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Abstract

The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and
vitamin B,,) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal
enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; body weight [BW] = 392.6 + 12.6 kg) were individually fed
and assigned to one of five treatments: OXNEG: total mixed ration (TMR) and saline injections at days 0 and 7 of the estrous cycle, 0XPOS: TMR,
rumen-protected methionine (MET) fed at 0.08% of the diet dry matter, rumen-protected choline (CHOL) fed at 60 g/d, and saline injections at
days 0 and 7, 0.56X: TMR, MET, CHOL, 5-mg B, ,, and 80-mg folate injections at days 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B, and 160-mg
folate at days 0 and 7 and 2X: TMR, MET, CHOL, 20-mg vitamin B,,, and 320-mg folate at days 0 and 7. All heifers were estrus synchronized but
not bred, and blood samples were collected on days 0, 7. and at slaughter (day 14) during which tissues were collected. By design, heifer ADG
did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight
decreased linearly (P < 0.01) with increasing folate and B, injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the
0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic a-amylase were decreased (P < 0.04)
in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic a-amylase compared with OXNEG and 0.5X treatment. Interleukin-6
in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0OXPOS-treated heifers had reduced
(P<0.07) hydrogen peroxide production in muscle compared with OXNEG heifers. These data imply that while certain doses of OCM do not
improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can
induce a negative systemic response that results in negative effects in both the dam and the conceptus during early gestation. Therefore, it is
necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus,
while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring
programming.

Lay Summary

The feeding of one-carbon metabolites (including methionine and B vitamins) has been shown to improve fetal growth and milk production in
species such as mice, sheep, and dairy cattle. Extending this to beef cattle around the time of breeding is a growing area of research. Our group
previously determined that one-carbon metabolite supplementation to beef heifers altered the abundance of circulating methionine-folate cycle
intermediates in a dose-dependent manner. Therefore, we aimed to determine a whole-body response to one-carbon metabolite supplementa-
tion in heifers by measuring the effects on specific physiological systems as well as a total systemic response. WWe determined that treatments
that negatively altered the methionine-folate cycle yielded a fundamental negative whole-body response to supplementation.
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Abbreviations: 0XNEG, total mixed ration and sham im injections of saline at days 0 and 7 of the estrous cycle; 0XPOS, total mixed ration, rumen-protected
methionine fed at 0.08% of the diet DM, rumen-protected choline; fed at 60 g/d, and sham im injections of saline at days 0 and 7 of the estrous cycle; 0.5, total
mixed ration, rumen-protected methionine, rumen-protected choline, and im injection of 5-mg vitamin B,,, and 80-mg folate at days 0 and 7 of the estrous cycle;
1X, total mixed ration, rumen-protected methionine, rumen-protected choline, and im injection of 10-mg vitamin B,,, and 160-mg folate at days 0 and 7 of the
estrous cycle; 2X, total mixed ration, rumen-protected methionine, rumen-protected choline, and im injection of 20-mg vitamin B,,, and 320-mg folate at days
0 and 7 of the estrous cycle; AA, amino acid; CHOL, rumen-protected choline; CL, corpus luteum; DM, dry matter; DMI, dry matter intake; GnRH, gonadotropin
releasing hormone; IFN-v, interferon-gamma; IL-1a, interleukin-1-alpha; IL-1p, interleukin-1-beta; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10;
IL-17A, interleukin-17A; IL-36RA, interleukin-36 receptor agonist; IP-10, IFN-y-induced protein; MCP-1, monocyte chemoattractant protein-1; MCH, mean
corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MET, rumen-protected methionine; MIP1a,
macrophage inflammatory protein-1-alpha; MIP1(3, macrophage inflammatory protein-1-beta; 0CM, one-carbon metabolites; PUN, plasma urea nitrogen; RBC,
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red blood cell; RDW-CV, red cell distribution width percent, SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; TMR, total mixed ration; TNF-c, tumor
necrosis factor-alpha; VEGF-A, vascular endothelial growth factor A; WBC, white blood cell

Introduction

The roles of biochemicals involved in one-carbon metabolism,
which include choline, B vitamins (vitamin B, ,, vitamin B,
riboflavin, and folate [vitamin B,]), minerals (cobalt [compo-
nent of vitamin B, ], sulfur [component of methionine]), and
amino acids (methionine, serine, and glycine) that provide
a one-carbon moiety for pathways and physiological func-
tions (i.e., DNA methylation, nucleotide synthesis, etc.) have
been a topic of increasing research and focus, particularly in
dairy cattle (Clare et al., 2019; Khan et al. 2020a). Recently,
Crouse et al., (2023) determined that the one-carbon metabo-
lite (OCM; methionine, choline, folate, and vitamin B,,) dose
that was sufficient to maintain an increased OCM concen-
tration was 0.08% of the diet dry matter (DM) of rumen-
protected methionine (MET), 60 g/d of rumen-protected
choline (CHOL), 320 mg of folate injected once weekly, and
20 mg of vitamin B, injected once weekly. In the same report,
they determined that feeding the same quantity of methionine
and choline but injecting only 80 mg of folate and 5 mg of
B,, decreased heifer methylation potential, as indicated by a
decrease in S-adenosyl methionine:S-adenosyl homocysteine
(SAM:SAH ratio) in jugular venous serum.

In humans, decreased methylation potential is present in
multiple disease states including cancer, liver diseases (cir-
rhosis, hepatitis, carcinoma, and liver failure), neurological
diseases (Parkinson’s depression), kidney disease, type 2 dia-
betes, high blood pressure, heart disease, and inflammation
(Hao et al., 2016). Additionally, Hao et al. (2016) determined
that methylation potential could be used as an index of health
and/or stages of disease state. Even in a nondiseased state,
increased SAH resulting in decreased methylation potential
can result in DNA, RNA, and protein hypomethylation,
changes in gene expression, and altered cellular differentiation
and chromatin conformation, ultimately leading to changes in
cellular and organismal phenotype (Jill et al., 2002).

The effects of OCM supplementation, particularly during
the periparturient period, have been well-documented in dairy
cattle (McFadden et al., 2020; Girard and Duplessis, 2023).
MET supplemented at 0.08% of the diet DM increased dry
matter intake (DMI), circulating insulin in the cows, and
calf body weight at birth (Batistel et al., 2017). Furthermore,
methionine supplementation increased placentome mRNA
transcript abundance of multiple glucose and amino acid
(AA) transporters as well as increased abundance of multiple
mTOR regulatory proteins (Batistel et al., 2017). MET and
choline reduced oxidative stress, enhance immune function,
and therefore, improved health and metabolic function (Oso-
rio et al., 2013, 2014; Shahsavari et al., 2016; Zhou et al.,
2016; Batistel et al., 2018; Coleman et al., 2020). Folate sup-
plementation increased circulating concentrations of IFN-y
and interleukin-17 and stimulate B-cell-mediated immunity
in transition dairy cows (Ouattara et al., 2016; Khan et al.,
2020a, b). Folate and vitamin B, also improved dairy cow
metabolism during lactation (Girard and Duplessis, 2023).
When fed or injected in combination, folate and vitamin B,
increased milk production, milk component yield, and plasma
glucose concentrations, while decreasing hepatic lipids (Grau-
let et al., 2007; Preynat et al., 2009; Wang et al., 2019). Fur-
thermore, there were no changes in DMI or body weight with

folate and vitamin B, injection, demonstrating improvements
in metabolism by reducing mobilization of body reserve for
energy to meet the demands of lactation (Graulet et al., 2007;
Preynat et al., 2009; Wang et al., 2019).

In beef cattle, however, data concerning the immediate
effects of OCM supplementation to the heifer/cow and off-
spring performance are limited. Multiple studies in which
both cows and heifers were fed methionine hydroxy analogs
during the periparturient period show a lack of effect on milk
yield and growth performance of cows and calves, respec-
tively (Huber et al., 1984; Waterman et al., 2007; Clements
et al., 2017; Collins et al., 2019; Moriel et al., 2020; Redifer
et al., 2023). Supplementation of methionine hydroxy ana-
logs, however, did increase milk fat and milk solids (Lawson
et al., 2019; Redifer et al., 2023). Cows supplemented with
methionine during the periconceptual period had calves with
greater gain:feed, greater total GI tract neutral detergent and
acid detergent fiber digestibility, and decreased plasma glu-
cose concentration during a 42-day metabolism study relative
to calves from control-fed cows (Silva et al., 2021). Feeding
MET to heifers upon arrival in a feedlot resulted in decreased
haptoglobin concentrations compared with their control
counterparts suggesting that methionine may help alleviate
oxidative stress and inflammatory responses in receiving cat-
tle (Grant et al., 2022).

The objective of this study was to determine the effects of
increasing doses of folate and vitamin B , with a consistent
delivery amount of methionine and choline to heifers during
an estrous cycle on measures of physiological health and func-
tion. We hypothesized that OCM supplementation improves
health and physiology of beef heifers in a dose-dependent
manner.

Materials and Methods

This experiment was approved by the United States Meat
Animal Research Center Institutional Animal Care and Use
Committee (EO # 128.1) in accordance with the Guide for
the Care and Use of Agricultural Animals in Agricultural
Research and Teaching.

Animals, housing, and treatments

A full description of animals, housing, and treatments can be
found in Crouse et al. (2023). Briefly, Angus heifers (7 = 30,
~15 mo of age; initial BW =392.6 + 12.6 kg) were trained
to consume feed from individual feeders (American Calan,
Northwood, NH) and were fed a total mixed ration (TMR)
consisting of 75% grass/alfalfa hay, 21% corn silage, and 4%
of a mineral pellet on a DM basis. Due to individual feeding,
heifer was the experimental unit. For the treatments contain-
ing rumen-protected supplements, the TMR was dried weekly
for DM analysis to ensure methionine was delivered at 0.08%
of the DM. Additionally, both methionine and choline were
mixed in with the TMR for each individual animal to guar-
antee accurate and consistent supplement delivery. Heifer
weight and blood samples were collected prior to feeding on
days 0,2, 5,7, 9, and 12 and feed intake was adjusted after
each weight to target 0.45 kg/d average daily gain. Orts were
collected weekly for measurement of DMI.
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All heifers underwent synchronization of estrus as described
by Crouse et al. (2023) and were randomly assigned to one
of five treatments (n = 6/treatment) that were initiated on
day 0 (day of second Gonadotropin Releasing Hormone
and referred to as day O of the estrous cycle) of the study.
These treatments were 0OXNEG: TMR and injections of saline
at days 0 and 7 of the estrous cycle, 0XPOS: TMR, MET
(Smartamine M, Adisseo, Alpharetta, GA) fed at 0.08% of
the diet DM, CHOL (ReaShure, Balchem Inc., New Hamp-
ton, NY) fed at 60 g/d, and injections of saline at days 0 and
7 of the estrous cycle, 0.5X: TMR, MET, CHOL, injections
of 5-mg vitamin B ,, and 80-mg folate at days 0 and 7 of the
estrous cycle, 1X: TMR, MET CHOL, injections of 10-mg
vitamin B ,, and 160-mg folate at days 0 and 7 of the estrous
cycle, 2X: TMR, MET, CHOL, injections of 20-mg vitamin
B,,, and 320-mg folate at days 0 and 7 of the estrous cycle.
Injections of saline (0.9% NaCl; 10 mL), vitamin B, (5,000
pg/mL; Neogen Vet, Lansing, MI) and/or folic acid (5 mg/mL;
Fresenius Kabi, Bad Homburg, Germany) were administered
intramuscularly with no more than 10 mL of solution admin-
istered in a single injection site. As previously described in
Crouse et al. (2023), treatment doses of folate and vitamin
B,, (referred to as vitamin) were based on published litera-
ture in Holstein cows where the current 1X vitamin dose was
equal to that of Preynat et al. (2009). MET and CHOL were
fed according to manufacturer recommendations at the same
inclusion quantity across all supplemented treatments.

Sample collection and analysis

Blood samples were collected before treatment initiation on
days 0 and 7, and before slaughter on day 14 via jugular
venipuncture using 10-mL EDTA vacutainer tubes (Becton
Dickinson HealthCare, Franklin Lakes, NJ). Before centrif-
ugation, whole blood was used for hematology as described
below. After hematology analysis, the blood was centrifuged
at 1,500 x g for 20 min, plasma decanted, and stored at
-80 °C. On day 14 after synchronization of estrus, all heif-
ers were slaughtered at a federally inspected abattoir at the
USDA, ARS, US Meat Animal Research Center. After exsan-
guination, the uterus was collected, weighed, and transported
to the laboratory for additional measurements. The width
of each uterine horn was measured with calipers approxi-
mately 1 inch from the uterine bifurcation and both horn
measurements were summed for a total horn diameter. The
uterus was then clamped cranially to the cervix, flushed with
20 mL of phosphate-buffered saline into the contralateral
horn and recovered histotroph collected from the ipsilateral
horn. Ovaries were weighed and all visible surface follicles
were counted. The corpus luteum (CL) was removed from
the ovary and weighed. A representative cross section of the
ovary contralateral to the CL was fixed and embedded in
paraffin and ovarian histology was conducted using previ-
ously published methods to determine the number of primor-
dial, primary, and secondary follicles per section (Cushman
et al., 1999, 2001, 2007). After evisceration, the liver and
spleen were collected and weighed, and a sample of mus-
cle from the semitendinosus was collected for mitochondrial
analysis as described below. Allometric data was collected
for liver, spleen, uterus, and ovary weights and were recorded
as grams per kilogram of live weight on day of slaughter.
Due to the method of evisceration in the abattoir, samples
of the pancreas were collected for enzyme activity analysis,
but pancreatic weight was not measured because it was not

excised from the body whole. A 1-m segment of the jeju-
num was isolated from the small intestine, cut laterally, and
scraped with a glass slide to isolate the mucosa. Pancreas
and jejunal mucosa samples were flash-frozen in liquid nitro-
gen and stored at -80 °C for enzymatic activity analysis as
described below.

Hematology analysis

Whole blood samples were transported to the laboratory
for hematology analysis. Samples were placed on gentle
rotation on a tube rocker at room temperature until anal-
ysis. Samples were tested for 14 different white blood cell
(WBC) and red blood cell (RBC) hematology parameters
using a Heska Element HTS Veterinary Analyzer (Love-
land, CO). Hematology parameters included total white
blood cells (10°/pL), neutrophils (103/pL), lymphocytes
(10%/uL), monocytes (10%/pL), eosinophils (10%/pL), baso-
phils (103/pL), red blood cells (10%/pL), hemoglobin (g/dL),
percent hematocrit, mean corpuscular volume (fL), mean
corpuscular hemoglobin (pg), mean corpuscular hemoglo-
bin concentration (g/dL), red cell distribution width percent
(RDW-CV), platelets (10%/pL), and mean platelet volume
(fL).

Plasma and histotroph cytokine/chemokine
multiplex

Plasma and histotroph samples were used for the simulta-
neous quantification of cytokines and chemokines using the
MILLIPLEX Bovine Cytokine/Chemokine Magnetic Bead
Panel 1- Immunology Multiplex Assay (Millipore Sigma,
Burlington, MA). This assay simultaneously quantifies 15
cytokines and chemokines: interferon-gamma (IFN-y),
interleukin-1-alpha (IL-1a), interleukin-1-beta (IL-1f),
interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10
(IL-10), interleukin-17A (IL-17A), macrophage inflam-
matory protein-1-alpha (MIP-1a), interleukin-36 recep-
tor agonist (IL-36RA), IFN-y-induced protein-10 (IP-10),
monocyte chemoattractant protein-1 (MCP-1), macro-
phage inflammatory protein-1 (MIP-18), tumor necrosis
factor-alpha (TNF-a), and vascular endothelial growth fac-
tor A (VEGF-A). The cytokine/chemokine analysis was only
performed on plasma samples from days 0 and 14 of the
study. Concentrations of all cytokines are reported as pg/
mL (intraplate coefficient of variation [CV] across all ana-
lytes: 21.45%).

Plasma and histotroph metabolites

Urea nitrogen (PUN) concentration was analyzed in plasma
samples from days 0, 7, and 14 according to previously
published methods (intraplate CV =6.31%; interplate
CV =12.07%; Fawcett and Scott, 1960; Chaney and Mar-
bach, 1962). Plasma and histotroph glucose concentrations
were determined using the Infinity Glucose Hexokanse Liq-
uid Stable Reagent (Thermo Fisher Scientific, Waltham, MA).
For glucose analysis, 5 pL of plasma or histotroph was added
with 250 pL of reagent in a 96-well flat bottom microplate
(intraplate CV = 4.03%; interplate CV = 3.97%). Histotroph
total protein concentration was determined using the Pierce
BCA Protein Assay Kit (Thermo Fisher Scientific; intraplate
CV = 7.71%; interplate CV = 9.42%). Urea nitrogen, glucose,
and protein were microplate assays and used the BioTek Syn-
ergy H1 microplate reader (Agilent Technologies, Inc, Santa
Clara, CA).



Pancreatic and jejunal protein and enzyme activity
analysis

All procedures are described in detail by Trotta et al.
(2023). Briefly, pancreas and jejunal mucosal samples were
homogenized (Kinematica Polytron PT 3100; Brinkmann
Instruments Inc.) and total protein was measured with the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific).
Pancreatic o-amylase activity was determined using the
procedure outlined by Wallenfels et al. (1978) using the
Amylase Reagent Set (Teco Diagnostics; Anaheim, CA) with
p-nitrophenyl-D-maltoheptaoside as the substrate. One unit
(U) of enzyme activity equals 1 pmol of p-nitrophenol pro-
duced per minute. Jejunal enzyme activity assays followed
the methods of Dahlqvist (1964) for maltase and isomal-
tase and the methods of Kidder et al. (1972) for glucoam-
ylase. Procedures were modified for use with cattle tissues
as recommended by Kreikemeier et al. (1990) and Siddons
(1968). Following enzymatic hydrolysis, glucose concen-
trations were measured as previously described. About 1 U
of enzyme activity equals 1 pmol of glucose produced per
minute for glucoamylase and 2 pmol of glucose produced
per minute for maltase and isomaltase. Tissue blanks were
quantified for endogenous glucose concentrations which
were subtracted from the total amount of product produced
per minute. Because cattle do not have measurable sucrase
activity (Trotta et al., 2022), a-glucosidase activity is equal
to the sum of maltase, isomaltase, and glucoamylase activity.

Mitochondrial hydrogen peroxide analysis

Mitochondria were isolated via differential centrifugation,
with modifications (Chappel and Perry, 1954; Makinen and
Lee, 1968. Approximately 1.0 g of muscle was diced in four
volumes of homogenization buffer (140 mM KCI, 20 mM
HEPES, 5 mM MgCl6eH20, 2mM EGTA, 1 mB ATP, 10 mg/
mL fatty acid-free BSA, pH 7.4). One hundred pL subtilisin A
protease (1.5 AU/mL; Sigma) per g of muscle was added and
the sample was shaken at 4 °C for 9 min. The protease incu-
bation mixture was washed 6-fold in homogenization buffer
and filtered through a 100-um sieve (BD Bioscience). The tis-
sue was then homogenized in 12 mL of homogenization buffer
per g muscle in a Dounce homogenizer (Wheaton). The slurry
was centrifuged at 500 x g at 4 °C and the pellet contain-
ing cellular debris was discarded. The supernatant was then
centrifuged at 9,600 x g at 4 °C for 10 min. The supernatant
was discarded, and the pellet was resuspended and washed
twice in wash buffer (140 mM KCI, 20 mM HEPES, 5 mM
MgCl6eH20, 1 mM EGTA, 10 mg/mL fatty acid-free BSA,
pH 7.4), centrifuging at 4,300 x g at 4 °C between washes.
The sample was centrifuged again at 4,300 x g at4 °C and the
pellet was resuspended in 200-pL isolation medium (140 mM
KCl, 20 mM HEPES, 5 mM MgCl6eH20, 1 mM EGTA).
The protein concentration of the extracts was determined
using the bicinchoninic acid reagent (Smith et al., 1985).
Hydrogen peroxide (H,O,) production from the mito-
chondria was used to determine reactive oxygen species
production via 2,7 dichlorofluorescin diacetate (DCFH), as
previously described by Igbal et al. (2001), with modifica-
tions. All reagents were made fresh each day. A H,O, standard
curve was used to calculate production values. Fluorescence
of DCFH was measured on a BioTek Synergy H4 microplate
reader (BioTek, USA) at 38 °C at an excitation/emission
wavelength of 480/530 nm. Samples and standards were run
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in triplicate on black polystyrene 96-well plates. Twenty units
of superoxide dismutase and 51-pM DCFH were added in
45-pL isolation buffer to each well. In addition, either 8-pm
glutamate or succinate was added as an energy substrate for
electron transport complexes I and II, respectively. Individual
electron transport complexes were inhibited by 10-uM rote-
none, 8-uM 4,4,4-trifluoro-1-[2-thienyl]-1,3-butanedione,
13-puM antimycin A, or a combination of the three. Either
H,O, standards or 100 pg of mitochondrial protein per well
was added and blank wells containing no mitochondria were
used to calculate background fluorescence. Readings were
taken every 5 min from 0 to 40 min.

Due to time constraints to accurately collect and analyze
peroxides from muscle mitochondria, no heifers from the 2X
treatment and only five of the six heifers from the remaining
treatments were used.

Statistical analysis

All statistical analysis of hematology and metabolite data was
conducted using the MIXED procedure of SAS 9.4 (SAS Insti-
tute, Cary, NC) with repeated measures using AR(1) as the
covariate based on the lowest AIC/BIC, with day, treatment,
and the interaction in the model as fixed effects and animal
nested within treatment as the random effect. Statistical sig-
nificance was met at P < 0.05, and tendencies P > 0.05 but less
than P <0.10. Least squares means were computed using the
LSMEANS statement and mean separation was conducted
with the PDIFF statement in SAS.

Weights, DMI, organ measurements, pancreatic and jeju-
nal protein concentration, enzyme activity analysis, and
H,0, analysis were analyzed using PROC GLM and means
were separated using LSMEANS. Polynomial contrast coeffi-
cients were generated using PROC IML for unequal spacing
between treatments. To test the effects of MET and CHOL
(Negative vs. Positive), a contrast was performed for OXNEG
vs. 0XPOS. To test the effect of folate and vitamin B, , supple-
mentation in combination with MET and CHOL, vs methi-
onine and choline without additional folate and vitamin B ,,
(0XPOS vs. Vitamin) a contrast statement was performed
for 0XPOS vs. 0.5X, 1X, and 2X. Finally, linear, quadratic,
and cubic orthogonal contrast statements were generated to
evaluate concentrations of folate and vitamin B , supplemen-
tation from 0XPOS, 0.5X, 1X, and 2X. For mitochondrial
hydrogen peroxide analysis, Met + Choline vs. Vitamin and
linear and quadratic orthogonal contrasts were conducted
due to not analyzing the 2X treatment. Probability values
were considered significant when P <0.05, and tendencies
were noted when 0.05 > P < 0.10.

Results

Heifer DMI and gain

Heifer DMI and gain data are presented in Table 1. By design,
there were no differences in initial weight, final weight, or
ADG across treatments (P> 0.89). Daily DMI and aver-
age daily DMI adjusted per kg of heifer body weight were
affected cubically (P = 0.04) such that intake increased from
the 0XPOS to the 0.5X treatment then decreased to the at the
1X and 2X intake.

Hematology analysis

All hematology data are presented in Table 2. Reference
ranges as well as minimum and maximum recorded values
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in OXPOS-treated heifers compared with 0.5X-, 1X-, and
2X-treated heifers. No other analyte was affected by treat-
ment nor day of the estrous cycle (P > 0.23). Both MCP-1 and
VEGEF-A tended (P = 0.09) to be greater in 0XPOS- compared
with OXNEG-treated heifers. The concentration of IL-36RA
tended (P = 0.09) to decrease linearly with increasing vitamin
dose. The concentration of MIP-1f3 was greater (P = 0.05) in
heifers receiving vitamin B, and folate injections compared
with 0XPOS and tended (P = 0.06) to decrease linearly with
increasing vitamin dose. Lastly, VEGF-A tended (P = 0.07) to
be altered cubically being greater in 0XPOS and decreasing
and remaining constant from 0.5X- to 2X-treated heifers.
There were no differences by treatment or contrasts for any
cytokine analytes in histotroph (Table 4; P > 0.11).

Plasma and histotroph metabolites

All plasma and histotroph metabolite data are presented in
Table 5. There was no difference due to the interaction of
treatment and day, or the main effects of treatment or day for
the concentration of PUN (P > 0.47). The PUN concentration
tended (P = 0.08) to increase in heifers with increasing vita-
min dose. Plasma glucose was not affected by the day x treat-
ment interaction or the main effect of day (P > 0.71). Plasma
glucose concentration differed by treatment (P <0.01) and
did so cubically (P = 0.02) such that the concentration of glu-
cose in 0.5X heifers was less than that of all other treatments.
While there were no overall treatment differences in the con-
centration of glucose in histotroph (P = 0.31), the orthogonal
contrast evaluating inclusion of MET and CHOL revealed a
tendency (P = 0.06) for glucose to be greater in 0XPOS- com-
pared with 0OXNEG-treated heifers. Similar to plasma glucose,
the concentration of glucose in histotroph was affected cubi-
cally (P =0.04) such that it was decreased from 0XPOS to
0.5X and returned to be equal to that of the 0XPOS-treated
heifers by the 1X and 2X treatments. Histotroph protein
concentration was affected by treatment (P = 0.04) such that
0XPOS and 1X treatments were greater than the 0XNEG and
0.5X treatments with 2X being intermediate and equal to all
other treatments. Furthermore, total histotroph protein was
greater (P =0.02) in OXPOS-treated heifers compared with
OXNEG and tended (P = 0.06) to be greater in 0XPOS-treated
heifers compared with those receiving vitamin injection. Simi-
lar to the glucose pattern across treatment, histotroph protein
was altered cubically with increasing vitamin dosage, being
decreased (P =0.01) from 0XPOS to 0.5X then returned to
the equivalent concentration of the 0XPOS at the 1X and 2X
vitamin dosages.

Visceral organ and reproductive tract
measurements

All organ weight data are presented in Table 6. There were
no differences in liver weight or liver weight when scaled
to heifer body weight (P >0.50). Unnormalized and scaled
spleen weights were not affected by a treatment difference
(P >0.26); however, both were affected cubically (P = 0.03)
with increasing vitamin dose such that the weight decreased
from OXPOS to 0.5X, increased from the 0.5X to the 1X,
and remained equivalent from the 1X to the 2X doses. Uter-
ine weight was greater (P = 0.05) in the 0OXNEG and 0XPOS
treatments compared with the 0.5X-treated heifers, with
the 1X and 2X being intermediate and not different from
all other treatments. Similarly, when uterine weight was
scaled to heifer body weight, it tended (P = 0.07) to be lesser
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in the 0.5X treatment compared with all other treatments.
Both unnormalized and scaled uterine weight were greater
(P <0.01) in the 0XPOS-treated heifers compared with those
receiving vitamin injections. Both unnormalized and scaled
ovarian weight tended (P = 0.08) to be reduced in the 1X-
and 2X-treated heifers compared with the 0XPOS-treated
heifers. Both unnormalized and scaled ovarian weights were
greater (P <0.03) in 0XPOS compared with vitamin injected
heifers. Furthermore, there was a linear decrease (P < 0.01) in
both unnormalized and scaled ovarian weights with increas-
ing vitamin supplementation. Unnormalized nor scaled CL
weights, uterine horn diameter, or primordial, primary, sec-
ondary, or surface follicle counts differed among treatments
(P >0.15). Although there was no overall treatment differ-
ence in the largest follicle diameter (P = 0.17), follicle diame-
ter tended (P = 0.10) to be affected quadratically, decreasing
from 0XPOS to 0.5X and 1X, and subsequently increasing at
the 2X treatment.

Pancreatic and jejunal enzyme activity

All pancreatic and jejunal protein and enzyme analysis data
are presented in Table 7. Total pancreatic protein was not
affected by treatment (P =0.22); however, it was affected
cubically (P = 0.04) such that the protein concentration was
decreased from 0XPOS- to 0.5X-treated heifers and increased
at the 1X and 2X doses to be equal to that of the 0XPOS-
treated heifers. There were no effects of treatment (P > 0.36)
in jejunal total protein concentration.

Pancreatic a-amylase activity per gram of pancreas and
per gram of pancreatic protein followed the same trends
being greater (P = 0.01) in 2X-treated heifers compared with
0XNEG and 0.5X-treated heifers. Furthermore, both activity
per gram of pancreas and per gram of pancreatic protein were
affected cubically with increasing vitamin dose (P <0.02)
decreasing from 0XPOS to 0.5X, returning to the equivalent
activity of 0XPOS by the 1X treatment and continuing to
increase to the 2X-treated heifers. The a-glucosidase, maltase,
and glucoamylase activity per gram of jejunum or per gram
of jejunal protein were not affected by treatment (P > 0.16).
Isomaltase activity was not affected by overall treatment
(P>0.13); however, activity per gram of jejunum and per
gram of jejunal protein decreased linearly (P =0.04) with
increasing vitamin injection dose.

Muscle hydrogen peroxide accumulation rate

All H,0, accumulation rate data are presented in Table 8.
Hydrogen peroxide accumulation rate in heifer muscle when
using glutamate as a substrate and inhibiting Complex I and
IT of the electron transport chain were similar in that the
O0XNEG-treated heifers had a greater H,O, accumulation rate
than the 0XPOS- and 0.5X-treated heifers. When both com-
plexes one and three were inhibited, 0OXNEG-treated heifers
tended (P =0.07) to accumulate H,O, at a greater rate than
0XPOS- and 0.5X-treated heifers. When using glutamate as
a substrate, the H,O, accumulation rate was decreased in the
0XPOS- compared to the 0XNEG-treated heifers when either
none (P =0.07) of the complexes were inhibited, or when
complexes one (P =0.01), two (P = 0.01), three (P = 0.07), or
one and three were inhibited together (P = 0.01. Furthermore,
there was a linear increase in H,O, accumulation with increas-
ing folate and B, injection dose. When using succinate as the
substrate, H O, accumulation was not affected (P > 0.13) by
treatment in any complex; however, H O, accumulation was
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decreased (P = 0.03) in the 0XPOS-treated heifers compared
to OXNEG-treated heifers when complex one was inhibited.

Discussion

These data are the first to report on the combined effects of
supplementing four OCM in coordination with each other
on measurements of overall health and performance in beef
heifers. The measurements evaluated in this study were taken
due to the previously reported effects of methyl donors on
intake, hematopoiesis, immune response, energy metabolism,
and free radical scavenging in multiple species. We failed to
reject our null hypothesis that supplementing increasing doses
of OCM would positively impact measures of health and per-
formance in beef heifers; however, we report that a dose that
disrupts one-carbon metabolism, as presented in Crouse et al.
(2023), that results in decreased methylation potential neg-
atively impacts performance and health parameters of beef
heifers. Crouse et al. (2023) previously reported that the 0.5X
treatment did not maintain increased circulating OCM con-
centrations, and, in fact, reduced the methylation potential
(SAM:SAH ratio). When evaluating this treatment over the
multiple measures conducted in the study, the 0.5X-treated
heifers had increased DMI by cubic contrast, but a decrease
in RBC, hemoglobin, hematocrit, plasma, and histotroph glu-
cose as well as histotroph protein, spleen weight (g/kg), uter-
ine weight, pancreatic protein concentration, and a-amylase
activity. Overall, these data suggest a negative systemic
response to aberrant methyl supply in beef heifers during an
estrous cycle. Further mechanistic discussion of the decreased
energy availability and protein synthesis will be included
below.

Multiple reports in dairy cattle demonstrated that sup-
plementation with MET alters DMI in the transition dairy
cow (Osorio et al., 2013; Batistel et al., 2017; Cardoso et al.,
2021). In beef cattle, Grant et al. (2022), reported that receiv-
ing heifers that were limit-fed and received either a control
diet or supplemental MET had no difference in average daily
gain or DMI due to methionine supplementation. Herein,
we report no overall difference in intake amongst treatments
when gain was fixed; however, a cubic response in DMI was
observed with increasing folate and B,, supplementation
which was driven primarily by the difference in DMI between
0XPOS and 0.5X.

The role of the spleen includes filtration of erythrocytes
and platelets, recycling iron from red blood cells, phagocytic
filtration of blood and production of opsonizing antibodies,
as well as storage of red blood cells and platelets (Kapila et
al., 2023). Folate and vitamin B, are essential for the forma-
tion of red blood cells and heme and deficiency in these vita-
mins results in anemia (Koury and Ponka, 2004). The spleen
decreased in mass in the 0.5X treatment and the hematology
data showed a decrease in RBC, hemoglobin, hematocrit per-
centage, and a greater RDW-CV. These differences may sug-
gest altered splenic filtering and storage capacity in the 0.5X
treatment. Interestingly, the MCV and MCH were greatest
in the 2X treatment with a RBC equal to that of the 0.5X
treatment, which suggests the potential for macrocytic ane-
mia, a condition of increased red blood cell size as a result of
decreased red blood cell number and is typically associated
with folate or vitamin B, deficiency (Moore and Adil, 2023).
It should be noted that while we see differences between
treatments, all hematology measurements are within reported
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reference ranges (Supplementary Table 1), although some
measurements such as hematocrit, specifically on the 0.5X
treatment are low (Herman et al., 2018; Cornell University
College of Veterinary Medicine, 2019).

There were few differences in plasma whole blood immune
cell concentrations and plasma cytokine concentrations
across treatments in the current study. Immune cells are
important for protecting the body against disease and patho-
gens and cytokines are important signaling proteins for mod-
ulating immune system activity. Although there were several
measurements that collectively suggest a negative systemic
response to OCM supply in 0.5X heifers, the lack of change
in immune cell concentrations and cytokines indicates that
immunoactivation did not occur in 0.5X heifers. Immunoac-
tivation in cattle requires large amounts of glucose and thus,
nutrients are repartitioned away from anabolic pathways that
result in increased growth (Kvidera et al., 2016, 2017). Thus,
the lack of change in immune cell concentrations and cyto-
kines in the current study provides evidence that decreased
glucose in response to 0.5X supplementation was not because
of immune system activation.

Although there was greater DMI in the 0.5X treatment, glu-
cose concentration in plasma and histotroph was decreased
compared with OXPOS heifers. It has been estimated that
approximately 95% of glucose in systemic circulation is
derived from gluconeogenesis (Aschenbach et al., 2010), with
only a minor proportion contributed from intestinal glucose
absorption and/or splanchnic glucose metabolism for cattle
consuming low-starch diets (Reynolds et al., 2003; Doepel et
al., 2009). Of the potential gluconeogenic precursors (volatile
fatty acids, lactate, glycerol, amino acids), propionate is by far
the predominant substrate for gluconeogenesis in fed rumi-
nants (Reynolds et al., 2003; Larsen and Kristensen, 2009).
Flux of propionate through gluconeogenesis is regulated
by the vitamin B ,-dependent enzyme, methylmalonyl-coA
mutase (Elliot, 1980); however, intramuscular vitamin B,
injections have only been reported to increase (Peters and
Elliot, 1983; Preynat et al., 2009) or not influence (Duples-
sis et al., 2017) whole-body glucose rate of appearance from
propionate. Serum vitamin B, concentration of 0.5X heifers
remained elevated for the duration of the study compared
with the control treatment (Crouse et al., 2023), suggesting
that another mechanism may be responsible for decreased
glucose concentration in plasma and histotroph. Intramuscu-
lar injection of 320-mg folic acid was reported to decrease
whole-body glucose rate of appearance in dairy cows and
those authors suggested folic acid might have changed glu-
cose utilization in peripheral tissues (Duplessis et al., 2017).
Increasing SAH and decreasing methylation potential results
in decreased mRNA expression of phosphoenolpyruvate car-
boxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) in
human hepatocytes (Jackson et al., 2012). Therefore, balance
of OCM supply and/or decreased methylation potential of
0.5X heifers may have contributed to decreased plasma and
histotroph glucose concentration.

Acinar cells of the exocrine pancreas have the greatest
rate of protein synthesis compared with other cell types
in mammalian tissues (Pandol et al., 2011). Pancreatic
a-amylase activity in ruminants is sensitive to changes in
energy intake and energy balance (Trotta et al., 2022),
where dietary energy restriction has been shown to decrease
pancreatic a-amylase activity in cattle and sheep (Awda
et al., 2016; Keomanivong et al., 2016, 2017a, b; Trotta
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et al., 2020). Decreased pancreatic protein concentration
and a-amylase activity in 0.5X heifers may be related to
conservation of energy expenditure by reducing protein
activity/synthesis (Wang et al., 2009; Holligan et al., 2013;
Wood et al., 2013), as regulated by the mammalian tar-
get of rapamycin signaling pathway (Guo et al., 2018a, b,
2019). Additionally, responses of pancreatic protein con-
centration and a-amylase activity observed in the current
experiment were quite similar to the response of SAM:SAH
previously reported using the same experimental animals
(Crouse et al., 2023). Previous research reported that pan-
creatic a-amylase activity decreases in response to increases
in SAH concentrations and decreases in the SAM:SAH ratio
(Capdevila et al., 1997). As supply of folate and vitamin B ,
increased from 0.5X to 2X in the current study, pancreatic
a-amylase activity increased concurrently with increases
in methylation potential (SAM:SAH) (Crouse et al., 2023).
Therefore, changes in pancreatic protein concentration and
a-amylase activity in the current study could potentially be
related to changes in whole-body energy utilization, protein
turnover, and/or methylation potential.

Although heifers used in the current experiment were not
bred, the reproductive tract and histotroph data are inter-
preted to imply that fertility of the 0.5X heifers would be
compromised. Cushman et al. (2013; 2023) reported that
both cows and ewes that were open for multiple breeding
seasons had reduced uterine size which would be similar
to the decrease in uterine size in the 0.5X treatment. Simi-
larly, key components of uterine histotroph such as glucose
and protein, which are key regulators of embryonic growth,
were decreased (Wang et al., 2016; Moraes et al., 2020).
Heifers that conceive earlier in the year have increased
uterine glucose and protein concentration compared with
heifers that take multiple cycles to establish and maintain
a pregnancy (McNeel et al., 2017; Snider et al., 2022).
Furthermore, nutritionally compromised pregnancies have
decreased abundance of high-capacity glucose transporter
SLC2A3 in deep uterine glands and decreased concentra-
tion of glucose in fetal fluids compared with those fed to
a moderate rate of gain (Crouse et al., 2019, 2021). The
concentration differences seen in histotroph may be due to
either a decrease in circulating concentration of glucose or
simply a decrease in ability to transport nutrients via trans-
porters in the uterus. In either case, with the decrease in glu-
cose, heifers on the 0.5X treatment would have decreased
ability to maintain a pregnancy due to decreased nutrients
in histotroph for use in embryonic development and thus,
an inability to generate an elongated embryo for maternal
recognition of pregnancy.

The OCM pathway is linked to peroxide radical scaveng-
ing through glutathione production via the transulfuration
pathway (Clare et al., 2019). Zhou et al. (2016) did not report
a difference in H,0, produced but did report an increase in
reduced glutathione with methionine supplementation. While
we do not have a measurement of reduced or total gluta-
thione, we report that H,O, was decreased with glutamate
and succinate as the substrate when comparing 0XNEG to
0XPOS suggesting improved hydroxy radical scavenging in
heifers when supplemented with methionine and choline.
Interestingly, there were no differences between the 0.5X and
0XPOS treatments suggesting that the 0.5X treatment was
equally effective in hydroxy radical scavenging. This would
be counter to the other data showing a negative response
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to the 0.5X treatment while reduction in H,O, is a positive
response to treatment.

In conclusion, these data are interpreted to imply that
supplementation with OCM at most concentrations does
not positively affect overall heifer health and performance;
however, there may be aberrant supplementation doses, such
as that of the 0.5X treatment, that can disrupt one-carbon
metabolism and thus negatively impact heifer performance
which would most likely also negatively impact fertility
and embryonic development. Therefore, additional work
using doses such as the 2X dose should be conducted in
beef cattle throughout pregnancy to determine whether
supplementation with OCM improves embryonic and fetal
development. Lastly, studies should be conducted with the
0.5X treatment to further understand the mechanisms and
negative outcomes associated with reduced methylation
potential.

Supplementary Data

Supplementary data are available at Journal of Animal Science
online.
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