-a was followed by a standard procedure of MOE [42]. SS was 
determined in samples filtered through a 1.2-μm pore size glass microfiber filter (grade GF/C; Whatman) and dried for 1 h at 105 ◦C 
[43]. COD was determined by oxidizing the water sample with potassium permanganate at 100 ◦C for 30 min after acidifying it with 
sulfuric acid [42,44]. A second derivative procedure was applied for TN after the digestion of persulfate [45], while ascorbic acid was 
used after oxidation to determine TP [46]. To measure CHL-a concentrations, the water sample was passed through a GF/C filter and 
extracted in ethanol before being assessed spectrophotometrically (DU-530; Beckman Coulter, Brea, CA, USA). 

2.3. Statistical analysis 

2.3.1. Empirical regression models and principal component analysis 
The data were first log10-transformed to address normality and heteroscedasticity concerns. The transformed spatial-seasonal 

averages of the designated variables were then used for empirical linear models (EMs), multiple linear regression (MLR), and prin-
cipal component analysis (PCA). The regression analyses were performed using SigmaPlot v14.5 (Systat, Santa Clara, CA, USA), and 
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PCA was conducted using PAST v4.12 (University of Oslo, Norway). 

2.3.2. Long-term trend analysis 
We conducted a long-term trend analysis to detect significant trends in yearly mean values of water quality indicators in the 

reservoir from 1993 to 2022. The Mann–Kendall (MK) test and innovative trend analysis (ITA) were applied for this purpose. 
The MK test is a non-parametric statistical method [47,48]. It checks the null hypothesis that there is no trend in the data against the 

alternative hypothesis that there is a trend. The following steps are carried out to perform the MK test. The formula for the MK test 
statistic S is: 

S=
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)

sgn
(
xj − xi

)
=

⎧
⎨

⎩

1
(
if xj − xi> 0

)

0
(
if xj − xi= 0

)

− 1
(
if xj − xi< 0

)

The variance is computed as: 

Var(S) =
n(n − 1)(2n + 5) −

∑m

i=1
ti(ti − 1)(2ti + 5)

18 

Then, the standard normal test statistic is calculated as: 

Z=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ (if S > 0)

0 (if S = 0)
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ (if S< 0)

Sen’s slope is a non-parametric method used to estimate the magnitude and direction of the trend in time series data [49] and is 
defined as: 

Senʹs slope=Median
{

xj − xi

j − i
: i< j

}

for the set of pairs (i, xi) where xi is time series data. The slope represents the rate of change of the data over time and can be used to 
estimate the magnitude and direction of the trend. These methods have been widely used to detect trends in hydrological time series 
data because they can extract useful information on the possibility of future changes in water quality variables. Moreover, no as-
sumptions about the distribution of the data must be met [50–52]. We performed these tests using the “mannKen” function in the R 
package “wql”, a statistical programming language used for data analysis. 

The ITA is used to identify deterministic trends in observed time series [53]. It can be used without assumptions, distinguishing it 
from classical approaches like the MK trend test and Spearman’s rho, which typically impose certain assumptions. The method begins 
by dividing the time series into two equal parts, which are then sorted in ascending order. The x-axis represents the first half of the time 
series, while the y-axis represents the second half. When the data points align along the ideal 1:1 line, it indicates the absence of a trend 
in the time series. However, if the data points accumulate in the region above the ideal line, it suggests the presence of an increasing 
trend in the time series. Conversely, if the data points are below the 1:1 line, it indicates a decreasing trend in the time series [53,54]. 
We implemented ITA using the “innovtrend” function in the R package “trendchange” and the 10 % confidence level was applied to 
ensure accurate analysis. 

2.3.3. TSI and TSID 
TSI values were calculated individually from CHL-a, TP, and SD according to the following formulas [24]: 

TSI (TP, μg / L)=10 × [6 − ln(48 /TP) / ln 2]

TSI (CHL − a, μg / L)=10 × [6 − (2.04 − 0.68 ln(CHL − a)) / ln 2]

TSI (SD,m)= 10 × [6 − ln(SD) / ln 2]

The TSI (CHL-a) values were then compared with the TSI (TP) and TSI (SD) values, and the resulting deviations were determined. 
Two-dimensional plots were then constructed based on these deviations. The degree of P limitation can be inferred from the TSI (CHL- 
a) – TSI (TP) relationship deviations, while deviations in TSI (CHL-a) and TSI (SD) represent the level of underwater light availability 
relative to sestonic particles [19]. The two-dimensional plots of TSID were constructed using SigmaPlot v14.5. 
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2.3.4. Machine learning predictions of algal biomass and water transparency based on RF 
In addition to EMs and MLR models, we employed the random forest (RF) machine-learning technique to predict the long-term 

variations in algal CHL-a and SD levels by assessing by assessing and simulating environmental variables. The RF algorithm is a 
non-parametric machine learning model that randomly selects subsets of weak predictors and builds shallow regression trees from the 
training set [55]. The algorithm then aggregates the predictions of all the trees to generate the final output. It is a powerful tool with 
self-adaptability, self-organization, and error tolerance, and can minimize risk and the upper limit of generalization while also 
enhancing the generalization ability [37,56,57]. 

3. Results and discussion 

3.1. Longitudinal variation in water quality and the effect of monsoon season 

The data monitoring conducted over a long-term period revealed a longitudinal gradient in water quality indicators along the 
reservoir (Table 1). The averages of various indicators such as WT, EC, phosphorus contents, SS, and CHL-a increased from the Lz to the 
Rz, while TN:TP ratio and SD showed decreasing patterns. Studies have found that reservoir systems exhibit a noticeable change in 
water quality parameters as one moves from the headwaters to the dam zone [10,58–60]. Such changes include variations in sus-
pended solids, nutrients, and primary productivity, which could be due to the morpho-hydrological conditions of the reservoirs. As 
conditions shift from river-type to lake-type over the longitudinal dimension of the reservoirs, changes in flow velocity, hydraulic 
retention time, and water depth could cause these variations [8,61]. In addition, external inputs from tributaries could also impact 
water quality indicators, especially nutrient regimes, inorganic suspended solids, and water transparency. As tributaries carry pol-
lutants, mainly from intensive non-point pollution sources [38–40], into the riverine zone, the water quality can be significantly 
impacted, leading to higher levels of algal biomass, as measured by CHL-a, in the zones compared to other zones (Table 1). Overall, the 
temperate reservoir showed low organic matter and a low to moderate state of phosphorus contents and CHL-a, according to Ref. [25]. 

The longitudinal variations in most of the indicators further showed seasonality (Fig. 2a–u). Their means and outliers increased 
during the Mon in each zone, particularly in terms of suspended solids (Fig. 2d–f) and phosphorus contents (Fig. 2p–r). The elevated 
levels of SS and TP observed during the Mon generally accorded with increased precipitation and inflow volumes. These findings 
suggest that there was a greater amount of runoff and phosphorus loading during high rainfall periods due to monsoon [8,38,39]. 
However, CHL-a levels increased at each site in the Post (Fig. 2s–u). Monsoon-induced nutrient availability and hydrologically stable 
conditions after the monsoon period could be attributable to the increase in CHL-a level [26,27,31]. 

3.2. Seasonal variation in water quality parameters in drought and flood years 

Eleven water quality indicators in drought (1996, 2016, and 2019) and flood (2002, 2009, and 2020) years were analyzed to 
determine the effects of monsoon rainfall on water quality (Figs. 3 and 4). Our analysis indicated that the summer monsoon’s intensity 

Table 1 
The measured water quality parameters along the longitudinal zones (Lz – Lacustrine zone, Tz – Transition zone, Rz – Riverine zone) from 1993 to 
2022 (WT: water temperature, EC: electrical conductivity, TN: total nitrogen, NH4–N: ammonium-nitrogen, NO3–N: nitrate nitrogen, TP: total 
phosphorusPO4-P: Orthophosphate, TN:TP: TN, TP ratio, COD: chemical oxygen demand, BOD: biological oxygen demand, CHL-a: chlorophyll-a, SS: 
suspended solids, SD: Secchi depth).  

Water Quality Parameter Lz Tz Rz Overall 

Mean ± SD (Min-Max) Mean ± SD (Min-Max) Mean ± SD (Min-Max) Mean ± SD (Min-Max) 

WT/ionic indicators WT (◦C) 12.07 ± 4.86 (2–25) 13.78 ± 6.11 (2–26) 15.48 ± 7.55 (0–29) 13.77 ± 6.42 (0–29) 
EC (μS/cm) 75.53 ± 38.03 

(35–220) 
77.37 ± 26.03 
(37–223) 

82.24 ± 29.99 
(36–265) 

78.38 ± 31.87 
(35–265) 

Organic matter pollution indicators BOD (mg/L) 0.99 ± 0.40 (0.4–3.8) 1.27 ± 0.43 (0.4–2.7) 1.45 ± 0.46 (0.4–4) 1.24 ± 0.47 (0.4–4) 
COD (mg/L) 2.86 ± 0.53 (1.5–6.7) 2.63 ± 0.38 (1.3–4.3) 2.78 ± 0.48 (1.4–6.0) 2.76 ± 0.48 (1.3–6.7) 
TOC (mg/L) 2.05 ± 0.42 (0.9–3.3) 1.71 ± 0.22 (1.2–2.3) 1.85 ± 0.3 (1.2–2.8) 1.89 ± 0.37 (0.9–3.3) 

Nutrient pollution indicators TN (mg/L) 0.78 ± 0.18 
(0.32–1.91) 

0.89 ± 0.28 
(0.29–2.04) 

0.96 ± 0.39 
(0.29–2.75) 

0.87 ± 0.31 
(0.29–2.75) 

NH4–N (mg/ 
L) 

0.05 ± 0.05 (0–0.28) 0.04 ± 0.05 (0–0.36) 0.05 ± 0.07 (0–0.68) 0.05 ± 0.06 (0–0.68) 

NO3–N (mg/ 
L) 

0.48 ± 0.14 
(0.00–1.24) 

0.53 ± 0.18 (0–1.25) 0.56 ± 0.24 (0–1.48) 0.52 ± 0.19 (0–1.48) 

TP (μg/L) 14.25 ± 7.10 (0–54) 17.48 ± 8.62 (4–61) 22.17 ± 11.89 (6–98) 17.96 ± 9.96 (0–98) 
PO4–P (μg/L) 2.41 ± 2.09 (0–11) 3.71 ± 3.11 (0–21) 5.07 ± 5.34 (0–57) 3.75 ± 3.93 (0–57) 
TN:TP 69.8 ± 61.1 

(14.8–212.2) 
59.9 ± 32.8 (8.7–277) 52.1 ± 32.8 

(6.3–270.1) 
60.61 ± 44.9 
(6.3–277) 

Algal bloom and transparency 
indicators 

CHL-a (μg/L) 4.29 ± 10.42 
(0.10–60.2) 

6.12 ± 7.34 
(0.10–64.5) 

9.13 ± 10.62 
(0.3–77.6) 

6.52 ± 9.78 
(0.1–77.6) 

SS (mg/L) 2.11 ± 1.06 (0.5–11.7) 2.62 ± 1.72 
(0.3–11.3) 

3.57 ± 3.34 
(0.3–31.4) 

2.76 ± 2.33 
(0.3–31.4) 

SD (m) 3.35 ± 0.91 (0.9–6.1) 2.81 ± 64.5 (1–5.5) 2.38 ± 0.87 (0.5–5.9) 2.84 ± 0.96 (0.5–6.1)  
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significantly influenced the reservoir’s seasonal nutrient regimes, suspended solids, water transparency, and algal biomass. By 
comparing the patterns between years of drought and flood, we observed that the factors mentioned above were affected differently 
during each type of year. 

There was no difference in WT between drought (=3–26) and flood (=4–26.7) years. The difference in EC between the Pre and Mon 
periods was small. The organic matter pollution indicators (COD and TOC) increased during the summer Mon, consistent with previous 

Fig. 2. Seasonal variations of water quality and Tukey test at each site (Rz: Riverine zone, Tz: Transition zone, Lz: Lacustrine zone, BOD: biological 
oxygen demand (a–c), SS: suspended solids (d–f), TN: total nitrogen (g–i), COD: chemical oxygen demand (j–l), EC: electrical conductivity (m–o), 
TP: total phosphorus (p–r), CHL-a: chlorophyll-a (s–u), the first highest mean receives the letter “a”, and the second and third highest mean receives 
the letter “b”, and “c”, respectively, and means with no significant difference receive the same letter). 
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studies of Korean reservoirs [10,62,63]. Little difference in organic matter was observed between drought and flood years (Fig. 3A, B). 
The differences in BOD and COD concentrations were almost insignificant in the reservoir. These findings suggest low 
non-biodegradable organic matter in the reservoir. TN did not differ between the drought and flood years, and there was no significant 
N dilution during the Mon period, unlike other lakes in Korea [58]. TP increased significantly more (maximum = 91 μg/L) in flood 
years than in drought years (maximum = 56 μg/L) (Fig. 4A, B). The TN:TP ratio was higher in flood years during the Pre than Post 
periods, primarily attributed to increased TN (Fig. 4A, B). CHL-a increased during the Post in flood years, which is attributed to 
washout during the Mon [14]. The maximum value (61.5 μg/L) was observed in September, indicating the occurrence of an algal 
bloom. SS had the highest average value in September during a flood year, which was also attributed to an algal bloom (Fig. 4A, B). By 
contrast, SD decreased in July and August and increased in September during flood years, which is opposite to drought years. This 
suggests that inorganic SS dominates during the Mon [29], while organic matter algal blooms occur during the Post [23,31]. 

Fig. 3. Monthly dynamics in water temperature, the ionic indicator, and organic matter differed between drought (A) and flood years (B) in the 
reservoir (PRE-precipitation). 
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Similar results were observed for TN:TP, EC, CHL-a, SD, and CHL-a:TP in drought years, although no significant differences were 
found among the Pre, Mon, and Post (Table 2). However, among the three seasons, COD, TOC, TN, TP, WT, and SS differed significantly 
in drought years (p < 0.05). Post hoc analysis revealed that COD was significantly lower in the Pre than Mon (F = 5.201, p = 0.009), 

Fig. 4. Monthly dynamics in nutrients, TN:TP ratio, algal bloom, and transparency indicators differed between drought (A) and flood years (B) 
(PRE: precipitation). 
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and TOC differed significantly between the Pre and Post (F = 4.832, p = 0.014), with higher values observed in the Post. TN and TP 
were significantly lower in the Pre than in both the Mon and Post (p < 0.01, Table 2). Similarly, significant differences were found in 
flood years for TOC, TP, TN:TP ratio, WT, CHL-a, and SD. Post hoc analysis revealed that TOC was significantly lower in the Pre than 
Post (F = 4.211, p < 0.05), and TP was significantly lower in the Pre than Post (F = 4.52, p < 0.05). The TN:TP ratio was significantly 
lower in Post than Mon (F = 4.011, p < 0.05), and WT was significantly higher in the Mon than Pre (F = 22.41, p < 0.001). Unlike 
drought years, CHL-a differed between the Pre and Post in flood years (F = 4.898, p < 0.05), with a unimodal peak in algal biomass in 
the Post. This finding is supported by previous studies of Korean reservoirs [17,31]. SD was significantly higher in the Pre than Mon (F 
= 4.23, p = 0.02). The CHL-a:TP ratio had a higher mean square value (0.4848) in flood years, indicating that CHL-a is formed in 
proportion to the amount of P supplied [29]. 

3.3. Relationship among water quality variables 

The multivariate PCA showed the monsoon seasonal and longitudinal fluctuations in water quality indicators with their correla-
tions (Fig. 5). The analysis method simplifies the handling of large datasets with multiple parameters by converting the original 
variables into smaller, independent ones. It can also identify the main sources of pollution that affect water quality [59,64]. This study 
used the first two principal components (PC I and PC II), which were selected based on criteria of an eigenvalue greater than 1, to 
illustrate seasonal and longitudinal patterns. Seasonal PCs accounted for 40.65 % of the total variance, with PC I explaining 23.19 % 
and PC II explaining 17.46 % (Fig. 5a). PC I had strong positive loadings for WT and TP and a moderate positive loading for SS. 
However, it also had a moderate negative loading of TN:TP. The variation based on these loadings was statistically acceptable between 
the Pre and Post according to 95 % confidence seasonal ellipses. The outcome suggests that seasonal increases in suspended solids and 
phosphorus contents were in the system due to summer monsoon, which led to fluctuations in nutrient ratio [12,14]. Additionally, PC 
II had strong positive loadings of CHL-a and CHL-a:TP, and a moderate negative loading of SD, indicating specifically that increases in 
algal biomass negatively correlated with water transparency. 

In addition to seasonal monsoon patterns, spatial PCA indicated the longitudinal variations in water quality indicators along the 
reservoir, accounting for 51.32 % of the total variance (Fig. 5b). PC I explained 33.22 % of the variance. It had strong positive WT and 
CHL-a and moderate positive loadings of SS, BOD, pH, TP, and PO4–P, suggesting longitudinal increases of the parameters from Lz to 
Rz. By contrast, SD exhibited strong negative loading. PC II accounted for 18.10 % of the variance and had moderate positive EC, TP, 
and NH4–N loadings. It also had TN:TP had strong negative loading of TN:TP and moderate negative loadings of CHL-a:TP and NO3–N. 
The multivariate statistic results supported our recent findings on the longitudinal analysis and were consistent with previous studies 
for Korean reservoirs [10,65]. 

Table 2 
One-way ANOVA test for drought and flood years (a: premonsoon (Pre), b: monsoon (Mon), c: postmonsoon (Post), Dr: Drought years, and Fl: Flood 
years).  

Year Parameters Seasonal averages Variance test Post-hoc Comparison 

Pre (a) Mon (b) Post (c) SS ν MS F-value p-value Tukey test 

Dr BOD 1.09 1.32 1.19 0.027 2 0.013 0.763 0.472 a = b = c 
COD 2.64 3.18 3.04 0.057 2 0.029 5.201 0.009b a < b (b = c) 
TOC 1.88 2.29 2.13 0.043 2 0.022 4.832 0.014c a < c (a = b, c = b) 
TN 0.62 1.03 0.83 0.43 2 0.215 9.72 0.0003a a < b (b = c) 
TP 15.2 26.7 20.7 0.407 2 0.203 6.673 0.003b a < b (b = c) 
TN:TP 43.1 47.1 42.1 0.11 2 0.055 1.666 0.199 a = b = c 
WT 15.1 19.9 19.5 0.166 2 0.083 12.38 < 0.001a a < b (b = c) 
EC 128 126 95 0.102 2 0.051 1.431 0.248 a = b = c 
CHL-a 3.46 5.40 6.54 0.399 2 0.19 2.586 0.085 a = b = c 
SS 1.70 2.66 2.90 0.353 2 0.177 5.717 0.006b a < b (b = c) 
SD 2.50 3.04 2.46 0.097 2 0.049 2.535 0.089 a = b = c 
CHL-a:TP 0.243 0.236 0.327 0.204 2 0.102 1.32 0.276 a = b = c 

Fl BOD 1.13 1.18 1.13 0.008 2 0.004 0.153 0.858 a = b = c 
COD 2.74 3.09 3.02 0.023 2 0.011 2.784 0.071 a = b = c 
TOC 1.65 2.15 1.94 0.049 2 0.025 4.211 0.029c a < c (a = b, c = b) 
TN 0.96 1.00 0.93 0.016 2 0.008 0.515 0.601 a = b = c 
TP 17.7 26.1 24.8 0.52 2 0.265 4.52 0.016c a < c (a = b, c = b) 
TN:TP 83.4 43.9 44.3 0.446 2 0.223 4.011 0.024c c < b (a = b, a = c) 
WT 15.3 20.6 20.7 0.222 2 0.111 22.41 < 0.001a a < b (b = c) 
EC 89 105 83 0.071 2 0.036 1.89 0.162 a = b = c 
CHL-a 4.46 7.10 20.2 2.332 2 1.166 4.898 0.011c a < c (a = b, c = b) 
SS 2.83 3.61 5.41 0.654 2 0.327 3.018 0.058 a = b = c 
SD 3.13 1.89 2.09 0.391 2 0.196 4.23 0.02c b < a (a = c, b = c) 
CHL-a:TP 0.221 0.305 0.718 0.97 2 0.485 3.062 0.056 a < c (a = b, c = b) 

SS: sum of squares; ν: degrees of freedom; MS – mean square; Significance level. 
a Very strong. 
b Strong. 
c Moderate. 
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3.4. Empirical models of reservoir algal biomass and water transparency 

Empirical models based on simple linear regression showed that phosphorus was the most significant determinant for the variation 
in longitudinal-monthly algal CHL-a averages (n = 36) for 30 years, closely followed by TN:TP ratio (Fig. 6a–d). TP and TN:TP 
explained approximately 64 % and 57 % of the variation (p < 0.001) according to the coefficient determination (R2). TN:TP showed a 
strong negative correlation with TP (R2 = 0.72, p < 0.001), but it had a weak negative correlation with TN (R2 = 0.25, p < 0.01). These 
correlations highlighted the importance of phosphorus availability relative to nitrogen in shaping algal growth dynamics, suggesting a 
phosphorus limitation within the system. This inference aligns with earlier empirical studies on Korean multipurpose and deep res-
ervoirs [10,11,65]. Additionally, TN and WT significantly and positively correlated with CHL-a (p < 0.001), with respective R2 values 
of 0.43 and 0.21 (Fig. 6a–d), indicating their influence on algal biomass. Therefore, we developed multiple linear regression models 
(MLR) using WT, TN, and TN:TP added on TP (Table S1). The best MLR was based on the interplay between TP, TN:TP, and WT and 
accounted for 67 % of the CHL-a variation, indicating a slight improvement in prediction accuracy as measured by R2. 

Moreover, when SD was empirically modeled based on nutrients (TN and TP), CHL-a, and SS (Fig. 6e–h), SS accounted for a 
substantial part (81 %) of the variation in SD (Fig. 6h). This suggests that SS was the dominant regulator of water transparency and 
underwater light availability, due to its strong association with increased nutrients (TN and TP) and CHL-a levels (Fig. 6i–l). Notably, 
SS showed a particularly robust correlation with TP (R2 = 0.86, p < 0.001). As previously discussed by Refs. [23,66], suspended solids 
tend to bind efficiently and transport phosphorus particles within the water column during the summer monsoon, especially in high 
concentrations, influencing SD variations. Consequently, the fluctuations in SD may be more attributable to inorganic suspended 
matter from monsoon runoffs rather than algal biomass. It aligns with the findings of [30], who observed a greater predictive power of 
SS over CHL-a in determining SD using machine learning techniques. Hence, employing SD as a metric for assessing trophic states in 
Korean reservoirs may be misleading, particularly considering the influence of monsoon-specific conditions. Similar observations have 
been reported in other regions, such as the Eastern Chinese Plains [18] and the Mediterranean [67], where reductions in SD were 
primarily attributed to inorganic turbidity and matter rather than CHL-a concentrations. Future studies should address the challenge of 
SD in trophic state assessment. 

However, the interactive correlations among nutrients, suspended solids, SD, and CHL-a levels can underscore the dynamics of 
nutrient loading and its implications for algal growth and water transparency in the studied reservoir system. Elevated phosphorus 
levels, facilitated by suspended solids, can contribute to heightened CHL-a levels. As algal biomass increases, it can further diminish 
water transparency, impacting light penetration and potentially establishing a feedback loop where heightened algal biomass per-
petuates decreased water transparency [61], exacerbating the situation. 

3.5. Monsoon-seasonal analyses of TSI and TSID along the system with the influence of drought and flood years regimes 

Assessing reservoir trophic status is crucial for its ecological health [11]. In this regard, a longitudinal and monsoon-seasonal 
analysis was conducted based on the TSIs of TP, SD, and CHL-a following Carlson’s method [24]. The results revealed that the 
reservoir trophic status ranged from mesotrophic to eutrophic overall and varied between drought and flood years (Fig. 7). 

TSI (TP) averages decreased longitudinally from Rz to Lz, with seasonal increases being evident in Mon at each zone (Fig. 7a). The 
overall TSI (SD) pattern was similar to that of TSI (TP) (Fig. 7b), and the seasonal increases in both indices were primarily attributed to 
heightened inorganic suspended solids carried with phosphorus due to monsoon runoff into the reservoir [23,29]. Also, a noticeable 
longitudinal decrease was observed in the TSI (CHL-a) averages from Rz to Lz (Fig. 7c). Seasonal increases were evident in both Mon 
and Post at Rz and Lz. Particularly, eutrophic states were observed in Rz during Mon and Post, indicating a heightened risk of algal 
blooms. Moreover, TSI (CHL-a) increased at Lz during the Post, with 75 % of its distribution pointing towards a eutrophic state 

Fig. 5. Principal component analysis (PCA) of the reservoir studied during 1993–2022; (a) seasonal biplot of PCA (red = premonsoon, blue =
monsoon, and pink = postmonsoon), (b) longitudinal zonal biplot of PCA (pink = Lz, purple = Tz, and blue = Rz). 
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(Fig. 7c). 
Our analysis also revealed a crucial aspect regarding the impact of monsoon intensity on trophic state conditions, which varied 

significantly between flood and drought years (Fig. 7d–i), particularly for TSI (SD) and TSI (CHL-a). The variability in these indices for 
each season was considerably low in drought years (Fig. 7e and f). However, this variability increased during flood years (Fig. 7h and 
i). The TSI (SD) averages were notably higher in Mon with the eutrophic state during flood years (Fig. 7e) than in drought years 
(Fig. 7f). Furthermore, TSI (CHL-a) averages demonstrated an observable increase in eutrophication risk in Post after intense monsoon 
periods (Fig. 7i), particularly in Lz. In drought years, there were longitudinal decreases in TSI (CHL-a) averages for each season 
(Fig. 7f). However, during flood years, the spatial variation was interrupted, and all zones experienced eutrophic states in Post. The 
findings supported that intense rainfall events would trigger algal blooms in subsequent months, particularly in the lacustrine site [31]. 

TSID analyses, furthermore, suggested that phosphorus availability strongly influences the reservoir’s trophic status, with several 
episodic impacts of non-algal turbidity at each site during Mon (Fig. S2), according to Ref. [19]. The findings were aligned with the 
insights obtained by empirical models of CHL-a and SD, supporting a P-limitation scenario in the temperate deep system along with the 
seasonal conditions of the summer monsoon [68]. Also, increases in non-algal turbidity influence (P-III) were evident during Mon in 
flood years compared to drought years, as indicated by mean values of TSID (Fig. 8). TSID also showed algal bloom occurrences (P–I) 
were more prevalent during Post in flood years compared to drought years. 

Fig. 6. Empirical log-linear models of algal CHL-a (a–d), water transparency as measured by SD (e–h), and suspended solids (SS; i – l) based on total 
nitrogen (TN), total phosphorus (TP), TN:TP ratio, and water temperature (WT). 
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3.6. Long-term trend analysis 

Our extensive dataset, covering a 30-year span, provided a platform for investigating the long-term trends in water quality in-
dicators using the MK test and ITA. The analysis of yearly reservoir means revealed notable overall trends: BOD, TN, TP, TSS, and SD 
showed decreasing trends, whereas COD showed an increasing trend according to the MK test (Table 3). Conversely, TOC, EC, and 
CHL-a did not exhibit significant trends over the studied period. The ITA corroborated the findings, except for BOD and SD (Fig. 9a–i). 

The contrasting trends observed between BOD and COD suggest a potential shift in the pollutants, possibly indicating an increase in 
the proportion of non-biodegradable organic matter [65]. While the decline in nutrients and suspended solids over the long-term 
period might suggest an improvement in reservoir water quality, it is important to consider other factors, such as increased water 
volume and storage capacity, which could also contribute to these changes. Early and recent studies [38–40] underscore the persistent 
influence of intense non-point pollution sources on reservoir water quality, potentially fostering algal blooms. Interannual-seasonal 
variations in hydrological conditions and nutrient availability can regulate the long-term dynamics of algal biomass during 
growing seasons, mainly triggered by the summer monsoon [10,59]. Monsoon-specific conditions might lead to no significant trend in 
algal CHL-a levels in the system studied. Also, diffuse nutrient losses worldwide are considered the main drivers of eutrophication [69]. 
This highlights the ongoing relevance and significance of monitoring and controlling the impacts of non-pollution sources on the 
system and non-biodegradable pollutants, particularly by considering the summer monsoon intensity. 

3.7. Predictions of algal CHL-a and SD based on machine learning approach 

The study also analyzed the modeling accuracies of the random forests (RF) machine learning, MLR, and EM models in predicting 
CHL-a and SD levels in the Juam Reservoir. The time series plots clearly illustrated the observed and predicted levels of both CHL-a and 
SD, generated using RF, MLR, and Ems (Fig. 10a and b). CHL-a values predicted by the RF model closely aligned with the observed 
values, indicating superior performance compared to predictions generated by both the best MLR and EM models. To validate this 
qualitative assessment, the study conducted a rigorous analysis utilizing the coefficient of determination (R2) to compare the modeling 
accuracies of the three models. The RF model demonstrated a significantly higher R2 value of 0.72, surpassing the performance of both 
the MLR and EM models. When employing the RF model, this elevated R2 value indicates a robust correlation and low error between 

Fig. 7. Longitudinal and monsoon-seasonal variations in trophic state indices based on total phosphorus (TSI (TP)), Secchi depth (TSI (SD)), and 
CHL-a (TSI (CHL-a) for overall (a–c), drought, and flood years (d–i). Seasons were categorized as premonsoon (Pre), monsoon (Mon), and post-
monsoon (Post). The trophic status was classified as oligotrophic (Oligo), mesotrophic (Meso), eutrophic (Eu), and hypereutrophic (Hyper). 
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the predicted and observed CHL-a levels, reaffirming its efficacy in modeling CHL-a dynamics within the Juam Reservoir. Based on 
these findings, the study recommends using the RF model to predict algal biomass and water transparency in multipurpose reservoirs. 

4. Conclusions 

This study provides important insights into the longitudinal and monsoon seasonal variation in water chemistry in the Asian 
temperate reservoir, highlighting its impact on algal biomass as indicated by CHL-a and long-term trends over three decades. The study 

Fig. 8. Variations in trophic state index deviations during monsoon and postmonsoon seasons between drought and flood years.  

Table 3 
Long-term trend analysis of water quality indicators in the reservoir over the 30-year period (1993–2022).  

Indicators S τ Slope Trend 

BOD ¡176 ¡0.405 ¡0.014b Decreasing 
COD 240 0.552 0.019a Increasing 
TOC 39 − 0.371 0.019 No trend 
TN ¡145 ¡0.333 ¡0.007c Decreasing 
TP ¡156 ¡0.359 ¡0.194b Decreasing 
EC 35 0.08 0.137 No trend 
CHL-a 27 0.062 0.024 No trend 
TSS ¡117 ¡0.269 ¡0.038c Decreasing 
SD ¡66 ¡0.152 ¡0.010b Decreasing  

a p < 0.001. 
b p < 0.01. 
c p < 0.05. 
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used various analytical methods, including multivariate analysis, empirical models, trophic state analysis, and machine learning 
approaches. The findings revealed longitudinal heterogeneity in nutrients, organic matter, CHL-a, and SS along the Rz, Tz, and Lz. 
Seasonal nutrient and suspended solid fluctuations and decreased water transparency were observed during the summer monsoon 
(Mon), influenced by external inputs and varying dynamics during flood and drought years. Furthermore, we found a monomodal 
increase in CHL-a levels after the summer monsoons, particularly during intense rainfall, indicating successful algal growth during the 
post-monsoon period. 

According to empirical models, phosphorus was found to be the key determinant of algal biomass, while suspended solids played a 

Fig. 9. Innovative trend analysis (ITA) of water quality indicators over the study period, including biological oxygen demand (BOD), chemical 
oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), electric conductivity (EC), algal CHL-a, suspended 
solids (SS), and Secchi depth (SD). 

Fig. 10. The comparison of (a) predicted and observed CHL-a values based on the best multiple linear regression (MLR), empirical model (EM_TP), 
and random forest (RF), along with (b) SD predictions by RF and EM. 
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significant role in regulating water transparency. TSID analyses also suggested that phosphorus availability strongly influences the 
reservoir’s trophic status, with episodes of non-algal turbidity at each site during the monsoons. The findings supported a P-limitation 
scenario in the temperate deep system along with the seasonal conditions of the summer monsoon. 

Our study also highlighted overall trends in water quality parameters over the long period, albeit with the signaling of the pol-
lutants towards non-biodegradable organic matter. Moreover, while declining nutrient and suspended solid levels could indicate 
improved water quality, the persistent influence of non-point pollution sources underscores the need for continued monitoring and 
control, particularly considering seasonal variations and the impact of the summer monsoon on algal biomass dynamics and nutrient 
loadings. The predictive capabilities demonstrated by random forests machine learning suggested the potential utility of such an 
approach in forecasting algal biomass and water transparency. 
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[53] Z. Şen, Innovative trend analysis methodology, J. Hydrol. Eng. 17 (9) (2012) 1042–1046, https://doi.org/10.1061/(asce)he.1943-5584.0000556. 

S.-H. Jin et al.                                                                                                                                                                                                          

https://doi.org/10.1111/j.1365-2427.2005.01415.x
https://doi.org/10.1016/S0304-3800(02)00020-0
https://doi.org/10.1127/1863-9135/2012/0272
https://doi.org/10.1016/j.jhydrol.2018.03.022
https://doi.org/10.1016/j.ecolind.2019.105813
https://doi.org/10.1016/j.jenvman.2019.109923
https://doi.org/10.1016/j.jenvman.2019.109923
https://doi.org/10.1080/07438140509354418
https://doi.org/10.1080/07438140509354441
https://doi.org/10.1007/s10750-010-0151-9
https://doi.org/10.1002/lno.11611
https://doi.org/10.1016/j.jenvman.2023.117737
https://doi.org/10.4319/lo.1977.22.2.0361
https://doi.org/10.1080/07438149609354283
https://doi.org/10.1080/14634980902907342
https://doi.org/10.1080/14634980902907342
https://doi.org/10.1080/iw-6.3.967
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref28
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref28
https://doi.org/10.1016/j.scitotenv.2020.140451
https://doi.org/10.3390/w12010030
https://doi.org/10.1016/j.scitotenv.2023.165306
https://doi.org/10.1016/j.scitotenv.2014.09.005
https://doi.org/10.3390/w13172406
https://doi.org/10.1016/j.ecolmodel.2019.03.015
https://doi.org/10.3390/w12041191
https://doi.org/10.5194/gmd-16-35-2023
https://doi.org/10.3390/w14193128
https://doi.org/10.5389/KSAE.2005.47.3.077
https://doi.org/10.4491/KSEE.2015.37.10.551
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref40
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref40
https://doi.org/10.11626/KJEB.2019.37.4.640
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref42
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref43
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref43
https://doi.org/10.1080/00032718008078020
https://doi.org/10.4319/lo.1992.37.4.0907
https://doi.org/10.1139/f82-112
https://doi.org/10.1139/f82-112
https://doi.org/10.2307/1907187
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref48
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1016/0022-1694(93)90156-4
https://doi.org/10.1016/0022-1694(93)90156-4
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref51
http://refhub.elsevier.com/S2405-8440(24)07674-6/sref51
https://doi.org/10.1080/02626667.2020.1810253
https://doi.org/10.1061/(asce)he.1943-5584.0000556


Heliyon 10 (2024) e31643

17

[54] T. Caloiero, R. Coscarelli, E. Ferrari, Application of the innovative trend analysis method for the trend analysis of rainfall anomalies in southern Italy, Water 
Resour. Manag. 32 (2018) 4971–4983, https://doi.org/10.1007/s11269-018-2117-z. 

[55] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, https://doi.org/10.1023/A:1010933404324. 
[56] J. Xu, Z. Xu, J. Kuang, C. Lin, L. Xiao, X. Huang, Y. Zhang, An alternative to laboratory testing: random forest-based water quality prediction framework for 

inland and nearshore water bodies, Water 13 (22) (2020) 3262, https://doi.org/10.3390/w13223262. 
[57] P.K. Jena, S.M. Rahaman, P.K. Das Mohapatra, D.P. Barik, D.S. Patra, Surface water quality assessment by Random Forest, Water Pract. Technol. 18 (1) (2023) 

201–214, https://doi.org/10.2166/wpt.2022.156. 
[58] J.H. Han, J.Y. Lee, K.G. An, Interannual and seasonal variations of water quality in terms of size dimension on multi-purpose Korean Dam Reservoirs along with 

the characteristics of longitudinal gradients, Korean Journal of Ecology and Environment 43 (2) (2010) 319–337. 
[59] U. Atique, K.G. An, Reservoir water quality assessment based on chemical parameters and the chlorophyll dynamics in relation to nutrient regime, Pol. J. 

Environ. Stud. 28 (3) (2019) 1–19, https://doi.org/10.15244/pjoes/85675. 
[60] M. Mamun, K.G. An, Development of reservoir water quality index (WQI) based on long-term physicochemical parameters and their spatio-temporal variations, 

Asian J. Water Environ. Pollut. 17 (2) (2020) 55–63, https://doi.org/10.3233/AJW200021. 
[61] J. Kalff, Limnology, vol. 608, Prentice-Hall, Inc., 113 Sylvan Ave, Englewood Cliffs NJ 07632 USA, 2002, pp. 136–153. 
[62] A. Reza, J. Eum, S. Jung, Y. Choi, J.S. Owen, B. Kim, Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland 

agricultural fields in the East Asian monsoon region, Environ. Monit. Assess. 188 (2016) 1–15, https://doi.org/10.1007/s10661-016-5681-9. 
[63] J. Im, C. Kang, K. Gil, Applicability on wet-land for management of NPS in organic matter and nutrients from agriculture and livestock farm area, Journal of 

Wetlands Research 23 (4) (2021) 372–380, https://doi.org/10.17663/JWR.2021.23.4.372. 
[64] Y. Ouyang, P. Nkedi-Kizza, Q. Wu, D. Shinde, C. Huang, Assessment of seasonal variations in surface water quality, Water Res. 40 (20) (2006) 3800–3810, 

https://doi.org/10.1016/j.watres.2006.08.030. 
[65] M. Mamun, J.Y. Kim, K.G. An, Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir, Water 13 (2) (2021) 186, https:// 

doi.org/10.3390/w13020186. 
[66] M. Mamun, N. Jargal, K. An, Spatio-temporal characterization of nutrient and organic pollution along with nutrient-chlorophyll-a dynamics in the Geum River, 

J. King Saud Univ. Sci. 34 (7) (2022) 102270, https://doi.org/10.1016/j.jksus.2022.102270. 
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